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Abstract. J. H. E. Cohn solved the diophantine equations x2 + 74 = y" and x2 + 86 =
y", with the condition 5 \ n, by more or less elementary methods. We complete this work
by solving these equations for 5 | n, by less elementary methods.

1. Introduction. In a recent paper [2], J. H. E. Cohn considered the diophantine
equations

x2 + C = yn, (1)

in positive integers x, y, n with n > 2, for the positive integers C ^ 100. He was able to
solve 77 of them, and among the ones he did not complete are the two cases C = 74 and
C = 86, which we consider here.

More precisely, Cohn proved that for 5 \ n there is only the solution x = 985, y = 99,
n = 3 for C = 74, and no solution for C = 86, Other solutions obviously may only occur for
the equation

x2 + C = y5. (2)

The reason why Cohn's method fails for equation (2) in the cases C = 74,86 is that the
class number of the field IK = Q(V-C) in these cases is a multiple of 5.

In this paper we study the diophantine equation (2) for C = 74 and C = 86, and prove
the following result.

THEOREM 1. Equation (2) in positive integers x, y has only the solution x = 13, y = 3 in
the case C = 74, and has no solution in the case C = 86.

Combined with Cohn's results of [2], Theorem 1 immediately implies the following
result.

THEOREM 2. Equation (1) in positive integers x, y, n with « >2 has only the solutions
x = 13, y = 3, n = 5 and x = 985, y = 99, n = 3 in the case C = 74, and has no solution in the
case C = 86.

Our proof is based on diophantine approximation theory. First we reduce equation
(2) to a set of quintic Thue equations. Then, following classical arguments as outlined in
[3], and using the theory of linear forms in logarithms of algebraic numbers as in [1], we
derive large upper bounds for the unknowns in these Thue equations. Finally, by
computational diophantine approximation techniques, following [3], and using a new idea
of Yuri Bilu to improve efficiency, we reduce these large upper bounds to small upper
bounds, and thus are able to find all the solutions.
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2. Thue equations. We consider equation (2) as an equation of ideals in the field
IK = Q(V-C). Let b be the fifth-power-free part of (x + V-C). Then we can write

(x + V^C) = ba5 (3)

for some integral ideal a in IK. Multiplying by the conjugate equation we see that (2) leads
to the observation that bb is a fifth power. From this it's easy to conclude that b = (1), so
that (3) becomes

(x + V=C> = a5. (4)

In both the cases C = 74, 86 the class group of K is cyclic of order 10, and the prime 3
splits, say as

<3> = PP.

The ideal class of p has order 5 resp. 10 in the class group, in case C = 74 resp. C = 86.
When we put

q = p if C = 74, q = p2 if C = 86,

then it is clear that there exists an integer k with \k\^2 such that q~ka is principal, and
there exist u,v e (NqymaM°-k)I such that

Put

= u5- IOCH V + 5C2uv V = 5u4v - I O C U V + C V ;

then (M + uV^C)5 =U + V V^C. It now follows by (4) that

(5)

(6)

where y is a generator of the principal ideal qs. In fact, without loss of generality, in the
case C = 74 we may take y = 13 + V - 7 4 , and in the case C = 86 we may take
7 = 157 + 20V-86. Comparing the imaginary parts in equation (6) and multiplying by a
common demoninator (which is a power of 3) leads to

(7)

where the a, /3, m are as in the following table.

k

0
±1
±2

a

0
1

26

C = 74

13

1-
±13
±95

m

1
35

3io

a

0
20

6280

C = 86

J3

1
±157

T9751

m

1
310

320

Note that if it = 0 then (7) reads V = 1, and by V = v(5u4 - lOCu V + CV) this case
is trivial: there are no solutions in both cases. And the cases with k < 0 reduce to the
corresponding cases with k > 0 on changing the sign of V. Hence from now on we assume
k = lork=2.
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We substitute (5) into equation (7), and thus obtain a quintic Thue equation

fou
s +/yv + / 2 « V + /3u V +f4uv4 +f5v

5 = m, (8)

with parameters as in the following table.

c

74
74
86
86

k

1
2
1
2

/o

1
26
20

6280

/.

65
475
785

-48 755

h

-740
-19 240
-17 200

-5 400 800

h

-9620
-70 300
-135 020
8 385 860

U

27 380
711880
739 600

232 234 400

h

71188
520 220

1 161 172
-72118 396

m

35
3io

3,o
320

Observe that the Thue equation (8) for C = 74, k = 2 is impossible modulo 11. For
the two Thue equations (8) in the case C = 86, which we will prove to have no solutions,
we did not find a prime p such that these equations are impossible modulo p.

We make some further simplifications to the equations (8).
In the case C = 74, /c = 1 we observe that 3 | (u + v). Therefore we put X = \{u + v),

Y = v, and thus obtain the Thue equation

A'5 + 20XAY - llOA^Y2 - 260*2K3 + 545AT4 + 144Y5 = 1. (9)

Below we prove that X = l, Y = 0 is the only solution of (9). That suffices to prove
Theorem 1 for the case C = 74.

In the case C = 86, k = 1 we observe that 9 | (u + 2v). We now put X = \(u + 2v),
Y = v, and thus obtain the Thue equation

2OJfs + 65A"4Y - 280A-3y2 - 20*2Y3 + 160AT4 - 1275 = 1. (10)

In the case C = 86, k=2 we observe that 81 | (4w - v). We put X = m(-4u + v),
Y = ii(-u - 20i>), and thus obtain the Thue equation

4X5 - 80XAY + 100A'3y2 + 320X2Y3 - 355A-Y4 + 4Y5 = 1. (11)

Below we prove that (10) and (11) have no solutions. That suffices to prove Theorem 1
for the case C = 86.

3. Quintic fields. Let's now study the quintic fields associated to the Thue equations
(9), (10) and (11). We used Pari 1.38 to compute the results in this section, and checked
them by Kant 2.

In the case of equation (9) (i.e. C = 74, k = 1), we work in L = Q(9), where 6 satisfies

05-1503 + 4 5 0 - 2 6 = 0.

This field is totally real, its discriminant is 273 800 000 = 2655372, a basis for the ring of
integers is {1, 8, 02, 03, 84}, the class group is trivial, and a set of fundamental units is
given by

c3 = - 1 - 40 + 902 - 03 - 20\ e4 = -19 + 230 + 1602 - 1O03 - 404,
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so that the regulator is 1386.37307 The Galois group is M(20), the metacyclic group
of degree 5 generated by the permutations (12345) and (2354).

We put

0 = - 4 + 60 - 03.

This algebraic integer satisfies

05 + 2O04 - 110i//3 - 26O02 + 5450 + 144 = 0.

Hence the Thue equation (9) can be written as the norm form equation NVQ(X - YI/J) =
1, leading (neglecting a sign, without loss of generality) to

X - y«A = eVeVefeT- (12)

In the cases of equations (10) and (11) (i.e. C = 86, k = 1,2), we work in 0_ = Q(6),
where 0 satisfies

05-3O03 + 1800 -160 = 0.

This field is totally real, its discriminant is 369 800 000 = 2655432, a basis for the ring of
integers is {1, 0, \02, \6i, z0A}, the class group is trivial, and a set of fundamental units is
given by

e, = 31 - 80 - 602 + L
2e

3 + \6\ e2 = - 9 + 100 + 02 - |03 - \6\

c3 = 81 - 490 - ^ 02 + 203 + 04, e4 = -209 + 550 + 4302 - 203 - \0\

so that the regulator is 1522.07808 The Galois group is again M(20). The prime 2
splits as (2) = pp2, where Np = 2, Nq = 4, and the prime 5 ramifies completely as (5) = r5.

For the case of equation (10), (i.e. C = 86, k = 1), we put

This algebraic number satisfies

20«//5 + 6 5 f - 280iA3 - 20i//2 + 160^ - 12 = 0,

and p2r is the denominator of the ideal (i/f). Hence the Thue equation (10) can be written
as the norm form equation 2QNVQ{X - Yip) = 1, leading (neglecting a sign, without loss of
generality) to

X - Y4i = fLeVeVeftf, (13)

were Ox) = p"2r"]. In fact, we can take

For the case of equation (11) (i.e. C = 86, k = 2), we put

0 = 4 - 3 0 + j03.

This algebraic number satisfies

4iA5 - 80t/f4 + 100i//3 + 320i/>2 - 3550 + 4 = 0,

and q is the denominator of the ideal (ip). Hence the Thue equation (11) can be written
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as the norm form equation 4NVQ(X - Yt/>) = 1, leading again to (13), where now
(fj.) = q"1. In fact, we can take

Note that (12) is of the same form as (13), on putting fx. = 1, but of course with
different parameters i//, eu... , e4.

4. Upper bounds for linear forms in logarithms. In this section we will derive an
absolute upper bound for

/t = max{|fl,!,|fl2|,|a3|,|fl4|}.

W e denote conjugates by upper indices in parentheses . Let i,j,k e { l , 2 , 3 , 4 , 5} be
pairwise distinct. Then the so-called Siegel identity reads

(i//W - ilj(k))(X - Yi/r(0) + (tjj{k) - IIJU))(X - Yi//0)) + (tpu) - IIJU)){X - Ytp{k)) = 0.

Let i0 e {1,2,3,4,5} be such that

\X - Yifj(io)\ = min \X - Yip(i).
i s (1.2.3,4.5}

Note that a priori ;'o is unknown, since it depends on the unknown solution X, Y. Using
(13) we can rewrite this Siegel identity to

(Ar) - , 0) y _ y./,<;>

in which the right hand side is small by the definition of /0. We write the left hand side of
(14) as eA - 1, and thus we find that |A| is small. In fact, following [3], we obtain, assuming
m > y ; , that

|A| <- A-jC , \1 J)

where Y'2, Ku K2 are computed from the parameters of [3], as follows (we computed with
more significant digits than presented below; numbers are rounded in the proper
direction).

YQ =

c,<
C2>
y> =
C3<
y2*=

^ + <
C4<
C5<

K> = C6<
K2 = 5/C5>

n=

eq. (9)

1
0-024631
0-945917

1
13-602182

1
1
1

30-023740
0-788330

1-201067 XI07

6-342522
2

eq. (10)

1
0-105164
0-346227

1
9-271511

2
0-045896
1-540732

184-794950
0-633587

8-435682x10"
7-891577

5

eq. (11)

1
0-054535
0-506407

1
18-176982

2
0-043882
3-099078

474-554070
0-633587

6-548406 x 1013

7-891577
7
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The next step is to apply the theory of linear forms in logarithms of algebraic
numbers. The best result today is that of Baker and Wiistholz [1]. In view of A # 0, under
the condition A s 3, it implies

|A|><rC 7 '°^, (16)

where in computing C7 we take the parameters of [1] as follows: the number of terms in
the linear forms is n = 5, the degree of the relevant field is d = 20, and we estimated the
heights of the occurring algebraic numbers as follows. In our case it's easy to show that
the height function h' used in [1] is just the absolute logarithmic Weil height h, defined by

1 d

/I(a)=-logfl0rimax{l,|a(')|},
d

where a0 is the leading coefficient of a. To avoid having to compute leading coefficients,
we used h(a/P)sh(a) +h(P) with algebraic integers a, /3. Thus, using C7 =
18. 6!. 56. 6407. log 200 times the product of five heights, we found (we computed with
more significant digits than presented below; numbers are rounded in the proper
direction):

/^'o)_0</)M<*K ^

C7<

eq. (9)

4.01 fiQt^
t ZioVjJ

1-374322

2-399801

2-946885

2-830685

5-519275 x 1030

eq. (10)

J-J4JJ1 /

2-215789

2-238231

2-461462

2-776732

5-714471 x 1030

eq. (11)

A. 771 70/1
f //I/yt

2-215789

2-238231

2-461462

2-776732

7-691352 x 1030

Now an absolute upper bound for A, under the condition |V| > Y'2, follows at once
from the inequalities (15) and (16). Summarizing, we find

\f\Y\>Y'2 then A<Ky,

with Y'2, K3 as in the following table.

(17)

Y'2 =

eq. (9)

6-372677 x 1031

eq. (10)

5-289417 X 1031

eq. (11)

7-148610 X1031
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S. Reduction of upper bounds. We take conjugates as follows: in the case of
equation (9):

0(1) = -3-02 . . . , 0(2) = -2-54. . . , 0<3) = 0.67 . . . , 0<4) = 1-44. . . , 0<5) = 3-44

and in the case of equations (10) and (11)

0(1) = -4 -19 . . . , 0(2) = - 3 - 6 9 . . . , 0(3) = 1-10. . ., = 1-91. . . , 6>(5) = 4 -88 . . . .

The method of [3] suggests that for each i0 e {1,2,3,4, 5} we pick arbitrary ;', k, and
work with the linear form A defined above. Following [3], for an inhomogeneous linear
form in r unknowns (here r = 4) we have to compute the logarithms in this linear form to
at least a precision of that of K3 (in our case about 125 decimal digits). Then the reduced
upper bound will in general be proportional to r\ogK3 (a reasonable estimate in our
example is about 40, we believe).

Yuri Bilu came up with the idea of using several independent linear forms
simultaneously. Below we show how one can proceed in our example. In general (that is,
in the totally real case; a similar idea should work in other cases as well) it is not difficult
to show that one needs a precision of only about that of K3

+U(r~]) (only about 42 decimal
digits in our situation), and one reaches a reduced upper bound proportional to

- l o g X 3 (below we find only 7 as the reduced upper bound in our example). In other

words, we get more reduction for less money.
For, each i0 s {1,2,3,4,5} we take j = iQ+ 1 (modulo 5), and we consider the three

linear forms A,, A2, A3 corresponding to k = iQ + 2, i0 + 3, i0 + 4 (modulo 5) respectively.
Let us write the linear forms as

4

A« = ««.o + 2 oman<m (n = 1,2,3).
m = \

These linear forms are independent in the sense that the matrix (an,OT)n=i,2,3,m=i.2,3,4 has
rank 3. For each of the three forms An the inequality (15) is valid.

Take a convenient large enough number C, of about the size of K*'3. In practice we
took C = 1048. Consider the lattice

= {six | x e I4}

where

<[Cah]] [Cah2] [Cau] [Co,.4]\

[Ca2,i] [Ca2,2] [Ca23] [Ca2A]

[CaX2] [Ca33] [Ca3A]

0 0 0 1 /

and consider the point

Here [•] denotes rounding to an integer (in practice we truncate towards zero).
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For a quadruple aua2, a3, a4 e Z we define An for n = 1,2,3 by

Then we have

\\n - CAJ < \[CaHja] - Canfi\ \am\ |[Can,m] - Ca,,.

< 1 + AA< 1 + 4K2,

so assuming that the An are all near to 0, the length of this vector (Al5 A2, A3, a4) r is at
most of the size of K3. But in general the distance from a given lattice T to a given point y
is of the size of (det r)1/dim r, which is in our case of the size of (C3)"4 = K3. So we might
hope for a contradiction if C is large enough. This implies that at least one of the An is not
near to 0, and in view of (15), that yields a reduced upper bound for A.

Computing a good lower bound for the distance d(T, y) from T to y can be done by
the LLL-algorithm, see [3] for details. Our computations led to the following lower
bounds for d(T,y).

'o

1
2
3
4
5

eq. (9)

2-957854 x
1-383154 x
3-163028 x

3-266337 X
2-181709 x

1034

1035

1034

1 Q 35

1035

eq. (10)

6-318500 X
1-101822 x

6-373886 x
2-930310 x

3-016597 x

1035

10 3 5

10 3 5

10 3 5

1 Q 35

eq. (11)

5-103141 X
2-690488 x
2-965987 x

2-963976 x

2-330763 x

1035

10 3 5

1035

1035

1035

It follows by

d(T,y)2 < A? + Ai + Â  + a\ < 3 max{A?, \\,

that for some n e {1,2,3} we must have

+ K\,

and hence

With (15) this yields a new upper bound for A. Upon substituting the bounds for Ku K2,
KT, and d(T,y) given above, and C = 1048, in all cases this new upper bound turned out to
be only 7.

It remains to find the solutions with A < 7 or \Y\ s Y2. This is straightforward, and
produced only the solution X = 1, Y = 0, ax = a2 = a4 = 0 in the case of equation (9). This
completes our proof.
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