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Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc)
dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked
diet-induced obesity and HFDwith reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits
between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeo-
static needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by dis-
rupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal
resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate
dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine
signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A
HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacer-
bated by the hypothalamic–pituitary–adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by
changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and
hinderweight loss. Understanding links betweenHFD and dopamine neurotransmissionwill inform treatment strategies for diet-induced obesity
and identify molecular candidates for targeted therapeutics.
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Introduction

Overweight and obesity prevalence has steadily increased with
42·4 % of US adults currently classified as obese1. Food intake is
controlled by many factors, including an obesogenic food envi-
ronment with ubiquitous access to cheap, calorie-rich, palatable
foods. Herein, ‘palatable foods’ are defined as those with high
energy density primarily from fat or sugar. Over-consumption
of palatable food is proposed to shift brain dopamine signalling
within the nucleus accumbens (NAc)2,3. The NAc is a limbic–
motor interface which integrates salient stimuli with memory
and context, reward availability and value, sensory information,
physiological state and homeostatic needs4. It sends efferent
projections to cortical and motor regions, processing environ-
mental and biological stimuli to drive motivated behaviour.
Disrupting homeostasis in the NAc by stimulating excessive
dopamine release may contribute to obesity with extended
access to highly palatable foods that acutely cause phasic dop-
amine release in the NAc5,6. Perturbations to NAc dopamine
by consuming a diet high in saturated fat (HFD) may disrupt

natural NAc food reward learning and reduceNAc dopamine tone
over time7–11. Changes in dopamine tone or phasic dopamine
release in the NAc may significantly impact food seeking8,11–13,
reward8,9,11,12 and satiety11,13,14. However, the mechanisms by
which diet and obesity alter dopamine neurotransmission and
behaviour are not fully characterised. Therefore, the purpose of
this review is to highlight the literature and identify research gaps
related to mechanisms by which diet-induced obesity interfere
with NAc dopamine, including interactions between inflamma-
tion, physiological stress and κ-opioid receptor function which
together with endocrine hormones modulate NAc dopamine to
influence food intake behaviours.

Dopamine circuitry and motivated behaviour

Food intake is controlled by energy status and neural circuits
regulating homeostasis and reward. Two primary dopamine cir-
cuits include the nigrostriatal tract from substantia nigra to dorsal
striatum/caudate putamen controlling motivation and habitual
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behaviour, and the mesocorticolimbic tract from ventral
tegmental area (VTA) to NAc controlling Pavlovian reward
learning15. These dopamine neurons form synaptic terminals
with γ-aminobutyric (GABA)-releasing medium spiny neurons
(MSNs), comprising ˜90–95 % of neurons within the NAc16,
which express dopamine D1 receptor (D1R) and dopamine
D2 receptor (D2R) subtypes that propagate dopamine signal-
ling to control cortical and motor processing17. An excellent
review of homeostatic crosstalk with the dopamine reward sys-
tem by Ferrario and colleagues highlighted how glucose and
endocrine indicators of energy status (insulin, leptin) inhibit
or excite dopaminergic reward activity directly in the VTA,
NAc and striatum2. Hormones also indirectly modulate dopami-
nergic activity by targeting key homeostatic regions in the
hypothalamus that initiate food seeking behaviours via
GABAergic and glutamatergic inputs to VTA and NAc2,18. There
are multiple subtypes of these neurons within the lateral hypo-
thalamus (LH) and arcuate nucleus (ARC) that respond to
energy status by releasing appetitive neuropeptides. These
include orexin/hypocretin (orexigenic, LH to VTA/NAc), mela-
nin-concentrating hormone (orexigenic, LH to NAc), neuroten-
sin (anorectic, LH to VTA/ LH orexin neurons), neuropeptide Y
(NPY)/agouti-related peptide (AGRP) (orexigenic, ARC to LH)
and pro-opiomelanocortin (POMC)/cocaine- and amphet-
amine-regulated transcript (CART) (anorectic, ARC to VTA/
NAc)2. These appetitive systems underly many mechanisms
by which HFD and stress perturb dopamine control of food
intake and will be discussed in detail throughout this review.
In addition to homeostatic engagement of hypothalamus affer-
ents to the VTA and NAc, feeding is also controlled by a NAc to
hypothalamus satiety circuit. This was demonstrated by direct
inhibition or stimulation of D1R-expressing MSNs that project
from the NAc shell to the LH, where D1R inhibition increased
licking for fat and sugar but stimulation decreased ingestive
responses19. Overall, NAc dopamine neurotransmission and
subsequent GABA output controls motivated behaviour, and
homeostatic signals from the hypothalamus comprise impor-
tant inputs that regulate feeding. Therefore, diet-induced dis-
ruption to these circuits may be particularly consequential
for individuals restricting food intake (Fig. 1).

The ventral striatum is central to reward processing, integrat-
ing glutamatergic andGABAergic inputs from the hypothalamus,
cortex, amygdala and hippocampus with dopaminergic projec-
tions from the VTA or substantia nigra20. The NAc assimilates
these signals to determine hedonic value and sends GABA via
the ‘direct’ route with direct control of dopamine release with
afferents to VTA, internal globus pallidus or substantia nigra
(MSNs with D1Rs), or the ‘indirect’ route via globus pallidus
externa and ventral pallidum (MSNs with D2Rs). GABA afferents
to the thalamus then modulate excitatory output to the cortex
that controls behavioural selection and motor activity17. D1Rs
have lower affinity for dopamine than doD2Rs21,22 and respond
to phasic dopamine release due to unexpected rewards and cue
learning that promotes cyclic adenosine monophosphate (cAMP)
signalling with downstream phosphorylation of dopamine-
regulating proteins15 and increased MSN firing probability23.
Conversely, D2Rs are activated at lower dopamine concentrations
by spontaneous pacemaking activity of dopamine neurons24 than

D1Rs, and activate opposing intracellular signalling, to decrease
MSN firing probability23. Consequently, D2Rs communicate dop-
amine tone so that phasic release events (unexpected rewards) or
lack thereof (absence of expected reward) alter concentration that
is detected by D1Rs to promote response. This dopamine signal-
lingpattern is important for NAc learning that relies onphasic dop-
amine release initiated by a rewarding, unconditioned stimulus
that becomes tied to a conditioned cue over repeated exposures.
In the theory of reward prediction error25, hedonic value is deter-
mined based on magnitude of dopamine release, which is up- or
down-regulated upon further cue exposures. This reward-learn-
ing model is central to motivation and survival and may become
‘hijacked’ by palatable foods.

Dopamine in the NAc responds to food intake and may
promote obesity

Dopamine pathways control motivated and habitual behaviour,
including that related to food. The VTA–NAc mesolimbic dop-
aminergic pathway influences motivated behaviour by enhanc-
ing willingness to work for rewards26. Mesolimbic dopamine
increased during lever pressing to obtain food27, and NAc core
dopamine depletion reduced response in fixed ratio tasks
with more pronounced decreases in higher ratio schedules28.
Moreover, food deprivation augments dopaminergic responses
to food, demonstrated by increased NAc dopamine in response
to maize oil feeding after food restriction6. Interestingly, phasic
dopamine release was enhanced in food-restricted rats follow-
ing cues that predict sucrose versus cues for saccharin5. This
suggested energy-providing foods have greater salience than
energy-null foods when homeostatic energy needs influence
physiological state, but dopamine release induced by food cues
that initiate food intake could be enhanced in individuals with
obesity. Indeed, thosewhowere obese showed enhanced stria-
tal and NAc dopamine release in response to palatable food
images after consumption of an energy-dense meal29. This
was in contrast to healthy, lean individuals whose meal pleas-
antness ratings correlated with striatal dopamine release30 and
who experienced striatal dopaminergic activation immediately
during milkshake consumption and 20 min post-ingestion
when gut signals reached the brain31. Additionally, when food
access is not interrupted but availability of palatable foods is
limited, dopamine release is increased during access to the pre-
ferred food under limited compared with ad libitum access in
rodents. For instance, constant access to sucrose for 21 d failed
to evoke the same magnitude of dopamine release in the NAc
shell as daily intermittent access to sucrose14. Therefore, dop-
amine release in response to food can be influenced by physio-
logical state and food availability, and the NAc controls initial
hedonic responses to palatable food intake and promotes
cue-associated learning and motivation to obtain food that is
interfaced with homeostatic need.

Effects of HFD on dopamine

Prolonged consumption of highly palatable diets may disrupt
dopamine reward signalling. Chronic HFD intake and diet-
induced obesity impact VTA dopamine neuron activity and
interfere with mechanisms regulating dopamine at synaptic
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terminals within the NAc. Changes include lowered D2R bind-
ing potential as well as reduced dopamine transporter (DAT)
function and membrane localisation32–37. Furthermore, HFD
intake activates inflammatory processes that may contribute
to neuronal insulin resistance34,38–40. Central insulin and leptin
resistance attenuate satiation and reward valuation of palatable
foods by altering NAc synaptic dopamine and disrupt orexigenic
and anorectic communication between the LH, ARC and VTA34,40–

43. Finally, chronic HFD intake shifts opioid control of NAc dop-
amine neurotransmission44, which could amplify stress-induced
feeding8,45 and have consequences for obese individuals on
energy restricted diets. Overall, studies presented below demon-
strate HFD consumption acutely increases NAc dopamine6,46,47,
but prolonged intake reduces capacity for dopamine neurotrans-
mission through repeated stimulation of dopamine receptors9,48,
resistance to hormonal and homeostatic signals34,40–43, and
up-regulated inflammatory signalling38,39.

Effects on synaptic control of dopamine within the NAc

Dopamine transporter, D1 receptors and D2 receptor
availability. Chronic HFD intake alters dopamine neurotrans-
mission to promote food seeking with obesity susceptibility
dependent on the activation of NAc dopamine and alteration
to dopamine receptors and the DAT. For example, genetic
differences in the DAT gene significantly increased likelihood

of obesity49. Further, intake of a HFD or intraperitoneal injec-
tion of lipid solution acutely increased NAc dopamine46, and
sucrose intake dose-dependently increased NAc dopamine47.
Conversely, chronic HFD feeding reduced maximal dopamine
reuptake rate (Vmax)34, while extended access to a Western
diet (WD), a HFD with added sugar, decreased striatal and
NAc core dopamine release and reuptake43. Further, while
obesogenic diet and food restriction both reduced striatal
DAT surface expression and reuptake50, obesogenic diet
decreased but food restriction increased D2R protein expres-
sion. These findings suggest food restriction primes the dop-
amine system to respond to food exposure. HFD-induced
changes develop over time, as 6-week but not 2-week expo-
sure to HFD decreased NAc dopamine Vmax and membrane-
associated DAT expression33. Effects of HFD also depend
on fat type, as rats chronically fed 50 % saturated HFD experi-
enced reduced DAT and increased D1R protein expression ver-
sus 50 % monounsaturated olive oil or control diet32. Similarly,
consumption of a HFD versus control diet reduced dopamine
reuptake Vmax and attenuated phasic dopamine release, which
did not occur in mice fed a diet high in polyunsaturated flax-
seed oil51. Further, consumption of a WD versus low-fat control
diet for 12 weeks reduced NAc D1R protein expression but
increased total D2R and p-dopamine- and cAMP-regulated
phosphoprotein-32 (DARPP-32) protein expression9, the latter
which activates D1R-mediated signalling downstream52. HFD

Fig. 1. Effects of dietary fat and obesity on hedonic and homeostatic dopamine circuits: homeostatic, dopamine-motivated feeding and reward learning circuits overlap
as insulin and leptin convey body energy status to the hypothalamus (Hypo) and VTA. In response, hypothalamic nuclei send appetitive neuropeptides to the VTA and
NAc to influence food intake, and NAc dopamine neurotransmission is directly stimulated by hormonal action in the NAc and VTA. This information is also conveyed via
dopamine, GABA and glutamate from the VTA to NAc, and the NAc responds by sending GABA to hypothalamic feeding regions, the VTA as a regulatory feedback
circuit, and thalamic, motor and cognitive cortical regions. Effects of long-termHFD or palatable food consumption are highlighted by region. This characterises how diet-
induced obesity dysregulates key neurotransmitters, neuropeptides and hormones that regulate food intake to reduce dopamine neurotransmission leading to over-
eating and further weight gain.
TH, tyrosine hydroxylase; D1R/D2R, dopamine type 1/2 receptors; DAT, dopamine transporter; POMC/CART, pro-opiomelanocortin/cocaine- and amphetamine-regu-
lated transcript; NPY/AGRP, neuropeptide Y/agouti-related peptide.
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feeding from lactation through adulthood similarly increased
NAc DARPP-32 but decreased D1R and D2R gene expression
that was exacerbated after HFD was removed for 4 weeks48.
Conversely, HFD-induced reduction in D1Rs and D2Rs was
restored by HFD removal. These results suggest adaptive
changes in DAT, D1R and D2R expression due to repeated
HFD-mediated activation of D1R signal transduction leading
to down-regulated D1R and D2R availability. Interestingly,
D1R-expressingMSNswere activated in proportion to palatable
food consumption while intra-uterine protein-restriction-
induced reduction of NAc shell D1Rs increased palatable milk
consumption53, leading Durst et al. (2019) to suggest D1R
stimulation during consumption builds to a ‘satiety threshold’
sent to LH GABA neurons. Endocannabinoid-mediated synap-
tic plasticity of this circuit was later demonstrated to promote
overeating after food restriction or exposure to HFD54.
Therefore, the NAc–LH satiety circuit may be inhibited due
to HFD-induced disruption of D1R signalling.

Much attention has also been paid by neuroimaging studies to
striatal D2R availability. Decreased NAc core but increased NAc
shell D2R binding potential were linked to impulsive behav-
iour55. Furthermore, calorie restriction was used to maintain sim-
ilar intake between groups, and chronic HFD in absence of
obesity decreased NAc D2R protein expression and increased
impulsivity in a task to obtain food56. Conversely, obesity in
absence of diet manipulations also affects D2Rs, as chow-fed,
obese mice with genetic leptin receptor inactivation increased
NAc and striatal D2R availability in vivo using [11C]raclopride
but decreased D2R availability ex vivo using [3H]spiperone57.
Interestingly, these differences were eliminated between
calorie-restricted lean and obese mice57. Based on the radio-
ligands used, results suggested obesity reduced striatal dop-
amine concentration and postsynaptic D2R availability.
Conversely, 3–4 weeks of limited daily access to a cafeteria
diet reduced ethanol intake but increased D2R autoreceptor
function58. One group used [3H]raclopride35–37 to assess
diet-induced alterations to D2Rs over time and found that
20 d on a 40 % HFD versus chow increased D2R binding den-
sity in the NAc and striatum that was maintained after HFD
removal35. Conversely, diet-induced obesity that developed
over 20 weeks of HFD feeding decreased striatal D2R bind-
ing36 but increased NAc core and striatal D2R mRNA expres-
sion37. Further, obesity-resistant mice had increased NAc DAT
binding36, which may promote dopamine clearance and pro-
tect against obesity. These studies suggest palatable foods up-
regulate dopamine neurotransmission which is shifted by
chronic HFD intake to decreased D2R binding and capacity
for dopamine release. However, clinical research showed
negative correlation between age and D2R binding through-
out midbrain regions with body mass index (BMI) correlating
positively with D2R availability only for those over 30 years
old59. This suggests that adolescent striatal development
and decline of D2R expression patterns with age could parti-
ally explain associations between D2R availability and BMI.
Overall, HFD-induced obesity alters function and expression
of NAc proteins regulating dopamine to reduce capacity for
NAc dopaminergic reward that promotes overeating and
weight gain.

Acetylcholine, GABA and glutamate in the NAc. Control of
VTA–NAc dopamine signals that initiate motivated actions relies
on a complex network of acetylcholine, glutamate and GABA,
which are all affected by HFD intake. About 5 % of NAc neurons
are GABAergic or cholinergic interneurons (CIN)17. The latter
stimulate dopamine release via acetylcholine that activates
acetylcholine receptors on dopamine axon terminals60. Activation
of MSNs relies on glutamate targeting ionotropic N-methyl-D-
aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptors (AMPAR) on CINs to release acetylcho-
line60,61. Glutamate also negatively regulates dopaminedirectly by
metabotropic glutamate receptors62 and indirectly via MSN retro-
grade H2O2 release63. Glutamatergic inputs to NAc communicate
physical and nutritive qualities of food, memory, physiological
need and environmental cues20, which prompts initiation or ces-
sation of feeding. Indeed, either AMPA and NMDA receptor
agonism64 or antagonism65 in the NAc shell can induce vora-
cious feeding. However, consumption of a WD66 or a
HFD32,67,68 increased AMPA/NMDA receptor ratio66,67, pro-
longed excitatory postsynaptic currents onto MSNs66, and
increased NAc phosphorylated GluR1 AMPA subunit32 and
NAc shell NMDAR and metabotropic glutamate receptor68

expression, but inhibited ability to induce long-term depres-
sion onto MSNs67, effects which together increased motivation
to obtain palatable food67,68. Further, the NAc receives GABA
from VTA69, globus pallidus externa70, cortex71, bed nucleus
of the stria terminalis72, and local MSNs and interneurons24.
GABA signals reduce dopamine concentration73 to stop cue-
associated reward behaviour70 or food intake and induce
avoidance behaviour69,71. These effects occur directly via
dopamine axon terminal74 GABAB-receptor-mediated reduc-
tion of dopamine73 and indirectly via GABAA-receptor-
mediated reduction of acetylcholine69,73. Conversely, NAc
shell GABAA and GABAB antagonism decreased food intake
while fasted75, but agonism increased fat and sucrose76 as well
as regular food intake while sated77, suggesting GABA inhibits
NAc-LH MSNs to disinhibit feeding. However, GABAB ago-
nism also inhibited bingeing on HFD during an intermittent
access paradigm78. Overall, glutamatergic and cholinergic sig-
nalling within NAc promotes food intake, while the system of
GABAergic disinhibition throughout the NAc, VTA and hypo-
thalamus may decrease dopamine release and stop intake or
disinhibit feeding via NAc shell MSNs, but prolonged HFD
intake reduces sensitivity of these systems to promote over-
eating and highlights the complexity of dopaminergic regula-
tion of ingestive behaviours.

Effects on the VTA

VTAdopaminergic output underliesmotivated behaviours and is
affected by consumption of a HFD24,79,80. The VTA receives glu-
tamatergic and GABAergic signals from local interneurons and
limbic and cortical regions80 as well as local somatodendritic
dopamine release that negatively regulates dopamine neuron
excitability24. Glutamatergic and cholinergic inputs activate
receptors on VTA dopamine neurons to promote NAc dopamine
release81. The VTA receives orexin from LH, NPY from orexi-
genic glucose-sensing ARC neurons2,82, and anorectic POMC/
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CART signals from ARC2. The VTA integrates this information
related to homeostasis and environmental cues with dopamine
neurons projecting to the NAc. However, HFD intake reduced
VTA tyrosine hydroxylase (TH) mRNA10 and protein9,83 expres-
sion, which occurred regardless of obesity andwas restored after
switching to low-fat diet10. This showed HFD intake reduced
capacity for dopamine synthesis, because TH is the rate-limiting
enzyme in synthesising dopamine84. Further, 6-week ad libitum
HFD feeding attenuated D2R agonist quinpirole-induced
inhibition of VTA dopamine neuron firing, suggesting D2R
desensitisation85, whereas intermittent access to cafeteria diet
for 3 weeks increased inhibitory effects of quinpirole and
reduced ethanol and sucrose intake58, showing sensitivity of
VTA autoreceptor function to type and length of diet. HFD
intake similarly reduced excitability of mouse VTA GABA neu-
rons86 that reduce NAc dopamine concentration69,73 and stop
behaviour (e.g. food intake)69–71. Overall, HFD and obesity
affect VTA dopamine and GABA neuron protein expression
and function, and a further diet-induced effect includes
altered sensitivity to direct responses of VTA neurons to hor-
monal indicators of energy status.

VTA neurons express receptors for insulin and leptin87 with
leptin-receptor-expressing dopamine and GABA neurons pro-
jecting to the NAc88, and activation of these receptors decreases
food intake. Insulin in the VTA is important in reducing dopa-
mine neuron activity to control behaviour, demonstrated by
reduced locomotion and NAc dopamine after VTA application
of insulin89. In the VTA, insulin reduced somatodendritic dopa-
mine release and hedonic feeding, which was abolished by
blocking the DAT90. Furthermore, insulin induced AMPAR-
and endocannabinoid-mediated long-term depression in VTA
dopamine neurons which was attenuated by genetic or diet-
induced elevation of insulin91,92, showing a role of insulin in
the VTA to signal satiety that is inhibited by HFD. VTA signalling
is also affected by leptin resistance, as HFD consumption
reduced ability of VTA leptin administration to limit food intake
and weight gain in obesity-prone rats93 and induced leptin resis-
tance specifically in the VTA and ARC41. Diet-induced obesity
also spurred leptin resistance in ARC NPY/AGRP and POMC/
CART neurons42 and LH neurotensin–galanin–GABA neu-
rons94,95 necessary for reducing food intake by inhibiting orexin
and activating VTA neurons2,94,95. Therefore, lack of hypotha-
lamic and VTA insulin and leptin signalling may reduce capacity
for NAc dopamine release to promote compensatory over-seek-
ing of palatable food.

Effects on anorectic hormones in the NAc

Insulin gains access to the brain via transport across the blood–
brain barrier96 and local production in the brain97, and activation
of tyrosine kinase receptors by insulin promotes phosphatidyli-
nositol-3 kinase (PI3K) and protein kinase B (Akt) or the
mitogen-activated protein kinase (MAPK)/extracellular-signal-
regulated kinase (ERK) pathways, the latter which is also known
as the Ras-Raf-MAPK/ERK kinase (MEK)-ERK cascade96. Insulin
valuates food reward by fine-tuning dopamine neurotransmis-
sion at NAc dopamine terminals. For example, NAc core and
shell insulin administration increased dopamine release and

reuptake in control animals but not in animals consuming
HFD34,40. Furthermore, HFD-induced impairments were
reversed by promoting insulin receptor substrates, while effects
of insulin were abolished by inhibiting insulin receptor or
PI3K34, implicating HFD-induced insulin resistance in impaired
dopamine control. Insulin receptors expressed on NAc dopa-
mine neuron terminals40 activate Akt and ERK to shuttle DAT
to the plasma membrane to promote dopamine reuptake98.
Dopamine release is also promoted by insulin as NAc CINs
expressed insulin receptors at high density40 and released
acetylcholine in response to insulin40,43, supporting necessity
of insulin in encoding sucrose preference40. While an obeso-
genic diet blunted insulin-induced NAc dopamine release
and reuptake43, food restriction alternately enhanced insulin
receptor expression and stimulated dopamine reuptake50.
Similar effects have been shown with impaired leptin signal-
ling, as leptin-deficient mice had reduced electrically evoked
NAc shell dopamine release and reduced TH and DAT expres-
sion88, whereas leptin increased activity of NAc DAT and TH
and increased amphetamine-evoked dopamine release99.
Leptin activates intracellular signalling cascades similarly to
insulin in addition to the Janus-activated kinases (JAK)–signal
transducers and activators of transcription (STAT)–suppressors
of cytokine signalling (SOCS) pathway that reduce NPY/AGRP
but increase POMC/CART and LH neurotensin neuronal activ-
ity2,100. Further, leptin is also transported into the brain101 and is
expressed in plasma and cerebrospinal fluid in proportion to
adipocyte size102 and adiposity103, suggesting that leptin con-
veys energy sufficiency. However, individuals with obesity
have elevated plasma leptin100, supporting leptin resistance
as a comorbidity of obesity. Collectively, these studies showed
NAc insulin promotes reward seeking by encoding reward
salience via increased dopamine release and maintenance of
dopamine reuptake, and, whereas food restriction may prime
dopamine responses through insulin, HFD-induced insulin
and leptin resistance may reduce NAc dopamine neurotrans-
mission to alternately promote food seeking. A putative con-
tributor to leptin and insulin resistance associated with diet-
induced obesity is chronic inflammation triggered by saturated
fats and rapid adipose tissue expansion38,104,105.

HFD and obesity drive inflammatory processes that
modulate dopamine control of food intake

Adipose tissue expansion in obesity reduces blood flow to
adipocytes to induce hypoxia and release of cytokines caus-
ing local and systemic inflammation104. Indeed, increased
expression of inflammatory genes triggered by hypoxia-
inducible factor 1α were found in the adipose tissue of insu-
lin-resistant individuals with obesity106. Further, obesity and
HFD intake both stimulated cytokine release from peripheral
and central immune cells106–108. Saturated fatty acids promote
inflammation directly by promoting lipopolysaccharide (LPS)
absorption109 and activating macrophages, microglia and
astrocytes similarly to LPS by binding to toll-like receptor-4
(TLR4) and binding partners cluster of differentiation 14 and
myeloid differentiation factor-2 (MD-2) to prompt receptor
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internalisation38,39,108,110. Toll-like immune receptors recog-
nise pathogens, trigger nuclear factor-kappa B (NF-κB) signal-
ling, and promote cytokine release38,111. Macrophages
exposed to saturated fatty acids showed direct binding to
MD-2 and TLR4, increased NF-κB and MAPK signalling, and
interleukin-6 (IL-6) and tumour necrosis factor-α (TNFα)
release39. Additionally, TNFα dampened the insulin signal
via serine phosphorylation of insulin receptor substrate 1 in
adipocytes112 whereas loss-of-function mutations in TNFα
and TNFα receptors prevented HFD-induced insulin resis-
tance113. Similarly, TLR4 gene mutation protected against
HFD-induced obesity and promoted insulin signalling105.
Insulin resistance due to inflammation is one key mediator
of HFD-induced alterations to dopamine.

Inflammatory cytokines decrease dopamine packaging and
signal transduction via reduced function and expression of
vesicular monoamine transporter 2 and D2R but increase func-
tion or expression of DAT, which alters dopamine reuptake114.
Additionally, inflammatory cytokines and reactive oxygen spe-
cies reduced availability of the cofactor tetrahydrobiopterin
required by TH for dopamine synthesis115. Further, systemic ad-
ministration of proinflammatory cytokines IL-6 and IL-2
decreased NAc extracellular dopamine, though IL-1β had no
effects116. Inflammatory processes may lower synaptic dopa-
mine and alter feeding behaviours. Indeed, TLR4 knockout
(KO) mice exhibited reduced preference for fat and sugar and
attenuated WD-induced food intake, weight gain and palatable
food preference117. Additionally, saturated HFD but not mono-
unsaturated fat increased anxiety and depressive behaviour in
conjunction with increased plasma cytokines and NAc cytokine
and NF-κB transcriptional activity associated with heightened
expression of microglial and astrocytic markers118. Further,
intake of a free-choice cafeteria diet altered morphology of
NAc MSNs and increased proinflammatory cytokine expression
related to microglial activation, whereas microglial inhibition
restored these effects and prevented diet-induced intake and
weight gain119. Together, saturated fat and obesity may promote
inflammation and insulin resistance that decrease dopamine syn-
thesis, vesicular packaging, and capacity for dopamine release
and reuptake. However, we posit that HFD-induced neuroin-
flammation uniquely promotes insulin resistance within the
NAc as a primary driver of reduced reward value that promotes
overconsumption of palatable foods, but a major gap involves
lack of pharmacological investigation assessing interactions
between insulin, LPS, inflammatory cytokines and microglial
activation on behaviour and presynaptic dopamine neurotrans-
mission in the NAc after chronic HFD intake during obesity.

Neuroinflammation interacts with stress to modulate
dopamine and food intake

Stress encompasses a variety of homeostatic disruptions which
may be acute or chronic and physiological or psychological in
nature. Food intake and body weight can change in response
to stress depending on the type, intensity and duration of the
stressor and activation of specific stress circuits. As discussed
above, the physiological stress of diet-induced inflammation

alters dopamine signalling in the NAc. Likewise, psychological
stress related to substance use disorders120 and diet-
induced118,121 anxiety have been linked to disruptions in dopa-
mine homeostasis. This next section highlights how acute or
chronic stress responses alter food intake, discussing the impacts
of dietary fat and induction of inflammation on these processes.

Acute stress: role of HPA, CRF and inflammation on food
intake

Acute stress encompasses a huge variety of physiological and
psychological triggers that activate the hypothalamic–pitui-
tary–adrenal (HPA) stress axis in a coordinated effort with meta-
bolic, immune, autonomic nervous, and digestive systems to
increase breathing and heart rate but slow digestion in prepara-
tion for ‘fight or flight’ response122,123. Various stressors induce
the hypothalamic paraventricular nucleus (PVN) to release cor-
ticotrophin-releasing factor (CRF), stimulating the pituitary gland
to release adrenocorticotropin (ACTH) that targets adrenal
glands to release glucocorticoids (corticosterone in rodents)
and promote stress responses124. The hypothalamus also acti-
vates sympathetic neurons in response to stress that induce adre-
nal release of epinephrine and NPY to mobilise nutrients via
glycogenolysis and gluconeogenesis124. In this context, CRF
acutely produces anorexia and weight loss that may last several
days124. Indeed, either a single exposure to LPS or acute immo-
bilisation stress reduced food intake and body weight that per-
sisted for over a week125. Human studies support this construct,
as themost stressful event of each day increased the likelihood of
eating less126, which was mediated by delayed digestive proc-
esses induced by acute stress127. Acute stress in healthy adults
lacking comorbidities and stressors related to obesity appear
to slow digestion and reduce food intake. However, induction
of inflammation during saturated HFD consumption could inter-
act with classical stress systems to promote effects of stress on
reward pathways. For example, intraperitoneal LPS injection
increased plasma ACTH and corticosterone and hypotha-
lamic/pituitary proinflammatory cytokines in CRF KO and wild-
type mice128. Reciprocally, CRF promoted cortical microglial
proliferation and dose-dependently increased TNFα release
mediated by phosphorylation of MAPK intracellular signalling
proteins shared by TLR4 activation129. Therefore, HPA axis
and proinflammatory molecules engage in intracellular crosstalk
and can independently promote stress. Acutely, stress mobilises
nutrients and dampens food intake, but these behavioural effects
might be altered during up-regulated inflammatory signalling.
Overall, effects of HFD intake on the interactions between
inflammatory and stress systems in the NAc have not been tested
to determine effects on dopamine or behaviour during obesity or
diet-related stressors (Fig. 2).

The immediate effects of acute stress are contextual and influ-
enced by environmental factors. Interestingly, NAc dopamine
release was increased during cues predicting foot shock,
decreased during foot shock, then stimulated after lever pressing
to stop the shock130,131. This shows NAc dopamine neurotrans-
mission is involved in learning behaviours to avoid negative
stimuli. Stress may directly induce dopamine activity, as
CRF dose-dependently increased VTA dopamine neuron
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firing which was abolished by antagonising CRF receptor 1132,
and CRF may activate both VTA GABA and dopamine neu-
rons133. However, pharmacological activation of the HPA axis
increased progressive ratio response in HFD but not chow-fed
groups, which was reversed by antagonising CRF receptor
1134. Importantly, acute stress does not occur in isolation,
and up-regulation of inflammatory signalling by HFD con-
sumption could alter effects of acute stress. For example,
LPS application 24 h after acute, inescapable tail shock
promoted hippocampal NF-κB, TNFα, IL-6 and IL-1β gene
expression, corticosterone, and microglial NF-κB and IL-1β
responsiveness that was fully attenuated when TLR2, TLR4135

and glucocorticoid receptors136 were blocked during stress,
and this stress-induced priming of neuroinflammation was
mediated by transition of microglia, but not astrocytes, from
a quiescent to an active state137. There are also sex effects
within stress-induced priming of inflammatory microglial acti-
vation. The same stress paradigm similarly primed central
proinflammatory cytokines, reduced anti-inflammatory path-
ways, and acutely reduced sucrose intake in males and
females138. However, LPS 24 h after tail shock or glucocorti-
coid injection induced peripheral proinflammatory cytokines
and reduced central glucocorticoid receptors in females but
induced microglial IL-6 and IL-1β mRNA expression specifi-
cally in males138. Overall, specific effects of acute stress
on food intake depend on prior exposure to a stressor and
complex peripheral and central inflammatory signalling, sug-
gesting those with chronic, diet-induced elevated proinflam-
matory states might be primed to be more reactive and

have alternate behavioural responses to chronic stress,
though further study is required explore this interaction in
dopaminergic centres that influence food intake, like the NAc.

Chronic stress and food intake

Chronic, repeated stressors may affect food intake and body
weight differently than acute stress, particularly in an obesogenic
state which may promote socio-behavioural and physiological
stressors. Effects of stress on hypothalamic nuclei may override
homeostatic feeding. For example, inescapable foot shock
engaged the HPA axis in addition to increased NPY but
decreased AGRP expression, and α-melanocyte stimulating hor-
mone released by ARC POMC/CART neurons increased stress-
induced HPA activation139. Furthermore, associating a place or
flavour with NPY/AGRP neuron activation reduced preference
for that place or food140, and AGRP neuron activity was reduced
due to food cues140 and initiation of feeding141. Therefore, neg-
ative valence associated with firing of AGRP neurons may pro-
vide motivation to perform behaviours that induce positive
valence like eating2 which could provide a stress alleviating
effect. This is important given obesity-prone rats fed HFD for
6 weeks had greater HPA axis activity with greater central CRF
concentrations and plasma corticosterone than chow counter-
parts142. Therefore, the transition in stress response that occurs
over repeated stress exposures could be exacerbated by diet-
induced obesity and greater stress reactivity. Acute restraint
decreased ARC AGRP expression143 but increased hypothalamic
POMC expression in conjunction with reduced food intake144.
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Conversely, chronic restraint increased LH AGRP and decreased
ARC melanocortin 4 receptor143 that responds to POMC. This
showedunique activation of hypothalamic anorectic versus orexi-
genic signalling, respectively, in response to acute versus chronic
stress. Diet-induced inflammation may mediate these effects, as
acute lipid infusion or palmitate exposure in AGRP/NPY neurons
increased TNFα, proinflammatory cytokines and NPY expres-
sion145. Conversely, 8-week HFD consumption reduced TNFα
and AGRP expression while 20-week consumption promoted
TNFα in NPY and AGRP neurons145. This suggests palatable
foods acutely induce hypothalamic inflammation in regions that
innervate the NAc followed by up-regulation of protective
mechanisms which are eventually overcome with extended
HFD intake, and dietary responses to chronic stress likely depend
on inflammatory status related to food composition and avail-
ability associated with responsivity of NPY/AGRP and POMC/
CART neurons and NAc dopamine cue learning.

Extended glucocorticoid responses may shift stress
reactivity and impact hormonal regulation of energy stores.
Glucocorticoids act to mobilise nutrients via gluconeogene-
sis146 and adipose tissue lipolysis147 during stress. However,
these effects over an extended period could lead to hyperin-
sulinemia147,148, hyperleptinemia149, and insulin148,150 and
leptin resistance. Indeed, 7 d of artificial glucocorticoid
administration in healthy women increased food intake,
plasma insulin and plasma leptin151, while exercise decreased
cortisol response to stress (i.e. cortisol reactivity) accompa-
nied by reduced disordered eating152. Maniam and Morris153

proposed glucocorticoid-induced stimulation of the dopa-
mine system provides motivation to resolve stressful situa-
tions which may be ‘hijacked’ into motivation to obtain
palatable foods. For example, in samples of women, presence
of obesity increased cortisol reactivity154 which was associ-
ated with increased calorie consumption155. Downstream,
glucocorticoids promote feeding by negatively regulating
CRF and activating orexigenic NPY neurons149,153 that are
inhibited by insulin and leptin and interconnected with the
LH, NAc and VTA2. Therefore, during diet-induced obesity,
chronic stress promotes glucocorticoid-induced activation
of feeding centres and removes the stop signal from hypo-
thalamus to VTA to promote dopamine-motivated feeding.
It is important to note that glucocorticoids are involved in
normal feeding responses, as restoring corticosterone to
adrenalectomised rats increased saccharin156 and sucrose157

intake to control levels. On the other hand, access to lard
blunted corticosterone response during restraint stress158.
Therefore, diet interacts with glucocorticoids to modulate stress-
induced feeding. Indeed, mice exposed to chronic social stress
after 12 weeks on a HFD showed improved weight loss, reduced
plasma insulin and leptin, and dampened anxio-depressive
behaviours versus stressed controls or non-stressed HFD
groups159, suggesting a potentially stress-alleviating effect of
palatable food intake. Overall, diet-induced obesity produces
neurochemical shifts and maladaptive stress responses, but an
opportunity for future investigation lies in whether HPA axis
and κ-opioid receptor stress responses drive food intake for
obese individuals during the chronic diet-related stress of restrict-
ing calories for weight loss (Fig. 3).

Effects of a HFD on κ-opioid-receptor-mediated stress,
dopamine, and food intake

The HPA axis interacts with κ-opioid receptors (KORs) to gate
NAc dopamine signalling. Indeed, expression of CRF, ACTH
and glucocorticoids systemically and centrally are co-regulated
with dynorphin, a ligand for KORs, and its precursor prodynor-
phin with ligands in either system inducing expression and
release reciprocally to promote stress responses160–163. KORs
are G-protein-coupled receptors that inhibit adenylyl cyclase
and cAMP activity164,165 and are co-expressed within NAc
DAT-expressing neurons166. Blocking NAc KORs inhibited dop-
amine reuptake and increased extracellular dopamine167, while
KOR activation increased reuptake to limit extracellular dopa-
mine168,169. KORs are present within NAc presynaptic dopamine
terminals, MSNs, and GABAergic and cholinergic interneurons
and reduce extracellular dopamine to promote feeding cessa-
tion170. However, ventricular KOR agonism promoted HFD
intake during satiation, whereas KOR antagonism in a fasted
state reduced HFD intake171, and systemic KOR agonism
reduced NAc core phasic dopamine release parallel to reduced
motivation to obtain sucrose172. This suggests KORs control
extracellular dopamine to alter rewarding effects of food. In
the NAc, KOR activation during nicotine exposure173 and
amphetamine withdrawal174 decreased basal and evoked dopa-
mine, while KOR antagonism attenuated alcohol self-administra-
tion during withdrawal175. Furthermore, acute stress promoted
TNFα in the amygdala, and amygdalar TNFα potentiated anxiety
during withdrawal that was blocked by CRF antagonism176.
Therefore, HPA axis, KOR and inflammatory systems interact
to induce dysphoria and relapse during withdrawal, and
up-regulation of these symptoms during diet-induced obesity
could promote food cravings when energy is restricted for
weight loss.

Neuroinflammation interacts with stress and reward systems.
Indeed, exposing women to stress induced plasma IL-6 con-
centrations that correlated with reduced NAc activation during
an fMRI reward learning task177. Further, chronic intake of
saturated HFD versus low fat118,121,178 or monounsaturated
fat118 increased anxio-depressive behaviours, plasma cortico-
sterone, and hypothalamic and NAc inflammatory cytokine
and TLR4 expression. Conversely, prodynorphin overexpres-
sion promoted anti-inflammatory M2 versus M1 phenotype of
hippocampal microglia and inhibited LPS-induced TLR4 acti-
vation of NF-κB to promote IL-4 and IL-10 but inhibit IL-1β and
IL-6 release179. Reciprocally, intraplantar injection of IL-1β
increased KOR mRNA expression in basal root ganglia neu-
rons180. However, dynorphin, enkephalin and KOR expres-
sion in the NAc were not affected by WD intake or 18-d
replacement with chow181 or 18 d of ad libitum or intermittent
access to a HFD182. Therefore, while HFD intake itself does not
appear to alter dynorphin/KOR expression, it appears that
KORs dampen proinflammatory responses induced by satu-
rated fat and could engage in intracellular crosstalk with
inflammatory molecules similarly to the HPA axis. Human
neuroimaging studies linked a dopaminergic response to
the consumption of palatable food183, palatable food cues29

or smelling food odours184 with increased reports of
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pleasure183,184 and wanting29 of food. Therefore, changing a
lifetime of food preferences by restricting energy intake to
lose weight may be particularly stressful and activate stress
pathways that dampen dopamine signalling.

In support of KOR system involvement during palatable food
restriction, pair feeding of WD to chow intake levels in controls
reduced NAc KOR expression in absence of obesity, but 18 d of
WD replacement with chow did not alter KOR expression181.
Therefore, it is possible that differences in KOR expression
become neutralised over 18 d of diet replacement or by diet-
induced weight gain, or that specifically KOR function could
be up-regulated. HFD intake alters food preferences, as replace-
ment of a WD45 or HFD8 with chow persistently reduced food
intake and acutely increased plasma corticosterone and anxi-
ety-like behaviour8. Further, whereas HFD intake promoted
sucrose anhedonia8,48,185, palatable food removal increased pref-
erence for sucrose48,185 and motivation to obtain sucrose8,45 and
fat8 that occurred as soon 3 d8 after diet removal but persisted for
several weeks45,48,185. This indicates prolonged enhancement of
salience for palatable foodwhen a preferred diet is not available,
and it is possible that KORs, which contribute to the rewarding
properties of food, promote this effect. Further, HFD intake
started at parturition reduced VTA TH and NAc D1R and D2R
expression in male and female mice, but 4 weeks of HFD
replacement exacerbated this reduction in the VTA of females
and NAc of males but oppositely restored these effects in the
VTA of males and NAc of females48. However, when HFD is

introduced in adolescence, HFD replacement does not recover
D2R expression in females with strong promotion of palatable
food intake, though effects were attenuated during adult-onset
HFD185. This suggests prolonged effects of a HFD on dopamine
synthesis and signalling in the VTA alter the capacity for neuro-
transmission in the NAc. Changes in NAc neurotransmission
occur via alterations to D1Rs and D2Rs resulting in increased
salience of palatable foods when they are no longer available.
These effects were significantly mediated by sex and age of pal-
atable food introduction with high vulnerability during adoles-
cence. Overall, individuals with clinical obesity or that
persistently consume a HFD may be poorly adapted to control
palatable food cravings during energy restriction owing to diet-
induced or psychological stress that engages the HPA or KOR
systems.

Conclusions

NAc dopamine neurotransmission is affected by physiological
state and access to highly palatable foods that promote obesity,
inflammation and hormonal resistance. Chronic engagement of
the HPA axis and KOR stress systems by repeated exposures to
daily life stressors interact with the inflammatory and hormonal
systems disrupted during obesity. Ultimately, palatable food
intake acutely increases dopamine release and reuptake, but
extended HFD intake reduces the capacity for dopamine neuro-
transmission. These trends are related to the physiological
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consequences of obesity that together promote the vulnerability
to overeat in order to promote synaptic dopamine to combat
obesity-related dysphoria and reduction of dopamine tone.
The effect of dietary fat on dopamine’s influence overfeeding
could be exacerbated by stress due to dietary restriction or
removal of preferred foods. However, pharmacologically target-
ing receptors that mediate stress in the brain, like KORs, or con-
trolling diet-induced inflammation that engages in crosstalk with
KOR system-mediated stress may improve the success of weight
loss interventions by attenuating the impact of stress on the dop-
amine system. Moreover, the dampening of dopamine neuro-
transmission by long-term consumption of a HFD, specifically
high in saturated fat, could be potentiated by inflammation act-
ing on dopamine neurons, which could heighten stress
responses that further attenuate dopamine signalling. The result
could be an increase in palatable food seeking and consumption
to curb potential negative affect with an acute but transient
increase in dopaminergic signalling.
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