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ABSTRACT. The stochastic processes involved in the evolution of a hypo­
thetical cloud of comets are investigated. The cloud is assumed to be 
randomly perturbed by passing stars approaching the Sun at distance less 
than 1 pc. Within the frame of the impulse approximation we derive analy­
tical expressions for the probability distribution of the impulse impar­
ted to comets for both close and distant approaches. An application to 
the rate of ejection of comets is presented. 

I. INTRODUCTION 

The existence of a reservoir of comets lying in the outskirts of the so­
lar system is now largely admitted since its introduction by Oort in 1950. 
The dutch astronomer also thought of a possible mechanism to send comets 
from the cloud to the inner regions of the solar system where they become 
eventually active and visible. According to his views, close approaches 
with passing stars change the comet's orbital elements up to the point 
at which its perihelion distance may become small enough for the comet 
to be strongly influenced by planetary perturbations and turned into a 
short period comet. Within the framework of this model the role of the 
gravitational effect of stars is limited to the injection of comets to 
the sphere of influence of the planets, primarily that of Saturn and Ju­
piter. These comets are currently referred to as new comets in contrast 
with those comets repeating passages after they were perturbed by the 
planets. 

A convenient way to test the efficiency of the model is to simulate 
the effect of cumulative perturbations due to passing stars on the orbi­
tal elements of comets within a cloud. Such a work has been in particular 
carried out by Weissman (1980, 1982, 1983). Weissman models the stellar 
perturbation on comets as a single impulse imparted to the comet at aphe­
lion. This single impulse every orbital period is assumed to be the syn­
thesis of the three or four perturbations by passing stars experienced 
by a comet during one revolution about the Sun. By selecting a cloud of 
initially very eccentric comets, Weissman follows the long term evolution 
of aphelion and perihelion distance. He shows that perihelion diffuses 
into the planetary region and fraction of the initial population may 
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become visible. He demonstrates as well that a small fraction of the 
cloud is lost in the interstellar medium, mainly because of a diffusion 
of aphelia. 

More recently, Remy and Mignard (1985) have refined the study by 
Weissman by allowing the perturbations to occur at random, whatever the 
location of the comet on its orbit. In addition the magnitude of the per­
turbation imparted to the comets during the passage of a star is evaluated 
through a modelling of the arrival of stars in the vicinity of the Oort 
cloud both in term of the distance to the Sun and to the comet and also 
by drawing at random the direction of the star's velocity vector. 

Certainly the only way to follow properly the evolution of the Oort 
cloud during the past 4.5 billion years is to rely on numerical simula­
tions. However since the passage of stars happens at random the impulse 
imparted to the comets by these stars retains also a certain randomness. 
As a consequence the evolution of the size of the comets orbits must 
random walk with the time. Thus it is possible to start from the proba­
bility distribution of the parameters related to the perturbing stars to 
derive intermediate results connected to the underlying stochastic pro­
cess that ultimately rules the evolution of the Oort cloud. 

It is the aim of this paper to present some properties of the proba­
bility distribution of the impulse generated by passing stars. In the 
limited space of this report we will restrict ourselves to the presenta­
tion of the results referring for the detailed computation to a paper in 
preparation (Mignard and Remy, 1985). 

2. THE IMPULSE DISTRIBUTION 

When a star crosses the region surrounding the Sun and the comet it pas­
ses at a certain time at a minimum distance froiji the Sun and later or be­
fore at a minimum distance from the comet. Let Rs and Rc the radius vec­
tors Sun-star and comet-star at these closest approaches. It can be shown 
(Rickman, 1976) that the comet undergoes during the star passage an im­
pulse, 
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where G is the gravitational constant, M and V respectively the mass and 
the speed of the star. Typical values of I are of the order of some tens 
of centimeters per second. 

The probability that a star has a closest approach to the Sun in the 
range (R, R+dR) and a velocity vector directed in a solid angle dfi is, 

dP = — R dR g (2) 

where R^ and R are respectively the maximum and the minimum distance of 
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passage of stars to the Sun allowed. The latter boundary is introduced 
to prevent a cloud from being disrupted by a single, but unlikely passa­
ge of star very close to the Sun. A close approach to the Sun would make 
Rs small in Eq.(1) and generate a large impulse for all the comets in 
the cloud. As for Rw it is introduced facilitate comparisons with nume­
rical simulations in which we want to generate a substantial fraction of 
the passing stars likely to perturb the comets in the cloud. If we in­
crease Rj/[ we must also increase the rate of passing stars as BL and re­
sults as the probability of ejection of comets given in Eq. (8) is ob­
viously independent of R^. The probability distribution (e.g. Eq. 4) de­
pends strongly of R^ but not the number of times a given perturbation 
occurs during a certain timespan, since the number of passing stars is 
proportional to R2,. So the introduction of R̂ j is a matter of mathemati­
cal conveniency for intermediate computations while it has no effect on 
the physical results. In numerical calculations we have used, 
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From Eq.(2) it is in principle possible to derive the probability 
distribution for the impulse I. Such an approach proved to be untracta-
ble. However we have derived simple expressions for two limiting cases : 
i) the central region of the distribution for impulses in the range of 
-1 to +1 m.s-1 ii) the tails of the distribution valid for larger im­
pulses. 

These two regions are connected, the first, to distant passage of 
stars, when the Sun-comet distance is much smaller than the Sun-star 
distance and the second to close approaches when the star comes very 
close to the Sun or to the comet in comparison with their mutual distan­
ce. 

2.1. Close approaches 

In this case Eq.(l) reduces to, 

t =2GM R 
V R2 Ki> 

where R is distributed according to Eq.(2). With the three components of 
t , hereafter referred to as a , 3 , Y > it c a n be demonstrated that the 
probability distribution of I is isotropic and given by (Mignard and Re-
my, 1985) , 

P(I > I0) = I^/P (4) 

where, 

Im = 2GM/V% ~ 40 cm.s -l 
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and the probability law for the components is such that the probability 
that a is in the range da is f(a) da with, 

f(a) = 1/31 for a < I 
m ' ' m 

f(a) = l2/3|a|3 for lal > I 
(5) 

m 

The above expression was obtained with the reduced impulse Eq.(3) 
and is likely to represent the tails of the impulse distribution. The 
distribution decreases as 1/a3 instead of an exponential decrease for 
the normal distribution. The tails of the velocity distribution are then 
more pronounced that it would be for a gaussian law, as anticipated by 
Weissman (1982). 

We have carried out a numerical simulation by using the reduced im­
pulse to model the interaction between comets and passing stars. The re­
sult is shown in Fig.O) and is in excellent agreement with the above 
theory. 
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Figure 1. Simulated distribution for the impulses imparted to a comet by 
close encounters with a passing star. 

Finally it must be pointed out that the distribution does not pos­
sess second order moment because of a slow decrease toward the large im­
pulses. This fact prevents one from invoking the central limit theorem 
to synthesize several successive perturbations by a single impulse dis­
tributed according to the Maxwell law. 

2.2. Distant approaches 

In this case we have Rc ~ Rs a fact which enhances the role of the dif­
ferential effect expressed in the impulse equation. It is then reasonable 
to expand Eq.(1) up to its dipole term in, 

https://doi.org/10.1017/S0252921100083822 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100083822


STELLAR PERTURBATIONS ON COMETS 101 

6 = Rc - Rs 

By taking account of the fact the closest approach to the comet and 
to the Sun are not simultaneous we obtain with R = Rg, 

2GM [_r :r_V + r R gl 

~ I R2 WR* V + 2 ̂ T RJ 
where r is the Sun-comet vector and is considered as a small parameter 
with respect to R (see Mignard and Remy, 1985 for a detailed derivation). 
The modulus of the impulse has a very compact expression, 

T 2GM r . 0 

I = T ? Sln 6 

where 0 is the angle between the comet's radius vector and the star velo­
city vector. 

With the probability distribution given in Eq.(2) and by assuming 
a uniform distribution of points of closest approaches on the sphere of 
radius R we obtained the probability distribution for the modulus of the 
impulse and for the three components a , 3 > Y > i-n t n e central region 
of the distribution. 

With Im = I r rm or RM we have, 

L -"-TTI im -Hn J 

I > I f d > 4 ^ 
m 4 I2 

(6) 

Typical values of I range between 5 to 15 cm.s-1 for a comet's 
distance to the Sun between 2 101* to 6 10H a.u. For a very large RM we 
must consider the number distribution nf(I) rather than the probability 
distribution f(I), where n is the number of star passages during a cer­
tain lapse of time. With nocRj^, only is the second branch of the frequen­
cy distribution meaningful since Im goes to 0 while nlm remains bounded. 

The distribution of the components follows from the distribution 
of the modulus after an integration of the joint distribution for the 
three components over 3 and y . The computation is straightforward and 
yields, 

f(a) =1 /A + B M + CM3
+DM5 

a < I 
m I \ I I 3 I 5 

m \ m 

a > I f (a) = -TT- —r-
m 1° a2 

(7) 

w i t h A = 0 .415 B = - 1 / 6 C = _ - 1 / 6 0 D = - 0 . 0 3 5 2 
With the variable z = a/I the above distribution becomes dimen-

sionless and well adapted for simulations. 

https://doi.org/10.1017/S0252921100083822 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100083822


102 F. REMY AND F. MIGNARD 

Figure 2. Computed impulse distribution for distant encounters with the 
passing stars. 

The expansion of the impulse formula up to its dipole term makes 
the above results valid for a limit ranges of impulse, namely those gene­
rated by distant approaches. For a typical comet whose distance from the 
Sun is 3 1 01* a.u. we will restrict distant approaches to passing stars 
not approaching the Sun closer than twice the Sun-comet distance. Then 
the impulses to be considered are in the range -1 to +1 ms- 1. Then with­
in this range we have the following moments for the frequency distribu­
tion, 

E(a) = 0, E(a2) = a2(a) 4 12 
m 

The distribution differs from a normal law mainly because of its 
slow decrease reflected by the distribution function, 

P( a < I ) = 0.62 
m 

P( a < 31 ) = 0.85 
m 

P( a < 51 ) = 0.92 
m 

However in its central part the distribution can be matched with 
a gaussian of standard deviation a = Im. But the tails become prominent 
as soon as a > I . 

The distribution f(a) is plotted in Fig.(2) for three sample values 
of Im, corresponding to comets distance from the Sun, respectively 18, 
36 and 54 101* a.u. We have also simulated the exact impulse distribution 
by using the complete equation (1) for the impulse to the comet. In the 
simulation comets have been maintained at fixed distance from the Sun 
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but in different locations. Twenty thousand stars were drawn at random 
in distance and in orientation of the velocity vector. Results are plot­
ted in Fig. (3) for 1 = 4 and 8 cm.s-1. A comparison with figure (2) 
shows that the fit to ?he theory is very good. A similar simulation was 
conducted for the modulus of the impulsion ans showed a similar agree­
ment with Eq.(6). 

06 

•OS 

•04 

-03 

- 4 0 -20 0 

l m s 8 cm.s-1 

20 40 

cm.s* 

Figure 3. Simulated distribution for the impulses imparted to the comet 
during distant encounters with passing stars. The Sun-comet distance is 
36 10* a.u (Tm = cm .s

_1) and 18 10M (I -1) 

3. APPLICATION : EJECTION OF COMETS 

A comet is ejected from the solar system whenever its orbital velocity 
is larger than the escape velocity Ve = (2GM/r)

1/2 where r is the Sun-
comet distance. For a typical comet we have Ve ~ 200 m.s

-1 much larger 
than the comet's velocity in the vicinity of aphelion. Therefore an ejec­
tion would result from a single close encounter with a star, such that 
the impulse imparted to the comet is larger than Ve. 

From Eq.(4) the probability for the impulse to be larger than Ve du­
ring one encounter is, 

P1 (ejection) = I^/V2 ~ 6 10~6 

After N passages of stars the probability for a comet to be ejected 
is, 

PN (ejection) 1 exp (- NI2 / V2) 
m e (8) 

Then if p denotes the number density of stars in the solar neighbor­
hood we have for the probability of ejection during the time T, 
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PN = 1 - exp (- T / T ) 

where i s the c h a r a c t e r i s t i c t ime, 

T = V/(2TTP GMr) 

The waiting time for ejection follows an exponential distribution, 
hence the number of comets ejected per unit time follows a Poisson dis­
tribution. Over the age of the solar system the relative depletion of the 
Oort cloud by ejection is then, 

PN = 0.09 with p = 0.08 star/pc3, M = 1MQ 

for T = 4.5 billions years. This number is similar to the result first 
given by Weissman (1980). 

4. CONCLUSION 

In this paper we have obtained the probability distribution of the impul­
se imparted to comets within the Oort cloud by random passing stars. The 
main result is the fact that the tails of this distribution are much more 
extended than it would be for a gaussian distribution. In principle this 
distribution should be sufficient to allow the derivation of results more 
closely related to the dynamical properties of the Oort cloud, such as 
the frequency distribution of the orbital parameters after the passage of 
a certain number of stars. In practice an efficient method to achieve 
such results needs to be devised and it is our intent to advance in this 
direction. 
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