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Abstract. A sequence of solutions to the Galerkin approximation of a nonsta-
tionary magnetohydrodynamic system is proved to converge to a measure-valued
solution, in the sense of R. J. DiPerna–A. J. Majda, to the three-dimensional sta-
tionary Euler equations.
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1. Introduction. Let u ð: O ! R3Þ and p ð: O ! RÞ be the velocity and pressure,
respectively, of a steady-state inviscid incompressible fluid with unit density in a
three-dimensional domain O. They satisfy the stationary Euler equations

u � rru ¼ �rrp; rr � u ¼ 0: ð1Þ

In the two-dimensional and the axisymmetric cases, the existence of a solution
to (1) with nonvanishing vorticity has been investigated by variational methods in,
for example, [2,3,5,9,11,16,19,20] and by some other methods in [17,18,22]. On the
other hand, in the three-dimensional case, these methods seem inapplicable and, as
far as the author knows, the existence has not been rigorously proved, except under
a special situation accompanied with a leakage in [1] or under the condition that u
and rr � u are parallel in [4,12,23].

To obtain solutions to (1), Moffatt [14] proposed the nonstationary equations
for a viscous and perfectly conductive magneto-fluid:

vt þ v � rrv ¼ �rrqþ B � rrB� rrðjBj2=2Þ þ�v;
Bt þ v � rrB ¼ B � rrv;
rr � v ¼ rr � B ¼ 0:

9=
; ð2Þ

Here the density and viscosity are equal to unit and ðv;B; qÞ : O� ft > 0g !
R3 � R3 � R stand for the velocity, magnetic field and pressure, respectively. He
asserted the relaxation of (2) (with appropriate initial data) to an equilibrium

v ¼ 0; B � rrB ¼ rrðqþ jBj2=2Þ; rr � B ¼ 0;

as the time t ! 1, which means that u ¼ Bjt¼1 is a solution to (1) with
p ¼ �ðqþ jBj2=2Þjt¼1. This is worthy of remark. However, to justify it rigorously,
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we need the existence of a temporally global solution to (2) in the sense of distribu-
tion in space at the weakest. In fact, the existence seems difficult to prove because of
the perfect conductivity of the magneto-fluid. Moreover, even if it is proved and the
decay v ! 0 (as t ! 1) in L2ðOÞ ð¼ ðL2ðOÞÞ3Þ is obtained, we cannot derive vt ! 0

in L2ðOÞ as easily as Moffatt asserted. Moffatt [15] considered the relaxation of
another magnetohydrodynamic system which has the same mathematical difficulty.

In [21], Vallis et al. introduced the nonstationary system of equations for an
inviscid and perfectly conductive magneto-fluid with artificial terms:

vt þ v � rrv ¼ �rrqþ B � rrB� rrðjBj2=2Þ þ �vt � ðrr � vÞ;
Bt þ ðvþ �vtÞ � rrB ¼ B � rrðvþ �vtÞ;

rr � v ¼ rr � B ¼ 0:

9=
; ð3Þ

Here � is a nonzero constant. They asserted the relaxation of (3) to a steady state as
t ! 1. However, it is also difficult to prove rigorously. In fact, even if the smooth
solvability is assumed globally in time, we do not know whether Bt ! 0 as t ! 1.

Combining the ideas of Moffatt and Vallis et al., we introduce

vt þ v � rrv ¼ �rrqþ B � rrB� rrðjBj2=2Þ þ vt � ðrr � vÞ þ�v;
Bt þ ðvþ vtÞ � rrB ¼ B � rrðvþ vtÞ;

rr � v ¼ rr � B ¼ 0:

9=
; ð4Þ

For this system, if we assume the temporally global and smooth solvability, which
seems difficult to prove as well as for (2) and (3), then we can show that v ! 0,
vt ! 0 and Bt ! 0 as t ! 1.

The aim of this paper is to prove that a sequence of solutions to the Galerkin
approximation of (4) converges to a measure-valued solution to (1) when we let t
and the number of basis functions go to infinity simultaneously. The concept of
measure-valued solutions was applied to the nonstationary Euler equations by
DiPerna and Majda [7,8]. They justified its utility as a tool for discussion of complex
phenomena in Euler flows (see also [6]).

2. Preliminaries. Let us introduce our notation. We assume that O ð� R3Þ is an
open, bounded and simply connected domain whose boundary @O is sufficiently
smooth. By C1

0 ðOÞ, we denote the set of all 1-times continuously differentiable
functions defined on O whose supports are compact. By C1

0;�ðOÞ, we mean the set of
all three-dimensional divergence-free functions whose components belong to C1

0 ðOÞ.
The product ðð�; �ÞÞ and the norm k � k are defined by

ðð f; gÞÞ ¼

Z
O
fðxÞ � gðxÞ dx and k f k ¼ ðð f; f ÞÞ1=2:

The spaces H� and H1
� represent the closures of C1

0;�ðOÞ with respect to k � k and
k � k1, respectively, where k � kj ð j 2 NÞ is the norm in the vector-valued Sobolev
space of the j-th order denoted by W j

2ðOÞ.
By MðGÞ, we denote the space of Radon measures on G ¼ O, R3 or S2, where S2

stands for the unit sphere. The total variation j�jMðGÞ of each � 2 MðGÞ is given by
the supremum of j

R
G 	 d�j for all continuous functions 	 on G such that the support
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of 	 is compact and j	j � 1. By MþðGÞ, we denote the subspace of nonnegative
measures in MðGÞ. The subspace of measures with unit total variation in MþðGÞ is
denoted by ProbMðGÞ.

By wk
1 2 H1

� \W3
2ðOÞ ðk ¼ 1; 2; 3; . . .Þ, we denote eigenfunctions for the problem

�w ¼ rrs� lw; rr � w ¼ 0; wj@O ¼ 0; kwk ¼ 1

with functions s ¼ sk and eigenvalues l ¼ l1;k such thatrrsk 2 W1
2ðOÞ, 0 < l1;k � l1;kþ1

and limk!1 l1;k ¼ 1 ([13, Chapter 2]). Then fwk
1g

1
k¼1 is a complete orthonormal

system in H� .
By wk

2 2 H� \W1
2ðOÞ ðk ¼ 1; 2; 3; . . .Þ, we denote eigenfunctions for the problem

rr � w ¼ lw; w � nj@O ¼ 0; kwk ¼ 1

with eigenvalues l ¼ l2;k such that 0 < jl2;kj � jl2;kþ1j and limk!1 jl2;kj ¼ 1 ([23]).
Here n is the unit outward normal vector on @O. Then fwk

2g
1
k¼1 is a complete ortho-

normal system in H�. It should be noted that const:w
k
2 for an arbitrary k satisfies (1).

Indeed,

wk
2 � rrw

k
2 ¼ ðrr � wk

2Þ � wk
2 þ rrðjwk

2j
2=2Þ ¼ rrðjwk

2j
2=2Þ:

The reason for using fwk
2g

1
k¼1 is that we can obtain (15) below.

For vectors f ¼ ð f1; f2; f3Þ and g ¼ ðg1; g2; g3Þ, we denote the matrix whose ði; jÞ-
component is equal to figj by f� g. By rrf, we denote the Jacobian matrix of fðxÞ.
We define the product of 3� 3-matrices F ¼ ð fijÞ and G ¼ ðgijÞ by F : G ¼P3

i¼1

P3
j¼1 fijgij.

3. Result. Let us consider the system of equations for fan;kðtÞg
n
k¼1 and

fbn;kðtÞg
n
k¼1 with n 2 N fixed:

dan;k
dt

þ
Xn
j¼1

ðððr � vnÞ � wj
1;w

k
1ÞÞ

dan;j
dt

¼ ððBn � rBn � vn � rvn;wk
1ÞÞ � l1;kan;k; ð5Þ

dbn;k
dt

¼ ððBn � rðvn þ vnt Þ � ðvn þ vnt Þ � rB
n;wk

2ÞÞ; ð6Þ

where

vn ¼
Xn
j¼1

an;jðtÞw
j
1; Bn ¼

Xn
j¼1

bn;jðtÞw
j
2:

It is an approximation of (4) with the 2n basis functions fwk
1g

n
k¼1, fw

k
2g

n
k¼1. Indeed, (5)

can be rewritten as

ððvnt þ ðrr � vnÞ � vnt ; w
k
1ÞÞ ¼ ððBn � rrBn � vn � rrvn þ�vn; wk

1ÞÞ:
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The initial conditions to impose on (5) and (6) are

an;kð0Þ ¼ ððv0;w
k
1ÞÞ; bn;kð0Þ ¼ ððB0;w

k
2ÞÞ; ð7Þ

where v0 2 H1
� and B0 ð6� 0Þ 2 H� are arbitrary. The following is our main theorem.

Theorem. The initial value problem (5)–(7) has a unique smooth solution globally
in time. There exist sequences fnm 2 N j nm < nmþ1g and ftm j 0 < tm < tmþ1;
limm!1 tm ¼ 1g ðm ¼ 1; 2; 3; . . .Þ such that kvnm jt¼tmk, krr � vnm jt¼tmk and kvnmt jt¼tmk

converge to zero and jBnm jt¼tm j
2 converges weakly-* to a measure � in MðOÞ satisfying

j�jMðOÞ � kv0k
2 þ krr � v0k

2 þ kB0k
2: ð8Þ

In addition, if

X1
j¼1

l�1
2;j ððB0;w

j
2ÞÞ

2
6¼ 0; ð9Þ

then j�jMðOÞ > 0 holds. As m ! 1, the system (5)–(7) with n ¼ nm and t ¼ tm yields
the existence of a �-measurable map x ð2 OÞ 7!f�1;x; �2;xg ð2 MþðR3Þ � ProbMðS2ÞÞ

such that f�; �1;x; �2;xg is a measure-valued solution to ð1Þ in DiPerna–Majda’s sense,
that is,

Z
O
rr� :

Z
S2

u

juj
�

u

juj
d�2;x

� 	
d� ¼ 0; ð10Þ

Z
O
rr	 �

Z
R3

u

1þ juj2
d�1;x

� 	
ð1þ hÞ dx ¼ 0 ð11Þ

are satisfied for all � 2 C1
0;�ðOÞ and all 	 2 C1

0 ðOÞ. Here h is the Radon–Nikodym
derivative of the absolutely continuous part of � with respect to the Lebesgue measure.

Proof. Since the matrix whose ðk; jÞ-component is given by ðððrr � vnÞ � wj
1; w

k
1ÞÞ

is anti-symmetric and all its eigenvalues have zero real parts, the problem (5)–(7) has
a unique smooth solution at least locally in time.

Multiplying (5) by an;k or ðd=dtÞan;k, we get

1

2

d

dt
kvnk2 ¼ ðð�ðrr � vnÞ � vnt þ Bn � rrBn; vnÞÞ � krr � vnk2;

kvnt k
2 ¼ ððBn � rrBn � vn � rrvn; vnt ÞÞ �

1

2

d

dt
krr � vnk2:

Here we noted that ðð f � rrg; hÞÞ ¼ �ðð f � rrh; gÞÞ (¼ 0 if g ¼ h) holds for f, g and h
satisfying rr � f ¼ 0 and ðg � hÞð f � nÞj@O ¼ 0. On the other hand, (6) yields

1

2

d

dt
kBnk2 ¼ ððBn � rrðvn þ vnt Þ; B

nÞÞ:
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From these equalities and ððvn � rrvn; vnt ÞÞ ¼ ðððrr � vnÞ � vn; vnt ÞÞ, we derive

1

2

d

dt
ðkvnk2 þ krr � vnk2 þ kBnk2Þ ¼ �kvnt k

2 � krr � vnk2;

which yields

kvnk2 þ krr � vnk2 þ kBnk2 þ 2

Z t

0

ðkvnt k
2 þ krr � vnk2Þdt

¼ kvnjt¼0k
2 þ krr � vnjt¼0k

2 þ kBnjt¼0k
2

� kv0k
2 þ krr � v0k

2 þ kB0k
2:

ð12Þ

Clearly, this means that the problem (5)–(7) has a unique smooth solution globally
in time. Furthermore, using Rellich’s theorem, we have the existence of a sequence
fnm 2 N j nm < nmþ1 ðm ¼ 1; 2; 3; . . .Þg such that vnm converges strongly in H� and
weakly in H1

�, uniformly on an arbitrary countable set of t. Since (12) yields the
square integrability of krr � vnk and kvnt k over ð0;1Þ, we also have the existence of a
sequence, for example ftm j 2m�1 < tm < 2m ðm ¼ 1; 2; 3; . . .Þg, such that

krr � vnm jt¼tmk
2 þ kvnmt jt¼tmk

2 �
1

2m
ðkv0k

2 þ krr � v0k
2 þ kB0k

2Þ;

that is,

krr � vnm jt¼tmk ! 0; kvnm jt¼tmk ! 0; kvnmt jt¼tmk ! 0 ð13Þ

as m ! 1. Indeed, if we suppose the nonexistence of this ftmg, then we have

Z 2m

2m�1

ðkrr � vnmk2 þ kvnmt k2Þdt >
1

2
ðkv0k

2 þ krr � v0k
2 þ kB0k

2Þ;

which conflicts with (12).
Let � 2 C1

0;�ðOÞ be an arbitrary function and define �n 2 H1
� \W3

2ðOÞ by

�n ¼
Xn
j¼1

ðð�;w j
1ÞÞw

j
1:

Then, summing up the products of (5) and ðð�;wk
1ÞÞ from k ¼ 1 to n, we obtain

ððvnt þ ðrr � vnÞ � vnt ; �
nÞÞ ¼ �

Z
O
rr� : Bn � Bndxþ

Z
O
rrð���nÞ : Bn � Bndx

þ ððvn � rr�n; vnÞÞ þ ððvn; ��nÞÞ:

ð14Þ

By (12) and the stationary version of [7, Theorem 1], we have the weak-* con-
vergence of jBnm jt¼tm j

2 to a measure � in MðOÞ, which yields (8), and the limit

lim
m!1

Z
O
rr� : ðBnm � Bnm Þjt¼tmdx ¼

Z
O
rr� :

Z
S2

u

juj
�

u

juj
d�2;x

� 	
d�
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with a �-measurable �2;� : O ! ProbMðS2Þ. Since

X3
i¼1

sup
ðx1;x2;x3Þ2O

@�

@xi
�
@�n

@xi










 � const:k���nk3 ð! 0 as n ! 1Þ

follows from Sobolev’s embedding theorem and [13, Chapter 2, Theorem 7], we
derive (10) by using (13) in (14).

From the equality ððrr	; BnÞÞ ¼ 0 for any 	 2 C1
0 ðOÞ, we deduce (11) by the

stationary version of [7, Theorem 1].
Lastly, let us prove j�jMðOÞ > 0 under (9). Multiplying (6) by l�12;kbn;k and sum-

ming up the products from k ¼ 1 to n, we have

1

2

d

dt
ððBn;ABnÞÞ ¼

1

2

d

dt

Xn
k¼1

l�12;kb
2
n;k

¼
Xn
k¼1

ððrr � ððvn þ vnt Þ � BnÞ; l�12;kbn;kw
k
2ÞÞ

¼
Xn
k¼1

ðððvn þ vnt Þ � Bn; bn;kw
k
2ÞÞ ¼ 0:

ð15Þ

Here A ¼ ðrr�Þ
�1 : H� ! f f 2 H� j rr � f 2 H�g (see [23]). Therefore,

ððBn;ABnÞÞ ¼ ððBn;ABnÞÞjt¼0 ! ððB0;AB0ÞÞ ¼
X1
j¼1

l�12;j ððB0;w
j
2ÞÞ

2
6¼ 0 ð16Þ

as n ! 1. Now, suppose that j�jMðOÞ ¼ 0, that is, limm!1

R
O jBnm jt¼tm j

2	 dx ¼ 0 is
valid for any 	 2 C1

0 ðOÞ. Then, since

kABnk21 � CkBnk2 � Cðkv0k
2 þ krr � v0k

2 þ kB0k
2Þ

is obtained, where C is a positive constant independent of n, and

jððABnm jt¼tm ;r ��ÞÞj ¼ jððBnm jt¼tm ;�ÞÞj

�

Z
O
dx

Z
O
jBnm jt¼tm j

2j�j2dx

� 	1=2

ð! 0 as m ! 1Þ

holds for any � 2 C1
0;�ðOÞ, we have the convergence AB

nm jt¼tm ! 0 strongly in H�.
It means that ððBnm ;ABnmÞÞjt¼tm ! 0, which conflicts with (16). Hence j�jMðOÞ > 0 is
deduced. &

Remark. As was mentioned in Section 2, the function cwk
2 (k 2 N) with an

arbitrary nonzero constant c satisfies (1) with u � nj@O ¼ 0. It can be regarded as a
measure-valued solution:

d� ¼ c2jwk
2j
2dx; �1;x ¼ �cwk

2
ðxÞ; �2;x ¼ �cwk

2
ðxÞ=jcwk

2
ðxÞj; ð17Þ
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where �f is the Dirac measure at f. It is open whether or not our Theorem really
means the existence of a measure-valued solution which is different from (17).

In the two-dimensional case, which will be discussed in another paper, we can
obtain an analogous result to the Theorem by choosing another set of smooth
solutions to (1) as fwk

2g
1
k¼1.

In [10], Freedman investigated (2) assuming the existence of a solution on a closed
3-manifold. He proved that a magnetic field with a nontrivial link has a positive lower
bound of energy even if the magnetic helicity is equal to zero. The condition (9) in our
theorem means that B0 has a nonzero magnetic helicity. It is open whether or not we
can obtain j�jMðOÞ > 0 without (9) by applying Freedman’s theory.

Acknowledgement. The author thanks Professor Tetsuro Miyakawa for his
information about [23].
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