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Abstract

Assessing the relationship between antimicrobial usage (AMU) and antimicrobial resistance
(AMR) requires the accurate and precise utilisation of register data. Therefore, validation of
register-based data is essential for evaluating the quality and, subsequently, the internal valid-
ity of studies based on the data.

In this study, different smoothing methods for Veterinary Medicine Statistic Program data-
base (VetStat)-records were validated by comparing these with farm-records. Comparison
between measurements included accuracy as; completeness and correctness, and precision
as; a relative difference of the error, correlation with Fisher’s z transformation and reliability
coefficient. The most valid methods of those examined were then used in re-analyses of the
abundance of AMR genes in 10 finisher batches from a previous study.

Improved accuracy was found when detailed smoothing methods were applied. Although
the precision also increased, the effect was not as pronounced, as the usage estimate of all
smoothing methods deviated moderately compared with the farm-registrations. Applying
the most valid methods to the 10 finisher batches increased estimates of statistical model
fit for aminoglycosides, lincosamides, tetracyclines and decreased estimates of statistical
model fit for macrolides. The estimates of statistical model fit for sulfonamides and broad-
spectrum penicillins remained the same.

Through refined data transformation, VetStat-records can be used to calculate a daily
amount of AMU per pig reflecting the true usage accurately and moderately precisely,
which is the foundation for calculating lifetime AMU.

Introduction

As the emergence and spread of antimicrobial resistance (AMR) bacteria is increasing world-
wide, an understanding of the complex associations between antimicrobial usage (AMU) and
AMR is urgently needed [1]. The AMU is generally acknowledged as the main cause. However,
less is known of the quantitative relationship between AMU and AMR, as well as the interre-
lational effects between usage in humans, agriculture and veterinary sectors [2, 3]. Due to the
potential risk of conveying resistance from animal microflora to human pathogenic bacteria,
AMU for animals has gained increased attention [4].

Since antimicrobials (AMs) are vital for the treatment of bacterial diseases in veterinary
medicine, responsible AM interventions aimed at reducing usage must be sufficiently effective
to reduce AMR without compromising treatment options and animal welfare. Consequently,
knowledge of the quantitative ‘AMU-AMR’ relationship is fundamental in order to obtain pre-
dictable results from interventions targeting AMU in animal production [5].

Several surveillance databases on AMU for animals have been established [6]. Among the
first was the Danish Veterinary Medicine Statistic Program database (VetStat), which records
purchases of medicines prescribed for animals [7, 8] and is commonly used for epidemio-
logical studies of AMU–AMR relationships in Danish production animals [9–12]. As data
from VetStat lack information on actual usage in farms, studies using these data share a mutual
challenge in accuracy and precision compared with primary data and should, therefore, be
validated [13, 14].

Farmers are obliged to register AMU for production animals on a daily basis. These records
are often summed either by the farmer or by the veterinarian for the period between two con-
secutive visits by the veterinarian, which usually occurs at intervals of 30–65 days depending
on production type and Health Advisory Contract. In this study, the farm records were the
summed daily AMU between consecutive veterinarian visits. The farm records are not
mandatory, but they provide the farmer and veterinarian with a quick overview of AMU
and remnants from recent prescriptions. Validation measurements of VetStat-records com-
pared with farm-records should include (1) accuracy, as the completeness and correctness
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and (2) precision, as the correlation, as the relative difference and
as the coefficient of reliability of VetStat data. These measure-
ments will demonstrate the quality of the data, which will be sup-
portive when evaluating the trustworthiness of studies of AMU–
AMR relationships using such data [13–15].

Currently, the most influential exposure characteristics of
AMs, e.g. route of administration, level of dose, or duration of
treatment, have not been fully determined in relation to the selec-
tion of AMR [5]. In previous studies utilising VetStat as the data
source, data on AMU for pig herds have been extracted at the unit
(piglets-sows/weaners/finishers) or farm level for periods of 6–12
months prior to sampling [10, 12]. This constitutes minimal dif-
ferentiated estimates that do not take into account the variations
within the extracted period in question. A study used a method
that summed up a daily AMU as doses for finisher batches
from birth to slaughter, calculating the lifetime AMU through
the movements between units, thus, the method was independent
of rearing site and captured variations over time [9]. In the same
study, the daily usages were calculated by smoothing the amount
(a recorded entry) based on days between records. Subsequently
reflecting the number of days between one record and the next,
within each age-group unit per farm. In contrast, this way of
smoothing data does not take into account that different AMs
and dispensing-types may be used differently by the farmer.

The objective of this study was to validate five different
methods to smoothing VetStat data to estimate the number of
ADDkg per pig day, reflecting the ‘true’ usage at the farms by
comparing the results to farm-records in terms of accuracy and
precision. The results from a previous study focusing on the
effect of AM lifetime exposure on the abundance of AMR genes
were then re-analysed with the most valid methods of those exam-
ined, for calculating AMU at finisher batch level. Two different
farm size adjustments were then used to evaluate the same
methods.

Materials and methods

Data sources

Two data sources on AMU were applied in this study: farm-
records and VetStat-records.

The farm-records were manually registered by the owners or
employees and contained information on the amount of an AM
product used, including the dispensing-type, within the age-
groups; piglets-sows, weaners and finishers, during specified per-
iods. The farm-records were conveniently collected during farm
visits related to an ongoing AMU-AMR study consisting of 83
randomly identified farms. A total of 25 farmers were asked to
participate and 12 accepted. A total of 745 records on AMU
were obtained, comprising 12 farm owners, 16 farms and 23
units within the period from January 2014 to May 2016.

Data from VetStat contains records on purchased medicines
prescribed by veterinarians for animals. Each record has informa-
tion on the product name, active-substance, dispensing-type,
amount, target species, age-group, diagnosis group and farm
code (ID) [7]. Data from VetStat were extracted from 1 year before
the first farm recorded date to 3 months after the last of each farm
to establish sufficient buffer time before and after the study peri-
ods to account for negative entries [16]. The data were then
cleaned according to guidelines by correcting mismatches of ani-
mal species and/or age-group through cross-validating the data
with Central Husbandry Register (CHR) data [16].

In order to produce comparable data across records, active
compounds were converted into a unit measuring how many kilo-
grams of pig could be treated per day, known as – Animal Defined
Daily Doses per kilogram (ADDkg) [17].

Two sources of biomass estimates were applied as the adjust-
ment factor for farm size; (i) number of pigs on any given day
at the farms, obtained from the CHR, where all farms with pro-
duction animals are recorded and (ii) the yearly production
adjusted to the number of pigs on any given day, obtained from
the Pig Movement Database (PMD) [7]. The CHR stores informa-
tion on a farm code (ID), which refers to a specific geographical
location and includes information such as ownership, animal spe-
cies and the number of animals per age-group (sows/weaners/fin-
ishers), on any given day. Although sows and piglets are in the
sow unit, the number of sows is included in this age-group,
since piglets are not registered in the CHR. In the PMD, the num-
ber of pigs, date, ID of origin farm and ID of destination farm for
each movement is recorded [7].

Estimation of AMU

Validation
The usage of an AM product (l), during a period (k), in an
age-group ( j) (piglets-sows/weaners/finishers) in a farm (i) was
estimated as Dosesi,j,k,l with the unit; ADDkg/pig day, using for-
mula (1):

#Dosesi,j,k,l[ADDkg/pig day] = #mgi,j,k,l
#daysk ∗ ADDkgl ∗ #pigsi,j,k

where: #mg = the amount of an AM product registered as usage or
recorded as a purchase in a specific farm/age-group/period, #days
= the number of days of the period when the recorded amount
was used, #pigs = the number of sows/weaners/finishers on any
given day registered in CHR, or the yearly production adjusted
to the number of pigs on any given day registered in PMD.

The #days was calculated using five different methods. The
first method (1) assumed that the AMU in a farm recorded period
was equivalent to the purchases of AMs in that recorded period.
The other four methods (2–5) were all calculated assuming that
the amounts of recorded AM products were used in a period
between one recorded date and the next. The subsequent date
was defined based on different assumptions related to usage pat-
tern over time at the farms. Consequently, the four smoothing
methods differed in the number of days (#days) between one
record entry date and the next, when the age-group, dispensing-
type and antimicrobial class (AMC) alternately and together were
taken into account (Fig. 1). In the less detailed method 2, the
#days between two record entries was set at the age-group level,
assuming that a new record of any AM product was due to the
previous recorded AM products were consumed by that
age-group. Method 3 assumes that when a new record of an
AM product of either parenteral or peroral dispensing occurs
within an age-group, all the former AM products of the same
dispensing-type were consumed. Method 4 assumes that when
new recorded AM product of an AMC occurs within an
age-group, all the former recorded AM products of the same
AMC, irrespectively of dispensing-type, were consumed.
Method 5 was a combination of methods 3 and 4 (Fig. 1).

The calculation of #days was based on three assumptions. First,
if the #days was less than 8 days, the following subsequent record
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date was used instead. Second, if no subsequent date was found,
the mean of the former was applied. If no subsequent date was
found and no mean of prior #days was available, 365 days was uti-
lised. Third, all #days exceeding 365 days were substituted by 365
days.

The calculated Dosesi,j,k,l obtained for methods 2–5 were date-
specific estimates. In order to compare these with the farm-
records, the date-specific estimates were summed equivalent to
the periods during which the farm-records were calculated and
a daily average Dosesi,j,k,l usage was calculated.

Re-analyses
For the ten finisher batches from the study [9], the date-specific
lifetime AMU (Doses) in the different age-groups was re-calcu-
lated by means of formula 1 for the AMCs; aminoglycosides,
broad-spectrum penicillins, lincosamides, macrolides, sulfona-
mides and tetracyclines, using the most valid methods.
Furthermore, two different biomass adjustments were applied as
the number of pigs on any given day; (A) the CHR and (B) the
PMD.

The number of Doses was summarised at AMC level for each
rearing period per unit, based on the finisher batches’ rearing per-
iods in days; days 1–85 in the finisher unit, days 86–135 in the
weaning unit and days 136–160 in the sow unit [18], where
day 1 corresponds to the day of sampling. The number was then
adjusted to suit the proportion of animals being moved from a
farm. Subsequently, for each AMC, the lifetime AMU were calcu-
lated for each finisher batch by summarising Doses through the
rearing pathways. Even though AMU for sows was included in
the usage for piglets, previous studies have shown that this affects
the abundance of AMR genes in the piglets’ microbiota, thus, it
was assumed equivalent to usage for piglets [19].

Data analyses

Validation
Throughout the validation, the VetStat estimates were compared
against the farm-record estimates, which were assumed to be
the ‘true’ state of AMU at the farms.

For the accuracy and precision assessments of the relationship
between farm-records and VetStat-records, the calculations per-
formed for the observations were mutually independent and
dependent, respectively. Consequently, to adjust for potential
within-level clustering, all of the validation results were
average-adjusted by farm, age-group, dispensing-type or AMC

levels to assess the impact of clustering compared with the
crude estimates.

Accuracy – completeness and correctness
The completeness constitutes the observed number of VetStat-
records compared with the number of farm-records (a/(a + c))
and the correctness constitutes the number of correctly identified
VetStat-records compared with the number of VetStat-records
that were found (a/(a + b)), set in a 2 × 2 table [13, 14].

Precision – relative difference
The relative difference of the error was calculated as the absolute
difference between farm and method, divided by the arithmetic
mean of the usage given by farm and method (rderror =
(Dosesfarm−Dosesmethod)/((Dosesfarm +Dosesmethod)/2)).

Precision – correlation coefficient
The correlation coefficient (rz) was calculated by applying Fisher’s
z transformation (rz = (e2z–1)/(e2z + 1), where z = 0.5ln((1 + r)/(1
− r)) [20]. The adjusted rz should be interpreted as the general
correlations between farm and method at the level of adjustment.
The averaged correlations are less affected by sampling distribu-
tion skew, suggesting a less biased statistic [20].

Precision – reproducibility (reliability coefficient)
The reliability coefficient (ρxx = 1/(1 + (σError/σDosesfarm)

2), where
Error =Dosesfarm−Dosesmethod), between the Dosesfarm and
Error obtained, was calculated for each of the five methods [21].
The reliability coefficient describes the average magnitude of
the error, the reproducibility. For linear regression, this equals
the bias factor; βobserved = ρxx * βtrue and thus, can potentially be
used for adjustment of βobserved [21]. Subsequently, the effect esti-
mates obtained in the re-analysed linear regression models pre-
sented below were adjusted for the attenuation effect of data error.

Re-analyses
To investigate the influence of the validation results of this study,
the findings from the previous study [9] of the effect of six AMCs
on the abundance of the same classes of AMR genes were
re-analysed by applying the most valid methods in calculating
the lifetime AMU. In that study, AMR genes for the classes: ami-
noglycoside, lincosamide, macrolide, beta-lactam, sulfonamide
and tetracycline were obtained using whole community sequen-
cing (WCS) and were measured as reads per kilobase reference
per million [22].

Fig. 1. Illustration of the differences in Number of days (#days) for the five
methods of calculating antimicrobial usage at the farm level. For method
1, the #days was based on the farm record periods. From methods 2 to 5,
the #days increased as the intervals between one record entry date and
the next increased when similar records based on age-group, dispensing-
type and antimicrobial-class (AMC) were matched.
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The lifetime AMU measure, CHR adjusted (A), for the ten fin-
isher batches was used in linear regression re-analyses to assess
each effect on the abundance of AMR genes by evaluating the
changes in adjusted R-squared (Adj.R2), Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC).
In addition, the reliability coefficient of the most valid method
of the presented was applied to adjust the β-coefficients from
the linear regression re-analyses.

Finally, the difference of effect of the two lifetime AMU mea-
sures, (A) CHR adjusted and (B) PMD adjusted, was evaluated.

Tools
WPS Workbench, Version: 3.1.1.0.0, Microsoft Excel 2016 and R,
version 3.3.3 were used for data processing and data analyses.

Results

While cleaning the VetStat data, 19 records were encountered that
could not be corrected. Some AM products were prescribed and
purchased (recorded in VetStat) one time only, but the usage of
these could not be found in the farm-records. In addition, AM
products were recorded for one age-group but registered as
usage at the farm for another age-group, or for two age-groups.

Validation

Completeness and correctness
Table 1 shows the completeness and correctness results obtained
by comparing Dosesfarm to the five Dosesmethod, respectively. The
smoothing methods from 1 to 5 had a positive effect on the com-
pleteness, which increased from 0.60 to 0.86 and a minor negative
effect on the correctness, which decreased from 0.91 to 0.84
(Table 1). The results obtained when performing the average
adjustments at farm, age-group, dispensing-type and AMC levels
led to a decrease in the overall completeness and correctness

results, though the beneficial trend when smoothing remained
the same (Table 1).

Relative difference
The distributions of the rderror for the smoothing methods are
shown in Figure 2, illustrating that the number of farm-records
not found by the smoothing method (rderror = 2) decreased
from Dosesmethod 1 to 5. However, concurrently, the number of
spurious records (rderror =−2) was shown to increase, while the
distribution of rderror narrows around zero going from method
1 to 5.

The boxplots of the rderror of the five Dosesmethod, compared
with Dosesfarm show that the 0.75 quantile decreases substantially
and the rderror observations together with the median move
toward zero from method 1 to 5 (Fig. 3). Furthermore, it shows
that going from method 1 to 5, the mean and the range of the
standard deviation of the rderror decreases towards zero (Fig. 3).

Since the smoothing methods (#days) depended on similar
VetStat-records regarding the age-group, dispensing-type and
AMC levels, the rderror of the five Dosesmethod was average-
adjusted accordingly. Boxplots at an age-group level were in con-
cordance with general findings (Fig. 4). In contrast, boxplots at
dispensing-type level revealed that method upscaling from 1 to
5 was beneficial for parenteral dispensing, but not for peroral
(Fig. 5). For peroral dispensing, method 3 provided a better result
for the rderror.

The boxplots of the rderror of the five Dosesmethod at farm level
show considerable variation between farms, which is most likely
to be related to the difference seen between dispensing-types
(result not shown). Similar observations were made at AMC
level and at AMC combined with dispensing-type level, (result
not shown).

Correlation coefficient
In Table 2, the correlation coefficient (r) between the Dosesfarm
and the five Dosesmethod, show that by incorporating age-groups,
dispensing-type and AMC in the smoothing methods, the correl-
ation also increases. This mainly follows the beneficial trends of
smoothing from the completeness and relative difference of the
error results.

In relation to the z average-adjusted correlation coefficient (rz)
of the five Dosesmethod, the farm-level adjustment changed the
results most, followed by age-group, dispensing-type and AMC
level. However, the upscaling smoothing method trend remained
the same, independent of the average adjustment level (Table 2).
Furthermore, regardless of the level at which the average adjust-
ment is performed, the rz remains within a narrow range.

Reliability coefficient
For the five smoothing methods, the coefficient of reliability (ρxx)
ranged from 0.60 to 0.68 and the average adjustment at farm,
age-group, dispensing-type and AMC levels had a similar
decreasing effect on the values compared with previous findings.
However, the beneficial upscaling method trend remained the
same, independent of the average-adjustment level (Table 2).
The reliability coefficients of smoothing methods 1 to 5 were all
values below 1, meaning that the methods underestimate the
AMU compared with the ‘true’ state, obtained from the farm-
records (Table 2).

Table 1. The correctness and completeness of Dosesmethod 1 to 5, compared
with Dosesfarm at population level and average-adjusted at farm, age-group,
dispensing-type and antimicrobial-class levels

Method 1 2 3 4 5

Completeness

Study population 0.60 0.72 0.75 0.83 0.86

Adjusted by

Farm 0.56 0.69 0.74 0.80 0.83

Age-group 0.59 0.71 0.75 0.83 0.86

Dispensing-type 0.60 0.74 0.78 0.85 0.87

Antimicrobial-class 0.62 0.73 0.76 0.82 0.83

Correctness

Study population 0.91 0.89 0.87 0.85 0.85

Adjusted by

Farm 0.88 0.85 0.83 0.82 0.82

Age-group 0.91 0.88 0.87 0.85 0.85

Dispensing-type 0.89 0.86 0.85 0.82 0.82

Antimicrobial-class 0.91 0.88 0.86 0.84 0.84
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Re-analyses
For the ten finisher batches in the previous study, smoothing
methods 5 and 3 for parenteral and peroral AMs, respectively
and farm size adjusted using CHR, were applied to calculate the
lifetime AMU for the AMC; aminoglycosides, lincosamides,
broad-spectrum penicillins, macrolides, sulfonamides and tetracy-
clines. The lifetime AMU estimates sum up usage for the entire
rearing period per AMC. The lifetime AMU estimates were
used as explanatory variables in linear regression re-analyses on
the abundance of AMR genes attributed to those AM classes.

These results were subsequently compared with the regression
results obtained in the previous study (Table 3).

The application of smoothing methods 5 and 3 for parenteral
and peroral AMs, respectively, increased the estimated fit of the
models (Adj.R2, AIC and BIC) and therefore potentially explained
a larger part of the abundance of AMR genes against aminoglyco-
sides, lincosamides and tetracyclines. For sulfonamides and
broad-spectrum penicillins/betalactam, the estimated fit of the
models decreased slightly. In contrast, the estimated fit of the
model for macrolides decreased substantially (Table 3).

Fig. 2. The count distribution of the relative difference of the error (rderror) for the Dosesmethod 1 to 5 compared with Dosesfarm.

Fig. 3. Boxplots of the relative difference of the error (rderror) for the Dosesmethod 1 to 5 compared with Dosesfarm. The black dots show the individual observations.
The orange dots and error bars represent the mean and standard deviation of the rderror.
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When the β-coefficient estimate of the model comprising
methods 3 and 5 was adjusted in relation to the population ρxx,
the β-coefficient increased by 49%.

The model comprising methods 3 and 5 combined was further
evaluated based on alterations of the biomass, model A and B
(Table S1 in the supplementary material). The adjustment change

of the number of pigs from CHR to PMD had an overall improved
effect on tetracyclines, broad-spectrum penicillins, macrolides and
lincosamides and the opposite result was found for aminoglyco-
side and sulfonamides (Table S1 in the supplementary material).
The impact of adjusting with PMD rather than CHR related
mainly to usage in the age-group; piglets. For the CHR, the

Fig. 4. Boxplots at the age-group level of the relative difference of the error (rderror) for the Dosesmethod 1 to 5 compared with Dosesfarm. The black dots show the
individual observations. The orange dots and error bars represent the mean and standard deviation of the rderror.

Fig. 5. Boxplots at the dispensing-type level of the relative difference of the error (rderror) for the Dosesmethod 1 to 5 compared with Dosesfarm. The black dots show
the individual observations. The orange dots and error bars represent the mean and standard deviation of the rderror.
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number of sows is used as the adjustment factor, resulting in a
high number of doses for the piglet age-group, compared with
the PMD adjusted estimates (result not shown).

The most notable results were the B models, which had AMU
split by dispensing-type into two variables. For these, the esti-
mates of statistical model fit were improved for aminoglycosides,
lincosamides and tetracyclines, (Table S1 in the supplementary
material).

Discussion

Validation

The completeness of VetStat-records increased from the less
detailed method 1 to the more detailed method 5. This was due
mainly to the pattern for parenteral usage of AMs, small amounts
were used each month and rarely recorded in VetStat. Therefore,
the detailed method 5 reflected the true usage of parenteral AMs
more closely. Simultaneously, the pattern for peroral usage of
AMs caused a reduction in the correctness. According to the
farm-records, large amounts of AMs were used for group-
treatment within a limited time. As a result, more detailed
smoothing caused spurious AMU. Major variations in correctness
and completeness could be observed between farms, which could
mainly be attributed to dispensing-type and incorrect
VetStat-records.

The same pattern for parenteral and peroral AMU affected the
relative difference and the correlation coefficient. These became
more precise for parenteral usage only when more detailed
smoothing methods were applied. Consequently, our results indi-
cate that, due to the differences in usage patterns seen between
dispensing-types, the overall most valid method, method 5, for
smoothing out the VetStat-records is not applicable for both par-
enteral and peroral dispensing. For the latter, method 3 is the
most valid of the examined methods.

In order for the secondary data, to reflect the true state in a
population, high completeness and correctness are required [13,
14]. For the overall most valid method, method 5, the complete-
ness can be categorised as fair [23] and applying different
smoothing methods to dispensing-type increased the complete-
ness. In addition, obtaining values of the precision and the impact
of the estimate on the statistical association are important for
result assessments [15, 21]. A good correlation between farm-
records and smoothing method was demonstrated, though it
has been pointed out that correlation estimates may not be the
optimum method for assessing agreement between methods
[15]. In contrast, the standard deviation of the relative difference
of the error and the reliability coefficient demonstrated a less pre-
cise estimate. Regardless, the reliability coefficient can be used to
adjust the β-coefficient in a linear regression, thus the estimate
influences the statistical association between AMU and AMR
[15, 21].

VetStat gives unique opportunities to study AMU at farm level
and its effect on AMR. AM stewardship at farm level and correct
recording in VetStat are essential to improve data transformation
further. VetStat can provide accurate and precise measurements of
AMU through data transformation, which was observed for a
number of farms in the validation part. Moreover, VetStat is easily
accessible for large parts of a population at farm level [24]. Access
to accurate and precise data can then form the basis for establish-
ing knowledgeable guidance and/or adjustments of AMU prac-
tices at herd level, with considerably lowering effect on AMU as
a result [25]. In addition, the knowledge may also be supportive
for detailed risk assessments and trend analyses.

Re-analyses

The results of the re-analyses study indicate that using the alter-
native smoothing methods produces a better fit regarding the
models estimating the effect of AMU on AMR gene abundance.
Moreover, when the estimated effects were adjusted by applying
the population reliability coefficient, an even higher effect of the
lifetime AMU on the abundance of AMR genes was observed,
which indicates that the effects estimated in the regression ana-
lyses are all underestimated. These results highlight the general
importance of valid data in epidemiological studies in order to
obtain unbiased quantitative estimates of effects [13–15, 21, 26].
As indicated by the results from the re-analyses, by optimising
the utilisation of register data as a proxy for the AMU in pigs
and adjusting the regression results obtained based on the results
of this validation study, the usage, measured as lifetime AMU, can
explain up to 70–80% of the variation in abundance of AMR
genes observed between finisher batches.

The deviating result of the effect of macrolide may arise from
the time of usage, as the estimated lifetime AMU takes no time-
component into account, e.g. usage at different ages has a differ-
ent impact on the abundance of AMR genes [27–29].

The results of the biomass adjustments according to the CHR
and PMD number of pigs revealed that the latter could be a
potential substitute for the former. The PMD adjustment was
the number of pigs on any given day, estimated from the produc-
tion of pigs 1 year prior to sampling. This estimate is neutral, as it
solely reflects the number of animals being moved, in contrast to
the CHR number of pigs, which is a farmer’s evaluation of man-
agement performance and averages on any given day, thus, more
subjective to bias.

Table 2. The correlation coefficient (r), the Fisher z transformed correlation
coefficient (rz) and the reliability coefficient (ρxx) between the Dosesfarm
and the five Dosesmethod are shown, respectively along with the average-
adjustment by farm, age-group, dispensing-type and antimicrobial-class
levels, of each coefficient

Method 1 2 3 4 5

r (crude)

Study population 0.70 0.75 0.76 0.77 0.77

rz (adjusted by)

Farm 0.59 0.67 0.70 0.71 0.72

Age-group 0.65 0.70 0.71 0.71 0.71

Dispensing-type 0.70 0.73 0.75 0.76 0.76

Antimicrobial-class 0.73 0.76 0.77 0.81 0.81

ρxx (crude)

Study population 0.60 0.65 0.67 0.68 0.68

ρxx (adjusted by)

Farm 0.50 0.56 0.60 0.60 0.61

Age-group 0.58 0.62 0.64 0.64 0.64

Dispensing-type 0.60 0.64 0.66 0.67 0.67

Antimicrobial-class 0.57 0.62 0.64 0.68 0.68
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Table 3. The results of the linear regression of the previous model and the smoothing methods 3 combined with 5, adjusted by CHR model for usage and
abundance of AMR genes to aminoglycosides, lincosamides, broad-spectrum penicillins/betalactam, macrolides, sulfonamides and tetracyclines

Estimate SE P-value Adj.R2 AIC BIC

Aminoglycosides

Model (previous) 0.04 68.64 69.55

(intercept) 18.08 (12.40–23.76) 2.47 0.000

Aminoglycosides 0.11 (−0.11–0.33) 0.09 0.272

Model A (methods 3/5) 0.28 65.75 66.66

(intercept) 16.82 (11.73–21.92) 2.21 0.000

Aminoglycosides 0.19 (−0.02–0.39) 0.09 0.070

Lincosamides

Model (previous) 0.20 89.22 90.12

(intercept) 53.51 (36.73–70.29) 7.28 0.000

Lincosamides 0.68 (−0.19–1.54) 0.38 0.109

Model A (methods 3/5) 0.51 84.31 85.22

(intercept) 52.54 (40.50–64.59) 5.22 0.000

Lincosamides 0.64 (0.18–4.28) 0.20 0.012

Penicillins (broad) – Betalactam resistance

Model (previous) 0.45 90.26 91.17

(intercept) 52.55 (36.01–69.09) 7.17 0.000

Penicillins (broad) 0.71 (0.15–1.27) 0.24 0.020

Model A (methods 3/5) 0.31 92.54 93.45

(intercept) 53.41 (34.40–72.42) 8.24 0.000

Penicillins (broad) 0.56 (−0.01–1.12) 0.25 0.054

Macrolides

Model (previous) 0.66 108.03 108.93

(intercept) 58.34 (−5.52–122.20) 27.69 0.068

Macrolides 1.82 (0.85–2.78) 0.42 0.002

Model A (methods 3/5) 0.15 117.38 118.29

(intercept) 105.03 (18.77–191.29) 45.53 0.023

Macrolides 0.86 (−0.35–1.92) 0.49 0.100

Sulfonamides

Model (previous) 0.74 7.14 8.04

(intercept) −0.16 (−0.50–0.19) 0.15 0.327

Sulfonamides 0.02 (0.01–0.03) 0.00 0.001

Model A (method 5) 0.65 9.99 10.90

(intercept) −0.11 (−0.50–0.29) 0.17 0.552

Sulfonamides 0.02 (0.01–0.03) 0.00 0.003

Tetracyclines

Model (previous) 0.35 108.83 109.74

(intercept) 346.13 (294.36–397.89) 22.45 0.000

Tetracyclines 0.92 (0.04–1.79) 0.38 0.042

Model A (methods 3/5) 0.66 102.48 103.38

(intercept) 334.75 (297.17–372.33) 16.30 0.000

Tetracyclines 0.88 (0.41–1.36) 0.21 0.003
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Conclusions

Based on the validation results, it can be concluded that the
VetStat database can be used for refined data transformation to
improve accuracy and precision to reflect ‘true’ AMU at the
farm level. Furthermore, the reliability coefficients show that the
calculations of the daily amount of AMs used per pig underesti-
mate the usage independent of method.

The knowledge obtained was used to re-calculate lifetime
AMU, which in linear regression models provided an overall
more beneficial effect on the estimates of statistical model fit
than the previous calculation of lifetime AMU. The linear models
can be compared only in terms of estimates of statistical model fit,
whereas the coefficient estimates should be interpreted with cau-
tion due to the limited number of finisher batches in the study.

The PMD could represent an alternative to the CHR for bio-
mass adjustment or should be used to cross-validate the CHR.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818000134.
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