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Abstract
Within the context of preliminary aerodynamic design with low order models, the methods have to meet require-
ments for rapid evaluations, accuracy and sometimes large design space bounds. This can be further compounded
by the need to use geometric and aerodynamic degrees of freedom to build generalised models with enough flexi-
bility across the design space. For transonic applications, this can be challenging due to the non-linearity of these
flow regimes. This paper presents a nacelle design method with an artificial neural network (ANN) for preliminary
aerodynamic design. The ANN uses six intuitive nacelle geometric design variables and the two key aerodynamic
properties of Mach number and massflow capture ratio. The method was initially validated with an independent
dataset in which the prediction error for the nacelle drag was 2.9% across the bounds of the metamodel. The
ANN was also used for multi-point, multi-objective optimisation studies. Relative to computationally expensive
CFD-based optimisations, it is demonstrated that the surrogate-based approach with ANN identifies similar nacelle
shapes and drag changes across a design space that covers conventional and future civil aero-engine nacelles. The
proposed method is an enabling and fast approach for preliminary nacelle design studies.

Nomenclature

Roman symbol
bk bias factor
bp bernstein polynomials
C class function
CD nacelle drag coefficient
c curve length
fmax non-dimensional axial location of nacelle’s crest
Lnac nacelle length
M mach number
MDR drag rise mach number
Mis isentropic mach number
n order of the Bernstein polynomials
rhi nacelle highlight radius
rif initial radius of curvature
rmax nacelle maximum radius
rte nacelle trailing edge radius
uk input to the neuron
vk sum of the weighted inputs to the neuron (uk) and a bias factor (bk)
yk output of the neuron
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Greek symbol
βnac nacelle boat-tail angle
ε relative error
φ activation function
ψ normalised axial coordinate
σ relative root mean square error
ξ normalised radial coordinate

Acronyms
ANN artificial neural network
CFD computational fluid dynamics
DoF degree of freedom
DSE design space exploration
EoC end-of-cruise
ESDU engineering sciences data unit
iCST intuitive class shape transformation
iM increased Mach number
LOM low order model
LHS Latin hypercube sampling
MFCR massflow capture ratio
OMOPSO optimised multi-objective particle swarm optimisation
RSM response surface model

1.0 Introduction
Although computing power continuously increases, the required time-scales for preliminary design are
difficult to meet with complex and detailed numerical simulations [1]. At the early stages of the design
of new concepts, thousands of combinations for the different degrees of freedom are usually considered.
This includes understanding the limits of the feasible design space, trade-off analysis for key geometric
variables, and sensitivities to different operating conditions. For this reason, low order models (LOM)
are usually required to ensure a fast and tractable design approach [2]. Over the last years there have been
notable advances to ensure that the methods can meet the conflicting requirements for fast evaluations,
low uncertainty and large number of degrees of freedom and design space bounds.

Within the context of aerospace applications, a range of techniques have been considered to enable
the design and optimisation of complex components [1, 3]. One of the most popular is the Gaussian
process based on the Kriging interpolation method [4]. Significant improvements to its predictive accu-
racy have been recently achieved [5–7]. For example, He et al. [5] performed Kriging surrogate-based
multi-objective optimisations in which an innovative infill sampling, expected angle-penalised length
improvement (EAPLI), was proposed. The method was used for the optimisation of benchmark cases,
e.g. ZDT2 or DTLZ2 [8], and an aerofoil at M = 0.40 in which the drag coefficient was minimised
and the lift coefficient maximised. It was demonstrated that the approach was able to identify a more
populated Pareto front with a greater hypervolume compared with a surrogate-based method without
infills. One variation of the ordinary Kriging model is the gradient-enhanced Kriging which improves
the predictive performance of the LOM by incorporating gradient information across the design space
[6]. This strategy has been subsequently enhanced with a weighted gradient-enhanced Kriging approach
[9] and successfully used for the inverse design process of a wing at transonic conditions at M = 0.84.
Although Kriging-based methods have been extensively used for aerodynamic applications, their main
drawback is that they require a significant amount of computational memory to build the LOM. This
limits their potential use for complex applications in which a large number of samples are required. For
this reason, neural networks are usually used for large datasets. Secco et al. [10] generated an artificial
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Figure 1. Typical nacelle drag characteristics as a function of (a) Mach number and (b) massflow
capture ratio.

neural network (ANN) for the prediction of lift and drag coefficients in wing-fuselage configurations.
Geometric and aerodynamic variables were used as input for the generation of the low order model,
in which the aerodynamic database was generated with a full-potential code. The upper bound for the
Mach number was 0.80. For an independent dataset, the generated ANN presented an absolute error of
0.0041 for the lift coefficient and of five airframe drag counts. This is a relative error lower than 5% in
both metrics for an airframe at cruise conditions (M = 0.77). Bouhlel et al. [11] developed a scalable
gradient–enhanced artificial neural network for single-point aerofoil optimisation. The LOM was gener-
ated with geometric and aerodynamic degrees of freedom, in which the maximum value of flight Mach
number was M = 0.75. The training dataset was compiled with a RANS computational fluid dynamics
(CFD) solver coupled with the adjoint method [12] and the derivatives across the design space were
used to improve the neural network accuracy. For a drag minimisation case with M = 0.72 at CL = 0.82,
the CFD-based and surrogate-based optimisations yielded a similar design.

Future civil aero-engines architectures are expected to operate with high-bypass ratios to reduce the
specific thrust and to improve the overall propulsive efficiency [13]. These new designs may be accompa-
nied by an increment in the fan diameter [14] which could result in a large drag, weight, and a significant
engine/airframe integration coupling [15]. As such, it is envisaged that these new configurations will use
compact nacelles [16] to realise the expected performance benefits from the new engine cycles. These
new design styles also pose challenges due to the expected non-linear nacelle drag characteristics of
compact configurations [17]. One of the nacelle design challenges is the requirement for an acceptable
aerodynamic performance at relatively high transonic Mach numbers. This is further compounded by the
need to operate at a wide range of flight conditions. Across the different scenarios of the flight envelope,
the nacelle aerodynamics may have strong shock-waves, shock boundary layer interaction or diffusion
driven separation [18]. The nacelle drag changes, as a function of the key aerodynamic parameters of
flight Mach number and massflow capture ratio (MFCR), can be non-linear (Fig. 1). For example, at a
fixed flight Mach number the nacelle drag coefficient (CD) usually increases as MFCR reduces. This is
caused by the flow acceleration around the nacelle lip. For a constant MFCR, CD sharply increases at high
M because of the compressibility effects and strong shock waves that manifest at those flight regimes
(Fig. 1). The sensitivity of the nacelle drag to changes in M and MFCR is a function of its shape. As
such, the generation of low order models to predict the drag characteristics for different geometric and
aerodynamic degrees of freedom presents significant challenges. As a consequence, preliminary tools
for this complex application are very limited.

Within the context of preliminary nacelle design tools, ESDU proposed a method for estimating
the drag of axisymmetric cowls at zero incidence and subsonic free-stream Mach numbers [19]. It had
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a prediction error of 8% on subcritical nacelle drag and of 20% on wave drag at mid-cruise condi-
tions. This uncertainty is likely to be within the range of the expected nacelle drag benefits of compact
configurations compared with conventional ones [20]. As such, more advance techniques are required
for this new design challenge. In this respect, previous studies for nacelle design with low order mod-
els have also considered Kriging interpolation approaches. The majority were focused in modelling
the nacelle drag at constant operating conditions and only the nacelle shape was used as input for the
LOMs [21–23]. Nonetheless, this was proven to be already complex for a Gaussian process approach due
to the non-linearity of nacelle drag. Tejero et al. [21] investigated an adaptive Kriging surrogate-based
optimisation for a compact axisymmetric aero-engine nacelle with a normalised length of Lnac/rhi = 3.0.
The degrees of freedom for the LOMs comprised four nacelle geometric parameters and independent
models were generated for the different transonic operating conditions that included M = 0.85 and 0.87.
The LOMs were used within a multi-point, multi-objective optimisation process. Relative to a compu-
tationally expensive CFD-based strategy, similar nacelle designs were found at a reduction in the CFD
cost of 25%. The study was extended to a 3D non-axisymmetric configuration with 20 geometric design
variables [17]. As the dimensionality of the problem increased, the surrogate-based approach identified
similar nacelle shapes with a 50% reduction in the computational cost compared with the baseline CFD-
based method. Fang et al. [22] proposed a hybrid optimisation strategy in which RANS CFD simulations
and Kriging low order models were used to drive the nacelle design process. The method was deployed
for 2D axisymmetric as well as 3D non-axisymmetric configurations at transonic conditions at M = 0.80.
Relative to baseline nacelle architectures the process yielded new shapes with a nacelle drag reduction
of 4.6% and 4.0% for the 2D and 3D cases, respectively. Heidebrecht et al. [24] investigated low order
models for nacelle drag prediction with geometric and aerodynamic degrees of freedom. Due to the
large bounds of the design space considered, the application of ordinary Kriging methods resulted in an
inaccurate LOM that did not meet the required accuracy at a preliminary design stage. For this reason, a
set of surrogate models were used to decompose the problem into independent Gaussian processes.
It included the exploitation of self-similarities between the drag characteristics of different nacelle
shapes and their orthogonal properties, and a range of geometric filtering and tuning nuggets to focus the
models accuracy in the most relevant parts of the design space. This resulted in a final set of LOMs with
an acceptable predictive drag uncertainty of 3.6% for mid-cruise conditions. Nonetheless, the developed
model had some simplifications that may prevent its generalisation across all the geometric and aero-
dynamic design space. The mid-cruise conditions, which is a key operating point, was defined to have
a drag rise Mach number (MDR) margin [24]. This simplifies the mid-cruise drag modelling due to the
associated large non-linearity at Mach numbers above MDR. In addition, geometric filters were applied
to also remove regions with high non-linearity and the model’s hyperparameters were tuned to obtain a
good accuracy in limited operating conditions around the cruise segment.

Low order models for preliminary design with geometric and aerodynamic degrees of freedom have
been used in the past for aerofoils [11], wings [10] and nacelles [24]. However, they either were devel-
oped for relatively benign conditions [10, 11, 25] or under geometric and aerodynamic assumptions to
reduce the non-linearity of the problem [24]. For the investigations [10, 11, 25] in which surrogate-based
optimisation was tested, this was based on single-point conditions. As such, the process only relies on
one manifold of the model during the design process. The novelty of this paper is in the development of
a low order model for preliminary aero-engine nacelle design, that covers regions of the design space
with flight Mach numbers above 0.85, and includes a wide range of nacelle geometries beyond the typ-
ical range. In this respect, the model is built for a design space with conventional aero-engine nacelles
and compact architectures that are expected for ultra high bypass ratio powerplants. The accuracy of
the method is evaluated against independent datasets for the prediction of integral values of the nacelle
drag characteristics. A set of multi-point, multi-objective optimisation studies are also performed and
the outcomes, e.g. drag values and optimal nacelle shapes, are compared against expensive CFD-based
optimisations.
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Figure 2. Intuitive nacelle design variables.

2.0 Methodology
The data used in this study to build low order models for 2D axisymmetric nacelles was generated with
the process developed by Heidebrecht et al. [24]. It is based on a fully parametric nacelle geometry
definition with a multi-block structured mesh capability, and a viscous, compressible and implicit flow
solver upon which the nacelle drag is extracted from a well established thrust-drag bookkeeping method
[26]. A summary of the underlying methods is provided below.

2.1 Nacelle parametrisation
The parametric definition of the nacelle geometry is controlled with an analytical approach based on the
intuitive class shape transformation method (iCST) method [24]. It follows Kulfan’s CST approach [27]
and has been extended to use intuitive design variables. For this study, the nacelle shape is controlled
with seven intuitive parameters: rhi, Lnac, rte, rif , fmax, rmax and βnac (Fig. 2). These geometric variables may
be constrained by the requirements of the intake and exhaust systems as well as integration and ground
clearance considerations. For example, the nacelle trailing edge (rte) is usually defined by the exhaust
flow requirements and the minimum nacelle boat-tail angle (βnac) is set by the external aero-line of the
bypass duct. In addition, the nacelle maximum radius (rmax) plays an important role to accommodate
prescribed keep-out-zones for auxiliary components.

The general form of a CST function curve (ξ (ψ)) can be described as Equation (1):

ξ (ψ)= CN1
N2
(ψ) S (ψ)+ψ�ξte; ξ = z

c
, ψ = x

c
(1)

where CN1
N2
(ψ) is the class function, S (ψ) is the shape function, �ξte defines z offset between the curve

endpoints, c is the curve length in the x-direction, and x and z are the axial and radial absolute coordinates
in the Cartesian space [27].

The round-nosed, sharp trailing-edge aerofoil class function is used for the parametric definition of
the nacelle. This corresponds to values of N1 = 0.5 and N2 = 1 for the definition of the class function
(Equation (2)):

C0.5
1.0 (ψ)=ψ 0.5 (1 −ψ) for 0 ≤ψ ≤ 1 (2)

The shape function is defined as follows (Equation (3)):

S (ψ)=
n∑

i=0

bpi

(
n
i

)
ψ i(1 −ψ)n−i (3)

where
(

n
i

)
denotes the binomial coefficients and bpi are the different coefficients of the Bernstein

polynomials.
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Figure 3. Overview of the computational approach for nacelle applications.

The general form for ξ (ψ) and its first derivative can be expressed as Equations (4) and (5):

ξ (ψ)=ψ 0.5 (1 −ψ)

n∑
i=0

bpi

(
n
i

)
ψ i(1 −ψ)n−i +ψ�ξte (4)

∂ξ(ψ)

∂ψ
= 0.5ψ−0.5 (1 −ψ)

n∑
i=0

bpi

(
n
i

)
ψ i(1 −ψ)n−i −ψ 0.5

n∑
i=0

bpi

(
n
i

)
ψ i(1 −ψ)n−i+

+ψ 0.5 (1 −ψ)
n∑

i=0

bpi

(
n
i

)
Hn,r (ψ)+�ξte

(5)

where Hn,r (ψ) is expressed as Equation (6):

Hn,r (ψ)= i
(
ψ i−1

)
(1 −ψ)n−i −ψ i (n − i) (1 −ψ)n−i−1 (6)

This mathematical derivation can be extended to any n-order derivation and obtain an analytical
expression. For this specific application in which the class shape is defined with C0.5

1.0, the first and last
Bernstein polynomial coefficients can be analytically calculated with Equation (7):

bp0 =
(

2Rle

c

)0.5

; bpn = tan (β)+ δzte

c
(7)

where Rle is the radius of curvature atψ = 0 and tanβ is the gradient atψ = 1 [28]. For the different intu-
itive variables of rhi, Lnac, rte, rif , fmax, rmax and βnac, constraints can be imposed in the form of Equations
(1) and (5) to formulate a linear set of equations and obtain the coefficient of the Bernstein polynomials
(bpi). This results in a set of analytical expressions as a function of intuitive design variables.

2.2 CFD approach
The grids are automatically generated with a fully-structured multi-block domain using the commercial
Ansys ICEM mesher. The first cell layer height is adjusted to have y+ below 1. The mesh resolution is
the same as reported by Heidebrecht et al. [24], and comprised approximately 40,000 cells (Fig. 3(a)).
For a range of nacelle configurations at the envisaged typical cruise Mach number, it has a grid converge
index [29] in the order of 1–1.5% based on a coarser and finer mesh with around 10,000 and 160,000
cells, respectively. The CFD simulations are conducted with the viscous and compressible implicit flow
solver Ansys Fluent, with a double-precision and density-based approach. The primitive flow variables
are obtained by resolving the Favre-averaged Navier-Stokes equations with the k-ω shear-stress trans-
port (SST) turbulence model. A Green-Gauss node-based scheme with a second-order upwind spatial
discretisation is used. The thermal conductivity is computed with the kinetic theory and the dynamic
viscosity is calculated from Sutherland’s law. For all simulations, the convergence criteria is based on
a reduction of normalised residuals of four order of magnitude and an oscillation of the axial force
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on the nacelle lower than 0.05% over the last 200 iterations. The farfield is modelled with pressure-
farfield conditions by imposing the Mach number, and the static temperature and pressure. The fan-face
is defined with a pressure-outlet condition that uses an average static pressure, which is adjusted to ful-
fill a prescribed target massflow. An inlet boundary condition for the exhaust is used with farfield total
pressure and temperature. This creates a generic exhaust broadly independent of specific engine design
and reduces jet entrainment effects [24]. The intake and fan-cowl are specified with no-slip walls and
the nozzle walls with slip conditions [24]. An example of a CFD solution obtained with the described
methodology is presented in Fig. 3(b). The CFD approach has been previously validated [30], with a
nacelle drag uncertainty within the cruise segment of 3.5% with respect to measurements. It is important
to note that the artificial neural networks in this work cannot be validated with the available experimental
data. The nacelle that was measured used a cylindrical centrebody which was typical for conventional
architectures. However, the proposed nacelle parametric definition for future civil aero-engine (Section
2.1) is based on a continuous curvature distribution without a cylindrical centrebody.

2.3 Data sampling and neural network generation
The aerodynamic database was formed using six intuitive geometric variables (Lnac, rte, rif , fmax, rmax and
βnac in Fig. 2) and covered a wide design space [24]. For example, the normalised nacelle length varied
from Lnac/rhi = 4.5 to 2.0, which covers conventional nacelles as well as compact civil architectures
that are expected for ultra-high bypass ratio engines [31]. The aerodynamic degrees of freedom were
formed by the Mach number and massflow capture, and encompassed conditions representative of the
cruise-point as well as off-design [18]. The large bounds enable the building of a generalised model
with enough flexibility across the design space, which is usually required at an early stage of the design
process.

An adequate data sampling is a key aspect for the generation of complex low order models with
non-linear data. Well-established sampling methods, such as the Latin hypercube sampling (LHS) tech-
nique [32], may not be an optimal sampling strategy for nacelle applications. Typically, it is expected
that nacelle drag gradients will be greater for changes in operating conditions, especially at high Mach
numbers, compared with nacelle geometry perturbations. For this reason, a mixture of approaches has
been selected in which a LHS is used for the geometric space and an anisotropic sampling [33] for the
aerodynamic degrees of freedom. In this respect, a greater refinement of sample points is used for high
Mach numbers and low MFCRs. The Prandtl–Glauert factor (

√
1 − M2) [34], is used to bias the sam-

pling density towards larger Mach numbers. For the MFCR, the sampling was selected to be linear with√
MFCR

−1
to increase density towards lower MFCR, due to its larger nacelle drag sensitivity [31]. The

upper bound for the massflow capture ratio was set to a 95% of the MFCR at which the intake would
choke using an isentropic process. Conversely, the lower bound was set to MFCR = 0.5, which could be
encountered at off-design conditions [18].

The ANN is built in the Python 3.7 implementation of Keras with Tensorflow as backend [35]. The
ANN is composed by eight neurons as the input layer, which encompass six geometry degrees of freedom
(Lnac, rte, rif , fmax, rmax and βnac) and two aerodynamic degrees of freedom (M and MFCR). The output
layer has a single neuron that represents the nacelle drag. Both layers, i.e. input and output, are connected
by a series of hidden layers. There are no general guidelines to build an ANN because it is case dependent
and aspects such as the dimensionality of the problem, the number of samples or the non-linearity
of the output will affect the overall neural network architecture [11]. As such, the optimal definition
of hyperparameters like the number of layers, number of neurons per layer or activation function are
problem-dependent. Different hyperparameters were used to fine tune the predicted accuracy of the
ANNs (Table 1).

Within the context of neural network architectures, the output of each neuron (yk) is obtained by
evaluating an activation function (ϕ) with the sum of the weighted inputs to the neuron (uk) and a bias
factor (bk), Equation (8):

https://doi.org/10.1017/aer.2024.38 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.38


2268 Tejero et al.

Table 1. Neural network hyperparameters considered

Hyperparameter Range
Neurons 8, 16, 32, 64, 128, 256
Hidden layers 1, 2, 3, 4, 5
Activation functions ReLu, sigmoid, tanh

yk = ϕ (vk)= ϕ (uk + bk) (8)

As part of this work, three activation functions were considered (Table 1). The rectified linear unit
(ReLu) activation function (Equation (9)) is commonly used for artificial neural networks due to its
simplicity [36]. The main limitation is that its gradient is equal to 0 for vk < 0 [37], which can prevent
learning because the neuron is not activated during the back-propagation process [38]. This activation
function has been successfully demonstrated for nacelle applications in a narrow design space with
modest changes in the nacelle drag response [23].

frelu (vk)= max (0, vk) (9)

The sigmoid (Equation (10)) and hyperbolic tangent (Equation (11)) activation functions were also
considered during the training process [37]. A well-known drawback of these functions is that the gra-
dients at the bounds tends to 0 [39], which can slow down the network training because the changes in
the weights and biases of the neurons are very small.

fsigmoid (vk)= 1

1 + e−vk
(10)

ftah (vk)= tanh (vk) (11)

The neural networks were trained using the Adam optimiser, a gradient descent algorithm known for
its rapid convergence, computational efficiency, and scalability to large datasets [23]. A full factorial
for the combination of hyperparameters presented in Table 1 was considered during the training of the
different ANNs. The final selection of the artificial neural network for nacelle drag prediction was based
on the minimum relative root mean square error (σ in Equation (12)) in an independent database. The
validation set was generated with the same sampling strategy as the training database, i.e. LHS for the
geometric variables and anisotropic for the aerodynamic ones.

σ =
√√√√ 1

N

N∑
i=1

ε2 =
√√√√ 1

N

N∑
i=1

(
CCFD

D − CANN
D

CCFD
D

)2

(12)

where ε is defined as Equation (13):

ε = CCFD
D − CANN

D

CCFD
D

(13)

3.0 Results and analysis
Within an industrial design environment, it is required to quickly iterate through new concepts to ensure
competitiveness. Surrogate models are usually used at preliminary stages of the process, where pre-
trained models can enable fast design iterations. These low order models should meet the conflicting
requirements of quick evaluations, sufficient accuracy and large coverage of the design space. As part
of this work, the ANN architecture can make drag predictions at quasi real-time with a runtime below
a fraction of second, and the database covers a wide range of architectures that include compact and
conventional nacelles (Section 2.1). To assess the accuracy of the ANN model, its capabilities for nacelle
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drag prediction as well as for optimisation purposes have been quantified. On one hand, it is important
that the integral values are accurately predicted across the geometric and aerodynamic bounds of the
metamodel (Section 3.2). On the other hand, other key aspect of a response surface model (RSM) for
preliminary design is to ensure that the method can successfully identify optimal nacelle configurations.
In this respect, a range of multi-point, multi-objective optimisations have been performed for a range of
architectures (Section 3.3).

3.1 Database generation and artificial neural network training
The ANN uses eight degrees of freedom (NDoF) in which six are intuitive geometric variables (NDoF−geo),
i.e. Lnac, rte, rif , fmax, rmax and βnac (Fig. 2), and two are the aerodynamic variables of Mach number and
massflow capture ratio. For the geometric degrees of freedom the Latin hypercube sampling method was
used to sample the design space and approximately a seed of Ns−geo = 600 nacelle shapes was generated.
This provides a ratio Ns−geo/NDoF−geo = 100. For each nacelle configuration, an anisotropic sampling for
the two operating conditions of M and MFCR was used with a total of 102 data points per configuration.
Overall, this results in the generation of a database with approximately Ns = 60,000 CFD data samples,
with a ratio of Ns/NDoF = 7,500. Similarly, an independent dataset was generated with the same sampling
techniques to quantify the ANN’s accuracy in the prediction of the nacelle drag (Equation (14)). Around
Ns−geo = 150 different aero-engine nacelle shapes were compiled, with a total number of approximately
Ns = 15,000 CFD data points for the validation set.

CD = Dnac

1
2
ρ∞V2

∞Ahi

(14)

Different flow-field topologies are encountered throughout the design space which poses many chal-
lenges in terms of the generation of accurate low order models in aero-engine nacelle applications [24].
To provide an insight of this complexity, the aerodynamic flow characteristics of two nacelle shapes
compiled for the training of the neural network are showed in Fig. 4. These are presented for Mach
numbers of 0.80, 0.85 and 0.90 at constant MFCR = 0.70. For Geometry 1, which has a long nacelle
length with Lnac/rhi ≈ 3.8, there are no shocks along the cowl at M = 0.80 (Fig. 4(a)), and has a single
shock wave at M = 0.85 and 0.90 with pre-shock isentropic Mach numbers of 1.19 and 1.26, respec-
tively (Fig. 4(c) and (e)). Conversely, the short nacelle cowl with Lnac/rhi ≈ 3.0 of Geometry 2 has a well
defined shock already at M = 0.80 with a pre-shock isentropic Mach number of 1.24 at the nacelle lip
(Fig. 4(b)). An increase of flight velocity to M = 0.85 results in a change of the flow topology for which
two shocks are created (Fig. 4(d)). The first one is located on the nacelle forebody with a pre-shock of
1.25 and the second is on the afterbody with a more benign intensity of pre-shock Mis = 1.17. A further
increment of M to 0.90, results in the merging of both shock topoplogies in a single strong one which
induces flow separation (Fig. 4(f)).

The full-factorial combination of hyperparameters summarised in Table 1 was assessed to structure
independent surrogate models that can approximate the nacelle drag (Equation (14)) across the design
space. The best ANN model was found with 64 neurons per hidden layer, 2 hidden layers and the ReLu
activation function, with a relative root mean square error of σ = 2.9%. This is the metamodel selected
in this study for preliminary nacelle design.

3.2 Validation for nacelle drag prediction
The ANN was trained with the compiled database of 60,000 samples in Python 3.7 using the Keras
library and Tensorflow as backend [35]. The training process was performed in an AMD EPYC 7543 32-
core CPU with one NVIDIA A100 GPU. Once the model was trained, the surrogate can be interrogated
with any workstation with the same Python environment. Testing has been successfully conducted on
a conventional PC with 4GB of RAM (random access memory). As discussed above, the predictive
accuracy of the ANN was evaluated with the independent dataset that was generated for perturbations
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Example of flow-field across the design space: Geometry 1 (Lnac/rhi ≈ 3.8) and Geometry 2
(Lnac/rhi ≈ 3.0).

in geometric and aerodynamic degrees of freedom. Figure 5 presents the cross-validation between the
ANN predictions and the CFD results across all the design space. The overall uncertainty is σ = 2.9%,
in which 92% of the cases have an error (ε in Equation (13)) below 5%, 7% of the evaluations present
an error between 5% and 10%, and only 1% depict an error above 10%. The majority of the cases with
ε > 10% have a MFCR < 0.65, which is an off-design condition. The nacelle stagnation point moves
closer to the fan face and this results in a large region of acceleration along the nacelle lip that may
terminate with high peak Mach numbers, strong shock waves and shock induced separation [18]. For
this work, an overall model uncertainty of 5% is targeted to meet the requirements of low order models
for preliminary design [40]. As such, the predictive accuracy across the design space fulfills this target
(σ = 2.9%) and the ANN can be used at a preliminary stage of the design process.

Although nacelle design is a multi-point, multi-objective optimisation problem [31], and therefore an
acceptable accuracy of the metamodel across the RSM bounds is needed (Fig. 5), the cruise condition has
a notable importance in the overall design process. For this reason, the relative root mean square error (σ )
was also quantified for expected mid-cruise type conditions. In this respect, two extra cross-validations
were performed for flight Mach numbers of 0.80 and 0.85 at fixed MFCR = 0.70 (Fig. 6). These are
representative of cruise-type conditions for medium-range and long-range applications, respectively.
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Figure 5. ANN cross-validation of the full design space with geometric and aerodynamic degrees of
freedom.

(a) (b)

Figure 6. ANN cross validation for medium- and long-range applications at mid-cruise conditions.

As such, the predictive accuracy is quantified for changes in the geometric design space. For the medium-
range applications with M = 0.80, the overall σ = 2.6% in which 95.5% of the designs have a prediction
error below 5% and the remaining configurations are within 5% < ε < 10%. In addition, the relative
root mean square error for long-range applications with M = 0.85 and MFCR = 0.70 is σ = 3.2% in
which 89.2% have ε < 5%, 10.4% of the nacelle are within 5% < ε < 10% and 0.4% have ε > 10%.
As it could be envisaged, the relative root mean square error (σ ) is larger for the high Mach number due
to the increased non-linearity of this condition.

To show how the nacelle drag changes across the design space, Fig. 7 presents the drag variation as a
function of the aerodynamic degrees of freedom (M and MFCR) for three different nacelle shapes from
the validation dataset. They have Lnac/rhi ≈ 3.8, 3.0 and 2.2, and are referred to in Fig. 7 as design A, B
and C, respectively. These configurations cover a wide range of the design space that is representative
of conventional and compact aero-engine nacelles for medium- and long-range applications. For the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Nacelle drag as a function of Mach number and massflow capture ratio for 3 nacelle samples:
Design A (Lnac/rhi ≈ 3.8), Design B (Lnac/rhi ≈ 3.0) and Design C (Lnac/rhi ≈ 2.2).

configuration with Lnac/rhi ≈ 3.8 (design A) the changes in nacelle drag as a function of Mach num-
ber and massflow capture ratio are benign. For a fixed MFCR, CD smoothly increases as a function of
flight Mach number caused by compressibility effects and shock-waves that are formed on the nacelle
(Figs. 7(a) and (d)). Similarly, at a constant M the nacelle drag coefficient increases when MFCR is
reduced due to the larger flow acceleration around the nacelle lip caused by the movement of the stagna-
tion point towards the fan. For this nacelle configuration the ANN successfully predicts the drag changes
across the wide aerodynamic design space within 0.55 < M <0.925 and 0.5 < MFCR < 0.93 with a
maximum absolute error of ε= 4.2% (Fig. 7(g)). For the nacelle design with Lnac/rhi ≈ 3.0 (configura-
tion B) the influence on CD of M and MFCR is different relative to A. For the design B the sensitivity to a
change of MFCR is modest and the changes on CD are mainly dominated by Mach number (Fig. 7(b) and
(e)). For a MFCR below 0.65, the drag rise curve has a local minima caused by the changes on the shock
topology. For benign values of M, the nacelle aerodynamics are governed by a single shock. An incre-
ment in Mach number results in the change of the flow-field topology to a double shock structure with
relatively low values of pre-shock Mis. This effect reduces the nacelle drag due to a reduction in the wave
drag. Increasing further the freestream Mach number results in the combination of both shocks into a
single strong one that has associated high levels of wave drag [31] and a concomitant larger nacelle drag.
Modelling this non-linearity with a generalised low order model that contains configurations with such
characteristics (e.g. design B) as well as designs with benign changes on CD (e.g. design A) is complex.
For this reason, previous Kriging methods filtered and smoothed non-monotonic drag-rise behaviours
to enable the generation of a RSM with an acceptable predictive accuracy [24]. However, the proposed
ANN is able to include the described nacelle drag characteristics without simplifications in the drag
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response of the nacelle. For the design B, the maximum absolute predictive error across the aerodynamic
DoF is ε= 10% at M ≈ 0.86 and MFCR ≈ 0.6 (Fig. 7(h)). Lastly, the configuration C with Lnac/rhi ≈ 2.2
has a notable sensitivity to flight Mach number (Figs. 7(c) and (f)). This is caused by the high curvature
distribution along the fancowl of this short nacelle which induces a strong flow acceleration. For this
reason, the drag sensitivity to Mach number is greater than for designs A and B. For example, for flight
Mach numbers above 0.85, the design C is operating post drag rise across the different MFCR which
poses many challenges for a RSM due to the associated large drag gradients. Despite its complexity,
the ANN predicts the changes on CD as a function of M and MFCR with a maximum absolute error of
4.7% (Fig. 7(i)).

Within the context of preliminary nacelle design, it is important to note that the normalised nacelle
length (Lnac/rhi) is a key geometric variable because it has the biggest influence on surface area and, thus,
nacelle drag and mass. Although the target may be to shorten the nacelle as much as possible, the lower
bound is usually determined by the intake and exhaust length requirements [41, 42]. Trade-off studies
on this variable are needed to ensure that low values of Lnac/rhi do not result in nacelle drag penalties
caused by shock losses that arise due to fancowls with high curvature and large flow accelerations [31].
In addition, the non-dimensional nacelle trailing edge (rte/rhi) is constrained by the exhaust shape and its
flow requirements. The lower bound of the nacelle boat-tail angle (βnac) is imposed by the outer bypass
duct requirements and the normalised maximum radius (rmax/rhi) is usually bounded by the compromise
between installed ground clearance considerations and the requirement of keep-out-zones for auxiliary
components outside of the fan case, e.g. thrust reverser unit. For the purpose of providing an insight
of how the neural network may be deployed in the preliminary design phase, the normalised geometric
variables Lnac/rhi, rte/rhi, βnac and rmax/rhi are fixed, and the two remaining ones, i.e. fmax and rif/hi, vary to
quantify their influence on the nacelle drag characteristics. Figure 8 presents the effect of fmax and rif/rhi

on CD for two different configurations with lengths of Lnac/rhi ≈ 3.8 (Figs. 8(a) and (c)) and Lnac/rhi ≈ 3.0
(Figs. 8(b) and (d)). This is shown for representative mid-cruise conditions of long-range applications
with M = 0.85 and MFCR = 0.70. The maps with the ANN are compared with higher-fidelity CFD
data, where it is highlighted the good agreement in nacelle drag between the numerical simulations
and the ANN predictions. Across the range of fmax-rif/rhi, there is a maximum error of 2.2% and 3.0%
for the configuration with Lnac/rhi ≈ 3.8 and Lnac/rhi ≈ 3.0, respectively. This deviation is within an
overall σ = 3.2% of the model for mid-cruise conditions (Fig. 6(b)). Across the fmax-rif/rhi space, the
nacelle drag changes by approximately 96% for the short design (Lnac/rhi ≈ 3.0) and by 30% for the
long configuration (Lnac/rhi ≈ 3.8). This greater sensitivity of the compact nacelle is expected to be due
to the higher non-linearity of this region of the design space [31]. The location of the minimum CD as
a function of fmax and rif/rhi changes with the nacelle style (Fig. 8) and is well predicted by the ANN,
which establishes confidence in the low order model for the design of aero-engine nacelles.

3.3 Validation for optimisation studies
Although it is important to ensure that a low order model has a sufficient predictive accuracy (Section
3.2), another key aspect is that the gradients of the performance metrics across the design space are
well predicted. This is to ensure that key decisions in terms of the feasibility of new concepts are cor-
rect. Furthermore, it is fundamental that the geometric design variables of optimal configurations are
appropriately identified to ensure confidence in their imposition as constraints in the design and opti-
misation of other sub-systems. For this reason, it is required to test the capability of response surface
models in optimisation environments. In this respect, a set of surrogate-based optimisations were carried
out with the neural network model and compared with the equivalent computationally expensive CFD-
based ones [17, 31]. As previously described, two of the nacelle design variables (Lnac/rhi and rte/rhi)
are usually fixed by the intake and exhaust housing components. For this reason a range of independent
multi-point, multi-objective optimisations within the range of 2.7 < Lnac/rhi < 3.6 and 0.90 < rte/rhi <

1.0 were performed. During this process, the other variables, i.e. rif/rhi, fmax, rmax/rhi and βnac (Fig. 2),
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Nacelle drag as a function of the intuitive design variables fmax and rif for two nacelle samples
with Lnac/rhi ≈ 3.8 and 3.0.

varied. The optimisations were performed with a well-established approach [31], in which three differ-
ent conditions that are encountered in the cruise segment were evaluated. They are mid-cruise as well
as the sensitivity to Mach number and mass flow capture ratio (Table 2). This analysis was carried out
for long-range applications because it is the most challenging scenario for a low order model in civil
aero-engine nacelle applications.

The optimisation process for both ANN-based and CFD-based approaches is coupled with the
OMOPSO algorithm [43]. The selection of this gradient-free method is based on its suitability for aero-
engine nacelle applications [44]. The process starts with a design space exploration (DSE) based on a
LHS sampling to efficiently cover the design space. It is formed by 400 different designs to provide a
ratio between the DSE size and degrees of freedom of 100. Subsequent generations of the OMOPSO
process are followed by 50 nacelle designs. The optimisation convergence is monitored by means of the
hypervolume indicator. The optimisation is stopped when the hypervolume changes below 1.0% in three
consecutive generations.

To demonstrate the capability of the nacelle design approach, CFD-based and ANN-based optimi-
sations are initially performed for a compact aero-engine with Lnac/rhi = 3.0 and rte/rhi=1.0. For the
same configuration, a previous RSM-based optimisation with a Gaussian regression method based on
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Table 2. Flight conditions considered during the
multi-point, multi-objective nacelle optimisation
process

Condition Mach no. MFCR
Cruise 0.85 0.70
increased Mach number (iM) 0.87 0.70
End-of-cruise (EoC) 0.85 0.65

(a) (b)

(c)

Figure 9. Comparison for the ANN- and CFD-based multi-point, multi-objective optimisations.

Kriging highlighted the challenges of identifying the same optimal design space as a computationally
expensive CFD in-the-loop approach [21]. This was caused by the non-linearity of the nacelle drag
characteristics of this compact architecture and the difficulties associated with Kriging modelling. After
successful convergence of the multi-point, multi-objective optimisation with the ANN surrogate-based
and the CFD-based strategies, a set of Pareto optimal solutions were identified (Fig. 9(a)). The 3D sur-
face is projected in the CD−cruise-CD−iM space, where the trade-off between the two objective function can
be observed. The comparison of the Pareto surface for both optimisation strategies reveals the capabil-
ity of the ANN-based to identify a similar shape. The hypervolume of the computationally expensive
CFD in-the-loop is only 2.6% larger than the RSM-based one. Relative to the CFD in-the-loop, the
minimum drag CD−cruise identified by the ANN is 0.2% greater. This changed to 1.0% for the minimum
achievable CD−iM and a reduction of 0.2% for CD−EoC (Fig. 9(b)). These differences are within the pre-
dictive uncertainty σ = 2.9% of the ANN model (Fig. (5)). The greatest discrepancy is identified for
the increased Mach number case (Table 2) with M = 0.87 due to the expected greater uncertainty of
the ANN as the freestream Mach number increases. Another key aspect of a surrogate-based multi-
point, multi-objective optimisation is to ensure that it converges to the same regions of the design space.
For all the design variables (fmax, rmax/rhi, rif/rhi and βnac), the normalised mean values of the Pareto
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Table 3. Multi-point, multi-objective optimisation for aero-engine nacelles

Variable Description
Minimise CD−cruise Nacelle drag at mid-cruise conditions
by varying fmax Non-dimensional axial location of the nacelle crest

rmax/rhi Non-dimensional nacelle maximum radius
rif/rhi Non-dimensional initial forebody radius
βnac Boat-tail angle

Subject to CD−iM <K1 · CD−cruise Threshold for nacelle drag sensitivity at increased Mach number
CD−EoC <K2 · CD−cruise Threshold for nacelle drag sensitivity to reduced MFCR

front are similar between the CFD-based and RSM-based multi-point, multi-objectives optimisations
(Fig. 9(c)). The maximum normalised difference is of 0.04 for fmax, which reduces to 0.001, 0.02 and
0.008 for rmax/rhi, rif/rhi and βnac, respectively. As such, it can be concluded that the neural network is able
to drive the optimisation process to similar regions of the design space relative to the computationally
expensive CFD in-the-loop approach. This establishes confidence for its deployment for optimisation
purposes. It is important to note that previous studies based on CFD-based optimisations with gradient-
free methods concluded that the convergence of the multi-point, multi-objective optimisation required
the evaluation of approximately 1,850 designs. These were composed by 400 nacelles in the design space
exploration (DSE) followed by 29 generations of 50 individuals each [45]. The same settings were used
in this work for the CFD-based optimisation, which results in a total of 5,550 independent CFD evalu-
ations, i.e. 1,850 designs with three flight conditions per design. This is usually not acceptable within a
preliminary design stage due to the large overhead in terms of computing requirements and overall time
to perform the optimisation.

Having established confidence that the developed approach identifies similar designs as the computa-
tionally expensive CFD-based approach, the method was used for a wide range of nacelle configurations
with different Lnac/rhi and rte/rhi. In this respect, a full factorial combination for values of Lnac/rhi = 2.7,
3.0, 3.3 and 3.6, and rte/rhi = 0.90, 0.95, 1.0 were considered. This is to quantify if the surrogate-based
approach can predict the nacelle drag gradients across the design space as well as to identify the associ-
ated geometric design variables of the optimal configurations. For each of the 12 nacelle configurations,
an independent multi-point, multi-objective optimisation (Table 2) was carried out in which the process
was driven with ANN predictions and CFD simulations. For all the optimisations, the process resulted in
a set of Pareto optimal solutions upon which a nacelle was downselected (Table 3). The downselection
criteria can be modified according to the parameters K1 and K2 (Table 3) depending on the require-
ments and relative importance that the designer wants to provide to the sensitivity to Mach number
(CD−iM) and MFCR (CD−EoC). The overall process results in the generation of drag maps to quantify the
nacelle drag changes across the design space for different Lnac/rhi and rte/rhi. For the CFD in-the-loop
optimisation, the nacelle mid-cruise drag changes by about 16% across the design space (Fig. 10). The
non-dimensional nacelle length (Lnac/rhi) has a larger impact on the drag variations than rte/rhi. For a
fixed rte/rhi = 1.0, CD−cruise reduces by 13.4% when the nacelle length is shortened from Lnac/rhi = 3.6
to 3.1. For a conventional configuration with Lnac/rhi = 3.6, the changes in rte/rhi between 1.0 and 0.90
have a negligible effect on the mid-cruise nacelle drag. Conversely, for a compact aero-engine nacelle
with Lnac/rhi = 3.0, the nacelle drag increases by 4.0% when the trailing edge radius is moved inboards
from rte/rhi = 1.0 to 0.90. For the short nacelle configuration with Lnac/rhi = 2.8, there was not a design
that fulfilled the downselection criteria (Table 3) for the most compact rte/rhi = 0.90. Similar mid-cruise
drag changes were identified for the ANN-based optimisations with a variation of about 15% across the
range of Lnac/rhi and rte/rhi investigated (Fig. 10). The effect of Lnac/rhi on nacelle drag is also comparable
to the findings of the CFD in-the-loop optimisations. For the RSM-based cases, the mid-cruise nacelle
drag decreased by 13% when the nacelle length reduced from Lnac/rhi = 3.6 to 3.1 at fixed rte/rhi = 1.0.
This is close to the findings from the computationally expensive CFD studies that showcased a reduction
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(a) (b)

Figure 10. Mid-cruise nacelle drag changes as a function of Lnac/rhi and rte/rhi for downselected designs
from the multi-point, multi-objective optimisations.

(a) (b)

Figure 11. Changes of the normalised intuitive variable fmax as a function of Lnac/rhi and rte/rhi for
downselected designs from the multi-point, multi-objective optimisations.

(a) (b)

Figure 12. Changes of the normalised intuitive variable rmax/rhi as a function of Lnac/rhi and rte/rhi for
downselected designs from the multi-point, multi-objective optimisations.

of 13.4%. Lastly, the relative importance of the effect of the nacelle trailing edge (rte/rhi) at constant
nacelle length was also similar between the ANN and CFD optimisation approaches (Fig. 10). It is
demonstrated that the low order model predicts similar changes on nacelle drag across a wide dimen-
sional space, which builds confidence in its deployment within a preliminary nacelle design process.

Other key consideration of surrogate-based multi-point, multi-objective optimisation is that the pro-
cess converges to the same parts of the design space as a computationally expensive CFD in-the-loop
method. In this respect, the geometric degrees of freedom of the previous downselected designs are
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compared for both approaches. Figures 11 and 12 show the normalised values of fmax and rmax/rhi, which
have a larger impact on the nacelle drag characteristics than rif/rhi and βnac [31]. This representation is
useful to quantify the changes of the intuitive nacelle design variables to derive nacelle design guidelines
and design styles at a preliminary stage of the design process. The maps can also be used as constraints
for the design and optimisation of other sub-systems. The design variables fmax and rmax/rhi increase as
the nacelle is shortened and the trailing edge radius is moved outboards. This is to reduce the nacelle
curvature and the flow acceleration which has a direct impact on the overall nacelle wave drag [31].
The absolute value, as well as the gradients, across the design space for both intuitive variables are very
similar between the ANN- and CFD-based optimisations. It demonstrates that the developed artificial
neural network can be deployed with confidence for multi-point, multi-objective optimisation studies of
aero-engines nacelles.

4.0 Conclusions
The generation of low order models for transonic flow aerodynamics with Mach numbers above 0.85
is challenging due to the associated non-linearity of these flow regimes. In this respect, previous surro-
gate models that included geometric and aerodynamic degrees of freedom either did not consider these
conditions or included simplifications to reduce the modelling challenges. Within the context of civil
aero-engine nacelle optimisation with metamodels, these assumptions are incorrect because it is needed
an adequate accuracy for these operating conditions. This paper has developed a surrogate model based
on artificial neural networks that uses as inputs intuitive nacelle design variables as well as the key
aerodynamic parameters of Mach number and massflow capture ratio. The results show the acceptable
accuracy of the developed model with a relative root mean square error of 2.9% on nacelle drag across
a wide design space that considers conventional and compact nacelle shapes as well as Mach numbers
up to 0.92. The ANN was used in a surrogate-based optimisation routine to carry out multi-point, multi-
objective optimisation studies. It is demonstrated that the changes in nacelle drag across different nacelle
configurations are well predicted relative to computationally expensive CFD in-the-loop optimisations.
In addition, the changes of the intuitive nacelle design variables are also captured, which establishes con-
fidence in the method for deriving initial guidelines at an early stage of the design process. It is shown
that the method can meet the conflicting requirements for rapid evaluations, accuracy, large number of
input variables and design space bounds that are needed in preliminary design work.
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