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1. Introduction

A number of studies [1] have concerned themselves with properties
of artificial poly-peptide chains, which differ from naturally occurring
poly-peptides in two ways: There is only one kind of amino-acid in each
polymer chain, but that acid occurs both in its right-handed and in its
left-handed (D and L) forms, with some random order of L and D con-
stituents.

An earlier paper [2] has been concerned with the statistical problem
which arises when an assembly of such molecules is attacked by an
enzyme, which can catalyze the breaking of a bond between two adjacent
L constituents, but cannot affect LD or DD bonds. The long molecules
break up into a number of smaller pieces, and we are interested in the
average weight distribution of the resulting pieces. This weight distribution
can be measured experimentally, and one hopes, from such measurements,
to be able to reason back to the constitution of the original chains as well
as to properties of the enzyme. For example, if the chains are composed,
on the average, of equal numbers of L and D, it is still possible that there
is a bias against LD or DL neighbours, as compared to LL and DD neigh-
bours. Such a bias would affect the eventual weight distribution of frag-
ments. Again, it is conjectured that the enzyme has a "groove" into which
a portion of the chain molecule must fit properly in order to make the
enzymatic action possible. If the breaking rules deduced from the ex-
periments indicate that one needs at least three adjacent L's to get a
break, one would then deduce that the "groove" is at least three con-
stituents long (D constituents would not fit into the groove of a natural,
L, enzyme).

In the earlier paper [2] we had to make rather stringent assumptions
about the breaking rules. The present paper, which is written in such a way
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as not to require knowledge of the other, represents a significant generaliza-
tion. The essential difference is that we are now able to allow for "memory"
during the breaking process. To explain, let us pick a specific example,
namely the chain: DDLLLLD. We shall assume, for this discussion, that
the "/.-string" of length 4 in this chain can be attacked by the enzyme,
and that a break may occur either in the middle, with probability y>, say, or
just before the right-most L, with probability 1—f. Thus the initial event
leads to

DDLL+LLD with probability y>
or to

DDLLL+LD with probability 1—y>.

Let us assume, furthermore, that the pieces DDLL, LLD, and LD are
"unbreakable", but that the piece DDLLL can be broken into DDLL-\-L,
and will be so broken eventually if we let the enzyme act long enough.
The eventual outcome is therefore as follows:

Probability of Average weight
eventual formation fraction

-y>) = 1 4/7

(3/7)y

Piece

DDLL
LLD

LD

L

Weight of piece

4

3

2

1 (1/7) (1-y)

If we had a large number of chains DDLLLLD, the study of the resulting
weight fractions would clearly suffice to determine the probability ip. In
practice, except for quite short chains, the internal constitution of the chains
themselves is not known, only their overall weight. In that case, the weight
fractions in the table would have to be multiplied by the probability that
a chain of length 7 has the actual constitution DDLLLLD, and we would
have to work out similar tables, and constitutional probabilities, for all the
27 possible chains of length 7, and combine the results to get average weight
fractions.

In reference [2] the resulting statistical problem was simplified by
assuming the absence of "memory" in the breaking rules; that is, we
assumed that the eventual pattern of breaks which is observed does not
depend on the time sequence of the breaking process. If this assumption is
satisfied, we can in principle specify all the eventual breakpoints by looking
directly at the original, unbroken chain. If the enzyme acts long enough,
breaks will occur at all those points, and at no other points.

The rules illustrated in our example, however, do exhibit memory.
If the process starts in a certain way, we get a stable product LLD, which
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does not break into L-\-LD. If the process starts the other way, the final
result contains L-\-LD. This kind of breaking with memory does appear
to occur in nature, and we require a statistical theory to cope with breaking
rules of this kind.

There are clearly two distinct statistical problems here (a) the con-
stitution of the chains to be broken, and (b) the results of the breakup
of breakable segments of a chain. Problem (a) was only mentioned above,
in connection with the probability of finding a chain of the precise con-
stitution DDLLLLD among all possible chains of length 7. Problem (b)
was solved above by explicit enumeration of the individual breakup proces-
ses in their time sequence, the "breakable segment" being the L-string of
length 4.

2. Constitution of the polymer chain

Since the enzyme requires at least two adjacent L's (usually more)
in order to produce a break, each copolymer chain can be divided into
"breakable regions" and "unbreakable regions". A "breakable region" is
always a number of adjacent L's, which we call an "L-string". There are
four distinct types of Z.-string, depending upon what is on either side of the
string. We list the types below:

Type number

1
2
3
4

Types of L-Strings

Description

Piece of pure L
Right wing
Left wing
i-hole

Example (n = 7)

LLLLLLL
. .DLLLLLLL

LLLLLLLD..
..DLLLLLLLD..

We note that the "length" of the X-string is defined to be the number
of adjacent L's it contains, exclusive of possible D's at either end. Thus,
for example, the smallest type 4 Z-string of "length" 7 contains 9 amino-
acids, DLLLLLLLD.

Each type of Z-string may or may not be breakable by the enzyme,
depending upon its length. We define

(2.1) Mn — minimum breakable length of an Z-string of type /x.

Of particular interest is M4, the minimum breakable length of an L-
hole. We shall define an Z.-hole to be breakable, i.e., a segment of les.c

than Mt adjacent L's with a D on both sides will not be classified as an
Z,-hole at all. Rather, such a segment is part of the interior of a D-string.
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By definition, a D-string starts with a D, ends with a D, and contains no
interior £-hole; i.e., a Z>-string is an inherently unbreakable region of the
original chain.

A typical copolymer chain can now be described as follows: reading
from left to right, we start with a left wing (/.-string of type 3) of length
m, say. There follows a D-string of length dlt then an L-hole of length llt

then a D-string of length d2, then an L-hole of length /a, etc. Finally, we
have the last Z)-string, of length dk, say, followed by the final right wing
(L-string of type 2) of length n. The total length N of the chain is the
sum of the separate lengths, i.e.,

(2.2) m+d1+l1+d2+l2+- • •+lk_1+dk+n = N.

The set of numbers appearing on the left side of (2.2) defines the "con-
figuration" of the chain. These numbers are non-negative integers with the
following additional conditions:

(2.3a) d ^ l i= 1, 2, • • •, k,

(2.3b) h^Mi i = 1, 2, • ••, k—1.

This classification of polymer chains works in all but one case. The
exceptional case is a chain of N adjacent L's, with no D's at all. Although
such chains are extremely improbable for large JV, they must be allowed
for in the calculation, and we shall take care of them by a special term.

3. Probability of a given configuration

In the theory we are about to develop, we shall assume that there is
no more than nearest-neighbour memory during the process of polymeriza-
tion. The present experimental evidence is consistent with no memory at
all, so nearest-neighbour memory is a reasonable assumption.

Let 6 and A be the probabilities that any animo-acid be D or L,
respectively, with, of course.

(3.1) d+X=l.

In the absence of any memory during the build-up process, the probability
of finding a randomly selected pair of neighbours to be LL is A2, to be
LD is X8, and so on. We use a subscript 1 to denote an L, a subscript 2 to
denote a D, and we define TCU to be the conditional probability, given that
the left-hand constituent of a pair of neighbours is "*", to find the right-
hand neighbour to be "/". In the absence of correlations, nu is completely
independent of the first index i, and is given by

(3.2) ?iu = n2l = X, TT12 = JT22 = 8 (no correlations).

https://doi.org/10.1017/S1446788700004614 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004614


[5] Enzyme-induced breakup of co-polymer chains 67

These numbers satisfy the relationships for conditional probabilities:

(3.3) nxx+nX2 = 1,

(3 .4) OT21 + 7T22 = 1,

as well as the condition that there are as many pairs LD as pairs DL, on
the average:

(3.5) Xnx2 = dn.21-

Conditions (3.3) —(3.5) are satisfied also in the presence of nearest-neigh-
bour correlations, and therefore provide three conditions on the four
numbers niit leaving only one free parameter, h. In terms of this free para-
meter, the nit are

(3.6) / * " M / 1 - * * hd

\TC n22)TC
2X n2

hX \—hX

These values reduce to (3.2) for the special case h = 1, no correlations.
They satisfy (3.3) —(3.5) for all values of h. In order for all the nu to be
positive numbers (probabilities), h must be positive and no larger than the
smaller one of I/A and 1/(5.

Given these basic probability assumptions, let us now compute the
probability of finding a chain of length N and given configuration
(m, dx, lx, d2, l2, • • ', dk,n) as described in section 2. For simplicity of
explanation, let us start with m and n not equal to zero. Reading from left
to right, we first encounter an L; the probability of this is A. We then
have nt—1 further L's in succession, the probability being {nxx)

m-1. This
is followed by a D, with probability nX2. Next we have a .D-string of length
dx> with probability pd^, say. The last D of the D-string is followed by an
L, probability = n2X, this is followed by lx—1 further L's, probability =
(^u)'1"1. then by a D, probability = nX2, and so on.

The probability of the given configuration is therefore a product of
factors, as follows:

(3.7)

where

(3.8)

(3.9)

(3.10)

P(m, dx, lx, d2, l2, • • -, dk, n) = wmpavhpdvh • • • pdwn

for m
for m

I (Left wing factor)

vi = 7I2i(7rn)J~l7i;i2' (L-hole factor, note I ^ M^),

wn = 721 ni1 ,° r ~ . 1 (Right wing factor).
11 lor n = 0 J
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In (3.8) and (3.10), we have included the necessary modifications for
chains starting or ending with a D, i.e., for wings of length zero.

The only factor not yet written down is the D-string factor pd, which
is the conditional probability that a segment of length d, the left-most
member of which is known to be a D, is actually a .D-string of length d.
This factor was discussed in some detail in reference [2], for the special
case Mi = 3, i.e., no more than 2 adjacent L's inside a D-string. We derived
a recurrence relation for pd, by considering the possible structures of the
D-string in the immediate neighbourhood of the right-most D. We now
generalize the argument, and the resulting recurrence relation, to arbitrary
Mt.

A D-string of length d starts and ends with a D. Let us now classify
these D-strings by /, the number of consecutive L's immediately to the
left of the right-most D. If / = 0, the D-string of length d ends with DD,
and the first d—l constituents themselves form a D-string of length d— 1.
The probability of this configuration is the product of/>d_1, the probability
of a D-string of length d—l, and OT22, the probability of having the last
D of that D-string followed by another D. If I = 1, the D-string of length
d ends with DLD, so that the first d—2 elements themselves form a D-
string. The probability of this configuration is pd-^i2XnViL. For general /,
the probability of the configuration is

^ - i - i ^ i ( f n ) W % 2 1=1,2, ••-, A f 4 - 1 .

The highest value of I here is Mi—1, because Mi consecutive L's between
two D's can be broken by the enzyme, and thus Mt consecutive L's can
never occur in the interior of a D-string.

The configurations which we have listed above are mutually ex-
clusive, and the alternatives Z = 0, 1, 2, • • •, Mi— 1 between them exhaust
all possible D-strings of length d. We can therefore add the separate
probabilities, to get the recurrence relation

(3.11) pd=pd-1n^+pd_z7t217i12+pd_3n21n11n12-\ hpd-Ml
:rtzi(:!tii)Ml~23li2-

As written, this recurrence relation is valid for d > Mi. However, it turns
out that (3.11) can be used starting with d = 2, provided we use the ob-
vious (from the definition) result

(3.12a) px = 1

supplemented by the formal definitions

(3.12b) pd = 0 for d ^ 0.

For the special case Mt = 3, (3.11) reduces to the recursion relation derived
in the earlier work [2].
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We note that (3.11) with the initial conditions (3.12) involves sums
of positive terms only, so that there is no loss of numerical accuracy due
to cancellations in subtracting one large number from another. Thus (3.11)
can be used on an electronic computer to generate all the pa which are
required.

We also note that the coefficient which appear in (3.11) are just the
vt defined as "L-hole factors" in equation (3.9). This is of course no accident:
the only difference between an L-hole of length /, and a sequence of I
consective L's preceding the last D of a Z)-string, is the value of I in relation
to Mit the minimum breakable length of such a configuration.

We have now defined, either explicitly or by means of a numerically
useful recursion relation, all the factors which appear in the configuration
probability (3.7). The only configuration not accounted for by (3.7) is the
(very unlikely) case that all N constituents of the chain are L's. The prob-
ability of this is

(3.13) P0(N) = X[3hl)
lr-\

For a given value of N, the sum of (3.13) and all the configuration
probabilities (3.7) for possible configurations (i.e., configurations satisfying
conditions (2.2) and (2.3)) must add to unity. We do not give the explicit
proof here.

The result that the configuration probabilities for all configurations
except the pure-L chain are simply products of independent factors is a
very simple result, which makes the subsequent work quite straightforward.
It is therefore worthwhile to enquire to what we owe this remarkable sim-
plification. There are two features of the problem involved here:

(1) We have assumed at most nearest-neighbour memory during the
process of building up the co-polymer;

(2) We have assumed that the enzyme, during the breakup process,
"sees" only one breakable region at a time, so that two breakable regions
(L-holes) separated by a Z)-string, can be treated independently.

These assumptions appear reasonable on present evidence. If one or
both of them must be relaxed as a result of further experimental work, the
theory would become appreciably more complicated. A likely trouble spot
is assumption (2) in the case that the intervening D-string is just a single
D. The enzyme may act differently on the chain

DDDDLLLLLDLLLLLDDDD

from the way it acts on

DDLLLLLDDDDDLLLLLDD
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even though both chains contain exactly two Z,-holes of length 5. If this
turns out to be true, we shall have to amend our definition of "breakable
region" to arrange it so that two different breakable regions are always
broken in statistically independent fashion. This would mean declaring the
LLLLLDLLLLL in the first chain above to be one "breakable region",
not two breakable regions separated by a Z)-string. A number of other com-
plications would also have to be introduced into the theory concurrently.
It is likely that such a theory could be carried through along the lines of
the present theory, but this author hopes that nature will not turn out
to be so very nasty.

4. Expected numbers of various configurations

We define Y(N, n, ft) to be the expected value of the number of L-
strings of length n and type /i (fi= 1, 2, 3, 4, see § 2), in a chain of length N.

The simplest one to evaluate is for /J, = 1, the pure-Z. piece with no
D's anywhere. The only way we can encounter this in a chain of length N
is if the entire chain is pure L. The probability of this = Po{N), equation
(3.13). Thus the expected value is given by

(4.1) Y(N, n, 1) = P0(N)A(N-n),

where

(4.2) A(k) = {1 ° r ^ °'v I 0 for k ^ 0.

Other expected values can be obtained by the use of generating func-
tions. To reduce the length of this paper, only the results are quoted here.

We introduce the function E(k) by

for & S? 1,

<"> — (0 for * SO,
to write the result

(4.4) Y(N, n, 2) = dwnE(N-n).

We can understand that Y(N, n, 2) = 0 for N < « + l , since the smallest
chain with a right wing of length n is a chain consisting of a single D,
followed by n L's and thus of total length n-\-l. Next we quote the result

(4.5) Y(N, n, 3) = wnE(N-n).

Last, we define

(4.6)
0, k ^ 0,

to write down the formula
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(4.7) Y(N, n, 4) = dvnH(N-n-l).

We note that the first non-zero value of Y(N, n, 4) occurs for N = n-\-2.
This is understandable because the smallest chain N which can contain
an L-hole of length n at all, is a chain of length N = w+2, namely one D
on either side of the L-hole.

We observe that Y(N, n, fi) has quite different behaviour in the limit
of large chain length N, and constant L-string n, for different values of fi.
For fi, = 1, equations (4.1) and (3.13) show that Y(N, n, 1) approaches zero
in that limit. Equations (4.4) and (4.5) show that Y(N, n, 2) and Y(N, n, 3)
approach constant values in the same limit (in fact, they are constants,
independent of both N and n, as soon as N exceeds its minimum permissible
value, N = w-j-1). Finally, Y(N, n, 4) becomes proportional to the chain
length N for large N, according to (4.6) and (4.7). All these results are
plausible on intuitive grounds: fi — 1 are pure-L chains, which become
increasingly improbable; fi = 2 /.-strings can come only from the right end of
any one long chain, and thus their expected number should be independent
of chain length N for a sufficiently long chain; similarly, [/, = 3 /.-strings
can come only from the left end of a long chain; finally the L-holes,
/t — 4, can occur anywhere inside a long chain, and thus their expected
number increases linearly with the chain length N, for sufficiently large N.

A "Z)-string", as defined in § 2, cannot be broken by the enzyme.
The fragment which emerges, however, is generally longer than the D-
string which it contains, having further L's attached to its right and to its
left, by "unbreakable" bonds. The probability of getting various combina-
tions of attached L's in turn depends on the original environment of the D-
string in question, i.e., on the lengths and types of the /.-strings on either
side of the D-string.

We classify "clothed .D-strings" by:

m, the length of the L-string to the left;
H, the type of the L-string to the left;
d, the length of the D-string;
n, the length of the L-string to the right;
v, the type of the L-string to the right.

Each quintuple (nt, ft, d, n, v) defines a particular class of clothed Lu-
strings; not all combinations of fi and v are possible, the possible com-
binations being

(4.8a) 1) Interior clothed D-string: (m, 4, d, n, 4) m Si M4 and n ^ Af4;
(4.8b) 2) Right-most D-string: (m, 4, d, n, 2) m ̂  M4 and n ^ 0;
(4.8c) 3) Left-most D-string: (w, 3, d, n, 4) m ̂  0 and n ^ M4;
(4.8d) 4) Sole D-string: («, 3, d, n, 2) m+d+n = N.
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In the last case, N is the length of the entire chain, which contains only
one D-string in its interior.

We define Z(N; m, ft, d, n, v) to be the expected number of clothed
D-strings of type (m, JU, d, n, v) contained in a chain of length N.

The simplest case is the "sole D-string". Since there is at most one
such clothed D-string in any one chain, the expected value equals the
probability of occurrence of the event in question. This latter is given
directly by (3.7). Using the notation A{k) of (4.2) to incorporate the con-
dition m-\-d-\-n = N, we get

(4.9) Z{N; m, 3, d, n, 2) = wmpdwnA(N-m-d-n).

Next, let us consider case 3 above, the left-most D-string. In order
for a chain to contain a left-most D-string, it must contain at least two
D-strings. It can be shown (e.g., by the use of generating functions) that

(4.10) Z(N; m, 3, d, n, 4) = dmpdvnE(N-m-d-n).

We note that E(N—m—d—n) is zero until N is at least equal to
m-\-d-\-n~\-l. This is indeed the minimum length of a chain which can
contain a left-most D-string of type (m, 3, d, n, 4): m-\-d-\-n constituents
are necessary for the clothed D-string itself, and the last constituent is
a sole D, i.e., a D-string of length 1. Furthermore, it is reasonable to expect
that for large N, the number of these particular D-strings becomes in-
dependent of N: any one chain can contain at most one clothed D-string
of this left-most type.

The expected value of the number of right-most D-strings can be
shown to be

(4.11) Z(N; m, 4, d, n, 2) = 6vmpdwnE(N-m-d-n).

Finally, the expected number of interior clothed D-strings is

(4.12) Z{N; m, 4, d, n, 4) = dvmpavnH(N-m-d-l).

We note that (4.12) gives zero until the chain length N is at least
equal to m-\-d-\-n-\-2. This is a chain containing exactly three D-strings,
the first and last of which are single D's, and the middle one of which is
our clothed interior D-string. We also note that (4.12) becomes proportional
to the chain length N for large N, as we would expect.

5. The break-up of /.-strings,
definitions and preliminary discussion

The four types of Z-strings were defined in § 2. Most of the Z-strings
in a long chain are type 4, i.e., "Z.-holes". The break-up of an L-hole
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proceeds in a number of steps, the fiist of which results in one right wing
and one left wing:

(5.1) (w, 4) -> (k, 2) + (n-k, 3), n ^ Af4.

Here (m, fi) denotes an i-string of length m and type (i. The right wing
may be breakable, in which case it breaks into a shorter right-wing plus a
pure-Z, piece:

(5.2) (», 2) -> (k, 2)+(n-k, 1), n ^ M2.

Similarly, a breakable left wing breaks into a piece of pure-Z, plus a shorter
left wing

(5.3) (n, 3) -> (k, \) + {n-k, 3), n ^ M3.

Finally, if any of the pure-Z. pieces generated in (5.2) or (5.3) are themselves
breakable, they break into smaller pieces of pure-Z.:

(5.4) (n, 1) -> (k, l) + (n-k, 1), n ^ Mx.

For each of these types of enzyme-induced break-up, there is a para-
meter k giving the location of the first break. We define y>(n, //, k) to be
the probability that the first break in an Z.-string of length n and type [i
occurs in position k. The "position" is defined to be the number of L's
in that piece of the original Z-string immediately to the left of this first
break. Thus, in (5.4) for example, k is at least 1 and at most »—1. If
breaks can occur right next to a D, then k may be as low as zero in (5.1)
and (5.2), and may be as high as n in (5.1) and (5.3). The probabilities
y)(n, [i, k) satisfy:

(5.5) y>(n, ft, k) = 0 for n < M^,

and

(5.6) 2 f(n> P,k) = l for n ^ M^.

Usually, breaks cannot occur too close to the exterior D's. Thus,
in y(n, 4, k), for example, we expect y> = 0 for the first few values of k,
as well as for the last few values of k. We define L^n) to be the left-most
possible break position for an Z.-string of type p. and length n, i.e.,

(5.7) rp(n, fi, k) = 0 for k < L^n), y ^ 0 for k = L^n),

and we define Rh{n) to be the right-most possible break position, measured
from the right hand end:

= 0, for n-k < RJn),
(5.8) w(n, u.k) I
K ' YK liH ' \ ^ 0, for n-k =
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It is frequently the case, experimentally, that the numbers Lp(n) and
R/tin) are independent of n, the length of the L-string.

Next, we define the quantity X(n, ft, n', ft') to be the expected eventual
number of L-strings of type (n', ft') arising from an initial L-string of type
(n, ft), after an infinite time has elapsed.

We illustrate this definition by using the case discussed in the in-
troduction (§1): the break-up of the chain DDLLLLD. From our present
point of view, this is the break-up of an /.-string of length 4 and type 4.
The quantity y> used there is equal to y(4, 4, 2) in our present notation, and
1— y> is ip(4, 4, 3). The other y(4, 4, k) vanish, i.e., Li = 2 and 2? 4 =1 .
Looking at the table in § 1, we see that there is unit probability of getting
a final piece DDLL, i.e., in our present notation, a right wing of length 2.
Thus we have, for these particular breaking rules,

X(4, 4, 2, 2) = 1.

Looking again at the table, we see that there is a probability y> for a piece
LLD, i.e., for a left wing of length 2, and a probability 1—y for a piece
LD, i.e., for a left wing of length 1. In terms of X-coefficients, we have
therefore

X(4, 4, 2, 3) = y, X{±, 4, 1, 3) = 1—y>.

Finally, the last line of the table in section 1 shows that the emergent
pure-L strings have length 1 only, with probability 1 — y>. Thus,

Z(4,4, 1, 1) = 1 - V .

All X(4, 4, m', ft') not explicitly listed above are zero.
In this simple example, all the expected values X are also probabilities.

For Z-strings longer than n = 4, this is not generally the case; however,
/*' = 2 and ft' = 3 do have ^-coefficients, X(m, ft, m', /J,'), which are also
probabilities:

(5.9) ^ x(m> /". m'• 2) = 1 for m 2> M^ fi = 2 and /i = 4,
m'

(5.10) 2 X(m> i". m'' 3) = 1 for m ^ M^ ft = 3 and [i = 4.
m'

Both (5.9) and (5.10) are clearly satisfied for the X(4, 4, m', //) listed
above. The reason for these relations is the fact that an Z.-string of type
fi = 2 or n = 4 gives rise to exactly one final right wing, ft' = 2. This is
equation (5.9). Similarly, a breakable Z-string of type fi = 3 or /* = 4
always gives rise to exactly one final left wing, fi' — 3. This is equation
(5.10). For ft =£ 4, the condition of breakability, m ^ M/l, can be relaxed,
as we shall see shortly.

For ft' = 1, the expected values X(m, ft, rri', 1) are most definitely
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not probabilities; on the contrary, they rapidly become larger than unity.
However, there is a sum rule for these X(m, /x, m', JX') which expresses the
condition that the total number of separate L's cannot change during the
breakup process. This sum rule is

(5.11)

It holds separately for each m and each u.
Since we have defined X to be the expected numbers of final L-strings

of type (m', /x'), it follows that only ultimately stable L-strings can appear
with non-zero X:

(5.12) X(m, (i, m', /x') = 0 unless m' < M^ and jx' = 1, 2, 3 only. 2

Also, L-strings of size m can obviously not give rise to final L-strings of
size m' in excess of m, thus:

(5.13) X(m, /x, m', /x') = 0 unless m' £ m.

The X values are particularly simple if the initial L-string (m, /n) is
itself stable. Such a string survives unaltered for all time, and we obtain

(5.14) X(m, n, m', p') = A (m—m')A (/x—fi1) for m < M^ /x = 1, 2, 3, 2

This shows that (5.9) and (5.10) for /x =£ 4 are also valid for m < M'IL,
as mentioned above.

We have defined the X(m, [x, m', [x') to be the ultimate expected values,
after an infinite time has elapsed. If we intended to follow the break-up
process in strict time sequence, these would be the limiting values, for infinite
time, of time-dependent quantities Xt(m, fx, m', fx'). It is certainly possible
to set up a system of differential equations in time for the Xt, but this
procedure is unwieldy, inefficient, and quite unnecessary. For one thing,
unlike the ultimate values at infinite time, the finite time values are not
restricted by condition (5.12). On the contrary, we would have to keep track
of all Xt(m, [x, m', fx') with m' all the way up to m, even though in the end
we are interested only in the lowest few values of m'. The resulting calcula-
tion is terribly messy, and is hard to put on a computer, even, because of
excessive numbers of things which must be kept in storage at any one time.
It is essential for the success of our calculation that we do not take this
approach.

6. The break-up of L-strings, regeneration point method

To illustrate the method we use, let us consider the break-up of an
L-string of type 1, i.e., piece of pure L, according to the pattern (5.4).

2 We recall that "unbreakable Z.-holes", i.e., type 4 and length less than Mt, are not
classified as /.-holes at all, but rather as parts of £>-strings.
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After this first break has occurred, with probability y>(n, 1, k), we have
two pieces of the same kind, one of length k, the other of length n—k.
The first of these gives rise to X(k, 1, n', 1) pure-Z, pieces of length n' < M1,
the second of these gives rise to X(n—k, l,n', 1) pure-Z, pieces of length
n'. Since the events with different first break-point k are mutually ex-
clusive, we can add their probabilities to get the recursion relation:

(6.1) X(n, 1, n', 1) = £ v K 1, k)[X(k, 1,< l)+X(n-k, l,n', 1)],

This relates X(n, l,n', 1) to earlier X-coefficients, with the same values
of n' and [i', but lower values of the initial length n. The sum over k goes
from k = L^n) to k — n—R^n), inclusive. The relation (6.1) holds for
breakable pieces of type 1, i.e., for n 5: M1. For unbreakable pieces, n < M1,
we know the answer from (5.14). Between them, (5.14) and (6.1) provide a
recursive definition of all X(n, 1, »', 1).

Unhke the procedure of following the break-up process in its actual time
sequence, the regeneration point method does not require us to keep track
of time-dependent intermediate numbers of pieces which turn out to break
up eventually. On the contrary, (6.1) is a relation between numbers we want
and need, numbers referring only to the eventual situation after an infinite
time has elapsed.

We note also that the recursion in (6.1) is not on «', the length of the
product piece, but rather on n, the length of the initial piece. Different
final lengths n' are "decoupled" in this system of recursion relations.

We now apply the same reasoning to the other break-up processes
(5.1) —(5.3). The break-up of a right wing, pattern (5.2), gives rise to the
recursion relations:

(6.2) X(n, 2, n', 2) = T y>(n, 2, k)X(k, 2, n', 2) for n ^ M2,

and

(6.3) X(n, 2, n', 1) = £ vK 2, k)[X(k, 2, n', l)+X(n-k, 1, «', 1)]
for n ^ M2.

We note that the X(n—-k, 1, n', 1), which appear in (6.3), are known from
(6.1) if (6.1) has been solved first for all initial lengths less than or equal to
n. The sums over k in (6.2) and (6.3) go from L2(n) to n—R2(n), inclusive.

The break-up of a left wing, pattern (5.3), yields the recursion relations:

(6.4) X(n, 3, «', 3) = J y>(n, 3, k)X(n—k, 3, n', 3) for n ^ M3,
k

(6.5) X(n, 3, «', 1) = 2 v(»- 3- k)[X{k, 1, »', l)+X(n—k, 3, n', 1)]
for n 2: Ms.
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The sums over k go from L3(n) to n—R3(n), inclusive.
Finally, the break-up of an L-hole, type 4, according to the pattern

(5.1), gives rise to three distinct recursion relations, namely

(6.6) X(n, 4, »', 3) = 2 v(», 4, k)X(n—k, 3, n', 3) for n ^ Af4,

(6.7) X(n, 4, n', 2) = 2 f («, *, *)X(*, 2, »', 2) for n ^ M4,

(6.8) X(n, 4, «', 1) = 2 > K 4, £)[X(£, 2, «', 1)+X(n-A, 3, < 1)]
for n ^ M4.

The sums over k range from L4(«) to n—R^n), inclusive.
The set of equations (6.1) —(6.8), together with (5.14) for unbreakable

pieces defines all coefficients X(n, fi, n', /n') of interest to us, recursively.
For a given n, we solve (6.1) to (6.8) in that order. We increase n' one
unit at a time, from its minimum value (1 for fi' = 1, 0 for //' = 2 and
fi' = 3) to one less than its maximum value M^ . The last value of n' = M^
can be calculated without use of the recursion relations, from the sum rules
(5.9), (5.10), and (5.11). This saves machine time. The sequence of equations
(6.1) — (6.8) is arranged so as to make this possible. We use the weight sum
rule (5.11) to replace (6.1) for n' = Mx; we then use the probability sum rule
(5.9) to replace (6.2) for n' = M2, and the weight sum rule (5.11) once
more to replace (6.3) for n' = Mx, and so on. At each stage of this process,
all but one of the terms which appear in the given sum rule are already
known.

7. The break-up of L-strings, asymptotic expressions

It is apparent from the definition of the X(n, /*, n', p'), as well as
from the recursion relations used for their evaluation, that the X-coefficients
are independent of the average constitution of the long chain molecule,
i.e., they are independent of the parameters X, 8, and 7iti which played so
prominent a part in §§ 3 and 4. Thus, it saves machine time if one keeps
the break-up parameters (which define the elementary break probabilities
y>(n, n, k)) constant during a series of computer runs during which A and
h axe varied. In this case, the X-coefficints need not be recomputed each
time.

In practice we need to know the X-coefficients for n up to a value
large enough so that the probability of an L-string of this length is negligibly
small. This maximum value of n, unlike the X-coefficients themselves,
depends upon A, becoming large when A approaches unity. Long before
this maximum n has been reached, however, the X-coefficients themselves
have settled down to predictable values.
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As an illustration, let us consider X(n, 1, n', 1). The weight sum rule
(5.11) for this case reads simply:

(7.1) f1n'X(n,l,n',l) = n,
»'=i

since the sum over p' in (5.11) gives non-zero values only for p' = 1 (break-
up of a pure-L piece can never lead to right wings or left wings).

For large n, the first break position k is overwhelmingly likely to be
somewhere in the middle of the piece, neither close to the left end nor
close to the right end. This leaves two pieces, each of which is still large,
so that we can expect stabilization of the X-values, or rather, of their
ratios from one n' to the next. The actual values cannot stabilize, since by
(7.1) the sum of these values, weighted with n', must increase linearly
with n. If we assume that the ratios stabilize after some n = n0, we get
the asymptotic approximation:

(7.2) X{n, 1, n', 1) £ — X(n0, 1, n', 1) for n ^ n0 > Mx.

Another way looking at this equation is to say that, for values of n much
larger than the minimum breakable length Mlt the weight fractions from
pure-Z, chains settle down to stable values. Actual computer results show
that this stabilization is achieved to very high accuracy for n0 = 10M1.

Our main interest for later use (to get expressions for the break-up of
infinitely long chains) are the X-coefficients for the break-up of L holes,
i.e., for n = 4. For p' = 2 and p' = 3, the X-coefficients are themselves
probabilities, also, as shown by (5.9) and (5.10). Thus, the actual values
can be expected to stabilize, not merely the ratios:

(7.3) X(n, 4, «', p') ~ X(n0> 4, «', / ) for p' = 2, 3, n ^ n0 » M4.

This is indeed observed in the computer results.
We define the weight sum for these right wing and left wing pieces as

M 8 - l M3-l

(7.4) sn = 2 n'X(n, 4, n', 2)+ £ n'X{n, 4, n', 3).
n'=0 n'=0

Since the X-coefficients in this equation all stabilize, so does the sum:

(7.5) sn ~ sno for n ^ n0 » MA.

The weight sum rule (5.11) for p = 4 assumes the form

(7.6) 2 n'X{n, 4, »', 1) = n-sn.

We assume that the ratios of the X(n, 4,«', 1) for different n' stabilize
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for large n, and use (7.5) and (7.6) to normalize the coefficients themselves,
to get

(7.7) X(n, 4, «', 1) ~ W~S"° X(n, 4, n', 1) for n ̂  n0 > M4.

Formulas (7.3), (7.5), and (7.7) can be expected to be quite reliable approxi-
mations for nQ = 10M4.

8. Weight fractions from finite chains

We are now in a position to tackle the original problem, that is, to
determine the weight fractions of fragments of given weight /, arising from
the break-up of a chain of initial weight N.

Let us define Ri(N, I) to be the expected number of stable pure-Z,
pieces of length I from our ensemble of chains of length N. Clearly / satisfies
the condition I < Mlt otherwise R^N, I) — 0. There are four distinct
contributions to Rt:

1) Initial chain is pure-L;
2) The Z.-piece of length / originates from the initial right wing of

the long chain;
3) The Z.-piece of length / originates from the initial left wing of the

long chain;
4) The L-piece of length I originates from one of the Z-holes inside the

long chain.

Recalling the definitions of Y(N, n, n) and X(n, /J., n', ft'), we see that
the contribution number ju above is equal to the sum of the product
Y(N, n, n)X{n, n,l, 1) over all permissible n, that is over n from / to N:

(8.1) R1(N,l)=i 2Y(N,n,p)X(n,p,l,l).
/i=l n=l

We now insert the actual values of the Y-coefficients, obtained from
equations (4.1), (4.4), (4.5) and (4.7), to get

(8.2) RX(N, 1) = A(7rn)^-iX(iV, 1, /, 1)

+ 2 [wnE(N-n)X{n, 2, /, l)+dwnE(N-n)X{n, 3,1, 1)
n=l

+dvnH{N-n-l)X(n, 4, /, 1)].

Although this formula is explicit and simple, it is possible and desirable
to simplify the notation somewhat further. We note from (3.8) and (3.10)
that

wn = dwn,
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and from (3.6) and (3.8) that

(8.4) ^ K i ) ^ " 1 = wNlh for N = 1, 2, 3 • • •.

It is therefore useful to define new coefficients T(n, ft, n', ft') by

(8.0) 7>, , , „ > , { f I ; ] f )
[ vX(n ft, n', ft') for fi = 4.

We note that, unlike the X-coefficients, the T-coefficients depend on the
chain constitution parameters X and h. In terms of the T-coefficients,
equation (8.2) becomes:

(8.6) R^NJ) = i T(N, 1,1, l)+6Z{E(N-n)[T(n,2,l, 1) + T(n, 3, /, 1)]

We now return our attention to D-containing fragments. We define
R0(N, I) to be the expected number of stable D-containing fragments of
length I from the ensemble of chains of length N. Each such fragment has a
Z)-string of some length d in its interior, preceded by a left-wing L-string
of some length m', and followed by a right-wing Z-string of some length n'.
The total length of the fragment is given by

(8.7) / = m'+d+n'.

Such a fragment is the result of the enzymatic break-up of a clothed D-
string of type (m, fi, d, n, v) where m S: m', fi = 3 or 4, n ^ n', and v = 2
or 4. We now use the fact that the X-coefficients X(m, ft, m', 3) and
X(n, v, n', 2) are not only expected values but also aie themselves prob-
abilities, see the sum rules (5.9) and (5.10). Recalling the definition of
Z(N; m, fi, d, n, v) in § 4 as the expected number of clothed D-strings, we
see that the contribution of such clothed .D-strings to the expected number
of fragments of type (8.7) is

Z(N; m, fi, d, n, v)X{m, ft, m', 3)X(n, v, n', 2).

We now combine the explicit formulas § 4 for the Z-coefficients and the
definition (8.5), and sum over all possible values of m, m', n, n', and d
consistent with final fragment length I according to (8.7), to get

(8.8) R0(N,l) = d J pdA(l-m'-d-n')

[H(N-m—d—n — l)T{m, 4, m', 3)T(n, 4, ri, 2)
+E(N-m—d-n)T(m, 3, m', Z)T{n, 4, n', 2)
+E(N—m—d—n)T(m, 4, m', 3)T(n, 2, n', 2)
+A{N—m—d—n)T{m, 3, m', 3)T(n, 2, n', 2)].
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The terms in the square brackets have a simple interpretation: The first
is the contribution from "interior" clothed D-strings, the second term is the
contribution from the left-most D-string in the original chain, the third
term is the contribution from the right-most Z)-string in the original chain,
and the last term is the contribution from those chains which contain
exactly one D-string altogether.

The expected number of fragments of length / from break-up of a
chain of length N is the sum of (8.6) and (8.8):

(8.9) R(N,l) = R0(N, l)+R1(N, I),

and the fractional weight residing in fragments of length / is related to this
quantity by

(8.10) W(N,l) = ~

These weight fractions must add to unity

(8.11)

Condition (8.11) provides a useful check on the numerical calculations,
since it is very difficult for errors to cancel in such a way as to preserve
(8.11) intact.

The form (8.8) foi R0(N, I), though simple to write down, is not actually
convenient from the computational point of view. There is a five-fold
summation, which remains a true four-fold sum after one allows for the
delta-function A(l—m'—d—n') in front of the bracket. Canying out a four-
fold sum for every I from I = \ to I = N, and then repeating the process
foi a range of values of chain lengths N, is an excessive amount of computa-
tion even for an electronic computer. Fortunately, there is no need to be
that inefficient about the computation. The functions H, E, and A inside
the bracket are so simple that it is possible to re-order the summations much
more efficiently. We collect together terms with the same value of d, all of
which get multiplied eventually by pd. Within that group of terms we
collect together terms with the same k = m+n, and with the same k' = m'+n'.
A given d and k = tn+n ensures that the functions H, E, and A inside the
bracket have the same values for this group of terms, and a given d and
k' = m'-\-n' ensures that we are considering a definite fragment length
I = d-\-k'. Clearly k is greater than or equal to k'. The details of this re-
ordering of summations are in the nature of coding technique and need
not detain us here. Suffice it to say that a computer code called SMASH
has been written, in FORTRAN, to evaluate these expressions, and gives
numerical results in a reasonable amount of computer time.
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9. Weight fractions from infinite chains

In this section, we establish the asymptotic forms of the expressions
of § 8, in the limit of large chain length N.

In this limit, terms proportional to H(N—n—1) or H(N—tn—d—n— 1)
become proportional to N (see (4.6)), whereas all other terms approach
^-independent constant values. Thus we can obtain the limiting expressions
formally by replacing H, wherever it appears, by N, and E by zero; we also
ignore the last term in the bracket of (8.8).

It is useful to introduce the notation:

(9.1) U(m', p!) = f T(m, 4, m', p.) = | vmX(m, 4, m', p').

The sum goes to infinity since, in an infinitely long chain, Z,-holes of ar-
bitrarily large size m may appear, though with ever-decreasing probability.
Only the Z.-holes, ft = 4, contribute in the limit of infinite N.

The right-hand form (9.1) shows that U(m', p') depends on the con-
stitution of the chain through the factors vm, see (3.9), and on the break-up
probabilities through the X-coefficients of §§ 5 and 6. Since the .X-coeffi-
cients are independent of the chain constitution, and settle down fairly
rapidly to predictable values (see § 7), the infinite sums in (9.1) can be
approximated effectively by going to m of order n0 = 10Mt, and using the
asymptotic formulas (7.3) and (7.7) thereafter. The sums from n0 to infinity
are simply geometric sums.

Using these definitions, we obtain from (8.6)

(9.2) lim ^ ^ = W{1, 1),

and from (8.8)

(9.3) Urn R°^' l"> = d 2 PtAil-m'-n'-djUim', 3)U(n', 2).

As an example of the sort of rearrangement of summations which we
mentioned at the end of the preceding section, we give the rearranged form
of (9.3):

RAN I) l '-<*
(9.4) lim °\' ' = 3 £ A, £ U(m', B)U(l-d-m', 2).

For computational purposes, we evaluate the interior sums in (9.4) once and
for all, for all relevant values of k' — l—d, and store the results in the fast
memory. These stored values are then used for every /, without having to
recompute the interior sums. The ranges of summation in (9.4) are overesti-
mates, since we have not taken account of the condition that the final
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observed fragments must be stable against enzymatic action. That is,

(9.5) U{m', n') = 0 unless m' < My.

This condition is of course a direct consequence of (9.1) and (5.12), and is
thus contained implicitly already. However, its explicit use limits the ranges
of the summations in (9.4), as follows: the first factor U(m', 3) in the
interior sum vanishes unless:

(9.6) 0^m'^M3— 1,

whereas the second factor U(l—d—m', 2) = U(k'—m', 2) vanishes unless

(9.7) O^k'-m' ^M2-l.

In both cases, the lower limits can be sharpened up some more if explicit
assumptions are made about the breaking rules for Z.-holes. As written,
m' = 0 in (9.6) implies a break immediately adjacent to the right-hand D
which terminates the Z.-hole, and k'—m' = 0 in (9.7) implies a break im-
mediately adjacent to the left-hand D which terminates the Z-hole. We shall
not write down the more stringent conditions which arise if such extreme
breakpoints are forbidden by the breaking rules.

We rewrite the inequality (9.7) as an inequality for m', and combine
the resulting condition with (9.6). This yields the combined inequality

(9.8) Max (0, h'+l-Mt) ^ m' ^ Min (M3-k, k').

Not only does (9.8) limit the range of summation over m' in (9.4) for a given
k' = l—d; but it also limits the range of possible k''. If k' becomes large, the
lower limit on m', according to (9.8) equals k'+l— M%, whereas the upper
limit on m' equals M3—1. The lower limit exceeds the upper limit (and thus
the sum becomes zero) unless k' is limited by

(9.9) k' ̂  M2+M3-2.

Thus the interior sums in (9.4) vanish, and need not be computed or stored,
if condition (9.9) is violated. Furthermore, the sum over d in (9.4) is cor-
respondingly limited: for large /, the lower limit on d is not 1, but rather
the lowest possible l—k', namely I—M2—M3+2.

All these limitations have a highly beneficial effect on storage space
and computing time for the explicit evaluation of these expressions by
SMASH. Corresponding, though somewhat less straightforward, simplifica-
tions apply to the evaluation of the expressions of the preceding section.

The conversion of (9.2) and (9.4) to asymptotic expressions for weight
fractions is a straightforward matter. We introduce the notation:

(9.10) K = M 2 + M 3 - 2
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for the maximum number of "dangling L's" which appears in (9.9). Taking
the limit of (8.9) and (8.10) as N goes to infinity then gives:

[ Min (K, l-l)

U(l, 1)+ 2 Pl-k'Q

where
Min (fc', M 3 - l )

(9.12) Qk,= j U(m',3)U(k'-m',2).
m' = Max (0, k'+l-MJ

In these expressions, k' can be interpreted to mean the total number
of outer L's attached to the D-string of length d = l—k'. Of these k' L's,
m' are to the left of the D-string, and k'—m' are to the right of the D-
string. Qk, is the probability, for an infinite chain, that the emergent D-
containing fragments will have exactly k' outer L's attached. The con-
tribution U(l, 1) in the bracket of (9.11) accounts for the pure-L fragments;
this vanishes for all but the first few values of /, namely for all I 2g M1.

In the computer programme SMASH, the U(m', n') are evaluated first,
and stored, making use of the asymptotic forms of § 7 to shorten the labour.
Next, the U(mr, 3) and U(k'—m', 2) are combined into quantities Qk,
according to (9.12), and these Qk, are stored. Finally the limiting weight
fractions are evaluated from (9.11). A plotting routine is used to get a
rough graph of these asymptotic weight fractions against /.

10. D-length probabilities and related quantities
for an infinite chain

For the sake of completeness, as well as for the intrinsic usefulness
of the results, we conclude this paper by giving generalizations of the ex-
pressions of the first paper of this series, reference [2], to the arbitrary
breaking rules allowed in the present work.

The work of reference [2] dealt with .D-length probabilities^, prob-
abilities of gap (i.e., Z.-hole) lengths, and with expectation values of the
.D-length and the gap length. It should be noted that all these quantities
are independent of all but one of the parameters which are involved in the
breaking rules: this one parameter is M4, the minimum breakable L-hole
length. All other parameters in the breaking rules are involved only if we
wish to determine probabilities for various numbers of outer L's attached
to the D-string in the final fragment, and to determine the distribution-in-
weight of the pure-L final fragments. Thus, the only parameters of interest
to us in this section are Mit the minimum breakable L-hole size, and the
chain constitution parameters A and h.

We write the recursion relation (3.11) in the form
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(10.1) ^ = f ^ d - » , d = 2,3,4:,-';

where the coefficients ck are given by

(10.2) C1 = nn, ck = J t a K , ) " ^ ^ £ = 2, 3, 4, •••.

The initial conditions for (10.1) are (3.12), i.e., px = 1 and^>M = 0 for non-
positive n.

The quantities />d are not normalized to unit sum. It can be shown that
the normalized D-length probabilities Pd are

(10.3) Pd = ^ K ^ ' - V a = PiPt-

The factor has a simple interpretation: in order that d constituents, of
which the left-most is the D which starts a D-string, actually be a D-string
of length exactly d, we need two things: (1) the d constituents themselves
must form a D-stving, factor = pd, and (2) this sequence of d constituents
must be followed by an L-hole, i.e., by at least Mt consecutive L's; this is
the other factor in (10.3). The second form uses the fact that px = 1.

Next, the average D-length of D-strings is given by

(10.4)

This reduces, in the special case Af4 = 3, to the expression derived in
reference [2].

Finally, the average gap length (L-hole length) is given by

(10.5)

The ratio ^11/^12
 m (10.5) is the "average excess gap length" of reference

[2], Af4 being the minimum gap length before a group of adjacent L's is
called a gap at all.

We are grateful to Professor A. Berger for an introduction to this
problem and for many valuable and informative discussions throughout the
course of this work. We wish to thank the Weizmann Institute, Rehovoth,
Israel, for the grant of a John F. Kennedy Senior Fellowship during the
tenure of which this work was done.
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