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0. Introduction. Given a topological space X, we can consider the group G(X) of
all autohomeomorphisms of X. Much is known about the relationship between X and
G(X) for certain restricted classes of the space X; Whittaker [7] has shown that the
existence of an isomorphism between any two sufficiently large subgroups of G(X) and
G(Y) implies that X and Y are actually homeomorphic, whenever these are both
compact, locally Euclidean manifolds, with or without boundary; Fine and Schweigert [1]
give a detailed analysis of G(U); recently, Neumann [4], Mekler [3] and Truss [6] have
considered in depth the group G(Q).

A proven technique when studying arbitrary spaces is to embed them within other
spaces about which more is known; thus the study of compact Hausdorff spaces allows for
a greater understanding of Tychonov spaces (i.e. those spaces which occur as subspaces of
compact Hausdorff spaces). Similarly, Shimrat [5] has shown that every space X can be
embedded in a homogeneous superspace.

We shall show that every space X embeds as a retract within the space C(G(X), X)
of continuous functions from G(X) into X (with suitably defined topologies), and that this
embedding has the additional property that every autohomeomorphism of X extends to
an autohomeomorphism of C(G(X), X). Moreover, if X is Tychonov, so is C(G(X), X),
and our retraction extends to a retraction of /3C(G(X), X) onto /3X.

1. A class of topologies for G(X). Let X be some fixed but arbitrary topological
space. Throughout this paper, we denote by p any topological property satisfying

(i)p({x})VxeX,
(ii) [p(A) andp(B)]3>p(AUB)VA, BeX.

For example, p(A) might mean "A is compact", "A is finite", or even "A £ X". We shall
write (p; B) to mean that p(A) holds for every relatively closed subset AcBcX.

If A c X, we denote by GA the stabiliser of A in G{X), viz:

GA = {geG(X): g(a) = a\/aeA}.

Given some such property p, we may take Fp = {GA:A cX, p(A)} to be a
fundamental system of open sets for G{X). For we need only check that

(i) if U, V e Fp, then there exists We¥p such that W c U D V;
(ii) if U € Fp, g e G(X), then there exists V e Fp such that g'xVg c U.

See e.g. [1, p. 28].
Now (i) follows by taking W = GAUB, where U = GA and V = GB, recalling our initial
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hypothesis that p(A) and p(B) together imply p{AUB). Condition (ii) is satisfied
since every conjugate of a stabiliser is again a stabiliser, and because p is preserved under
maps in G(X), since it is topological. This gives a topology on G(X) with which it
becomes a topological group, which we shall denote GP(X). When p is the particular
property of being compact, we write GK{X) instead of GP(X).

LEMMA 1. GP(X) is a zero-dimensional Tychonov space.

Proof. If ge(~]¥p, then geGA for every Ac.X satisfying p{A). In particular,
geG{X) for every xeX, whence g = l. So GP(X) is 7i and so Hausdorff. It is now
sufficient to note that every element of Fp is clopen, since its complement is a union of its
cosets, each of which is open. •

When discussing a topological group G, it is often of interest to determine whether G
is locally compact, since we may then define Haar measure on G. Note that, by taking
p(A) 23 "A c i " , we can always ensure that GP(X) is discrete; but for other properties p,
GP{X) need not be locally compact, as we now demonstrate.

If GP(X) is locally compact, for some property p, then Lemma 1 tells us that the
group identity, 1, has a basis of compact clopen sets, each in ¥p.

We are grateful to the referee for greatly improving upon our original proof of the
next result.

THEOREM 2. Let AcBcX, where p(A) and (p,B). Suppose GA is compact in
GP{X). Then there exists a finite S c B\A such that

GB = G^B.

Proof. For each finite subset F of B\A define AF = A U FB and HF = GAF\GB. Then
HF is a closed subset of the compact set GA\GB. Since the union of the ^4F's is B, we have
f^\HF = 0, and so the HF's fail to have the finite intersection property. Hence we can find
finite sets Flt..., Fn in B\A and

0 = HFln... nHFn = HFlU,,,UFn,

So, putting 5 = Fx U . . . U Fn completes the proof. •

COROLLARY 3. GK(Q) is not locally compact.

Proof. Suppose that GA were compact, for some compact ^4cQ. Let T be any
infinite compact subset of Q, disjoint from A. Taking B = A U T satisfies the conditions of
the theorem, whence there exists some finite S c T such that GAUS- GAUT (since
A U SAUT = A U 5). But this is clearly nonsense. For, choose any x e T\S, and any
interval (a, b) containing x and disjoint from A US. Then we can easily find an element of
G(Q) fixing Q\(a, b) and moving x. •

2. Representing spaces as function spaces. We conclude this paper by showing that
every space X may be regarded as a space of continuous functions from GP{X) into X.
Our method parallels that of the embedding of a vector space in its second dual.
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LEMMA 4. Given x e X, define <j>x: GP(X)—>X by <j>x(g) = g(x). Then 0J:(5) is open
in GP(X) for every S c l

Proof. We simply note that <p~1(S) = Q^iS). G{x), and the latter is open since
G{x}e¥p. •

Consequently, we may sensibly define a map <fr:X—* C(GP(X), X) by <&(x) = $x for
all x eX. The map <I> is injective, since $x = <j)y implies x = <px(l) = <py(l) =y.

Let C(GP(X), X) be given the finite-open topology. That is, we take as a subbase for
the topology all sets of the form

(K, £/) = {/ e C(GP(X), X) :f(K) <= £/},

where K ranges over all finite subsets of G(X), and U over all open subsets of X. We
shall always assume that C(GP(X), X) is equipped with this topology.

THEOREM 5. The map 3>: AT—»C(GP (X), X) is a topological embedding.

Proof. We have already seen that <J> is injective, so we need only demonstrate
bicontinuity. If (K, U) is a typical subbasic set in C(GP(X), X), then

= {xeX:g(x)eU\/geK}

The latter is a finite intersection of open sets, and so is open in X.
Conversely, if U is an open set in X, then

= {/ e C(GP(X), X) : /(l) e U} D im *

= ({1}, t/)nim«D,

which is open in im <!>, since ({1}, U) is open in C(GP(X), X). •

THEOREM 6. Let geG(X). Then g has an extension xpg e G(C{GP(X), X)), i.e.
g = ipg \x, where we identify X and ®(X).

Proof. Define ipg:C(Gp(X), X)^C(GP(X), X) by yg(f)(g)=f(gg) for all ge
G(X), f e C(GP{X), X). We shall show that % e G(C(GP(X), X)).

Note first that %(f) e C(GP(X), X) whenever g e G(X) and / e C(GP(X), X). For
suppose U c X is open. Then

= {g:f(gg)eU}
= {g:ggef-\U)}

which is open, since/"'((/) is open in GP(X) by the continuity of/.
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Now suppose that ipg(fi) = %(f2). Then given any g e G(X), we have/,(gg) = f2(gg).
Since gg ranges over all of G(X) as g does, we see that fx=f2. So xpg is injective.

Moreover, if (K, U) is a typical subbasic open set in C(GP(X), X), then

= {f:f(gg)eUVgeK}

= (Kg, U),
which is open. So tyg is continuous.

Likewise, ipg-i is an injective continuous map, and since ipg°xpg-i = ipg-\°\pg = id, we
see that ipg is a homeomorphism, as claimed.

It remains only to show that ijjg extends g. But this is clear, since ipg(<px)(g) —
<t>x{gg) = gg(x) = <Pgu)(g)- Thus * °g = xpg o <&, as required. •

We now show that X is a retract of C(GP(X), X), and that, if X is Tychonov, then so
is C(GP(X),X). We obtain, as a corollary, that px = XpciG»ix)-X) whenever X is
Tychonov.

LEMMA 7. X is a retract of C(GP(X), X).

Proof. Define 6: C(GP(X), * ) ->X by 0(/) = / ( l ) . If x = Z, then 0(0,) = &(1) = *,
so that X is fixed by 6. To show that 0 is continuous, we consider a typical open set U of
X. Now

which is open in C(GP(X), X). •

LEMMA 8. If X is Tychonov, so is C(GP(X), X).

Proof. Let / e (K, U), where (K, U) is some typical subbasic open set in
C(GP(X), X). We have to find a continuous F: C(GP(X), X)^> [0, 1], such that F(f) = 0
and F = 1 outside (K, U) (see e.g. [8, 14.8]).

The set f(K) is a finite subset of U. Since X is Tychonov, there exists a continuous
F i X ^ O , 1] such that F = 0 on f(K) and /" = 1 outside (/. Define F:C(GP(Z), *)->
[0,1] by

F(f) = max{F(f(g)):geK}.
Then F(/) = 0, while if / e (K, U), then f(g) $ U for some g e K, whence F(f) = 1.

We now show that F is continuous. Write K = {gi, . . . , gn} and for each / =
l,...,n, define V*:C(Gp(*) ,*)-»* by y,(J) =f(gi). Then ^ = 0«Vft, so V/ is
continuous for each / = 1, . . . , n, where 0 is as in Lemma 7 and 0g. as in Theorem 6. It is
now enough to note that

F(f) = max{F(f(g)):geK}

= max{F°^i(f):i = l,. . . , n}.

Since each F° \pt is continuous, so is their maximum.
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We conclude the proof by showing that C(GP(X), X) is Hausdorff. If fltf2 are
distinct elements of C(GP(X), X), there exists some g e G(X) such that /i(g) i=fz{g)-
Since X is Hausdorff, there exist disjoint open sets U, V with fi(g) e U and f2(g) e V. Now
/j e ({g}, U), f2 e ({g}, V), and these two open sets are disjoint. •

COROLLARY 9. Let X be Tychonov. Then

and, moreover, 6 extends to a retraction dp:fi{C(Gp{X), X)

Proof. According to Lemma 8, C(GP(X), X) is Tychonov, so that fiC(Gp(X), X)
exists. Now X is a retract of, and so is C*-embedded in, C(GP(X), X). Hence X is
C*-embedded in its compactification, xpc(C'w-x), whence fix = XpciG-(X)x\

Now 6 has a natural extension 8p:fiC(Gp(X), X)-^fiX; since 6 acts as the identity
on X, 00 must act as the identity on x^^-^-^ = fiX, as claimed.
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