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A NOTE ON TASKINEN'S COUNTEREXAMPLES ON THE
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(Received 6th March 1988)

By the work of Taskinen (see [4, 5]), we know that there is a Frechet space E such
that Lb(E, l2) is not a (DF)-space. Moreover there is a Frechet-Montel space F such that
F'b ®£ F'b is not (£>F). In this second example, the duality theorem of Buchwalter (cf. [2,
§45.3]) can be applied to obtain that F;®eF'fcs(F®BF)c<, and hence F'b®cFb is a
(gDF)-space (cf. [1, Ch. 12 or 3, Ch. 8]). The (gDF)-spaces were introduced by several
authors to extend the (DF)-spaces of Grothendieck and to provide an adequate frame to
consider strict topologies.

It seemed to be open whether, for Frechet spaces E and F, the spaces Lb(E,F'b) and
£j> ®£ F'b w e r e (gDF). 1° this short note we observe that the constructions of Taskinen in
[4] can be adapted to give a negative answer to these two questions.

Our notations are standard and can be seen in [1, 2, 3].
Let X be a Frechet space with a basis of absolutely convex O-neighbourhoods (l/n)

with 2Un + i^Un. We denote by B(X) the set of all bounded subsets of X. Let A be a
saturated subset of B(X) whose union covers X. We denote by xA the topology on X' of
uniform convergence on the elements of A. Using the characterizations of (gDF)-spaces
and a standard argument by polarization, one gets

Lemma 1. Let X be a Frechet space. Then (X\ T J is (gDF) if and only if for every
squence of absolutely convex subsets CneA, neN, there is CeA such that u(CnnUn:
neN)cC.

Let E and F be Frechet spaces with decreasing sequences of O-neighbourhoods (Wn)
and (Vn) such that (n" 1 ^ ) and (n"1^) are basis of O-neighbourhoods in E and F
respectively. Then Lb(E,F'b) is topologically isomorphic to the dual (£<§>„ F)' endowed
with the topology of uniform convergence on the sets F(A<g)B), AeB(E), BeB(F). Then
we have:

Corollary 2. Lb(E,F'b) is (gDF) if and only if for every (Bn)sB(£), (CB)gg(F), there
are AeB(E), BeB(F) such that u(r(Bn®Cn)n r(2~nWn<g)Vn): neN)cr(A®B), all the
closures taken in E (§)„ F.

Observe that by symmetry the condition above is also equivalent to Lb(F,E'b) being
(gDF).

We will use the notations of [4, §4] and we will take Mn = M'n=l"2. Hence we can
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suppose that the projection constants p(n) from Gn onto Mn satisfy

n (see [4, p. 22]).

Example 3. There is a Frechet space E such that Lb(E, l2) is not (gDF).

This will be a consequence of Corollary 2, once we prove that for F = l2, V the unit
ball of F, and £ the Frechet space of Taskinen [4, §4.4], we have that the set

): ne\

is not contained in F(A®B) for all AeB(E), BeB(F), the closures taken in
(observe that Wn

tt+1eB(E)).
To prove this it is enough to see that for every tm^ 1, meN, the set

Kj(T(2'nWn® V) n T{2AnWn
n+i® V): ne IM)

is not contained in the closure of r((n(tnW^meN))®V) in E®llF. First observe that
the key Lemma 4.3 of [4] yields for s(n): = p(n)/4 that r(U®V)nr(25nU®V)£
r((s(25")Un4s0)®V) for all nef̂ J and s>0. Then

r(2-"U® V) n T{24n0® V)gr(((s(25n)/2n)U n2-" + 2sU)®V)

for all neN and s>0. Since Iimp(n)/4n1/5 = oo, there is noeN such that s(25no)/2no^2t1.
Then r(2~noU® V) n r(24 n o0®F) is not contained in 2r((r1l/n tno+10)®V). Since

([4; proof of 4.5]), r(Wno + l®V) is a O-neighbourhood in E®nF, and

[F[2-noW;0® V) n r(2*n°Wn
n°0+1® Vy] n (Eno nF) = r(2-noU ®V)n F(24noL? ® V)

the conclusion follows.

Example 4. There is a Frechet-Schwartz space F with the bounded approximation
property and a Frechet space E such that F'b®cE'b^Lb(F,E'b) is not (gDF).

F is the Frechet-Schwartz and £ is the Frechet space constructed as in [4, §4.7]. In
this case the proof is a little more involved. Using now the second key Lemma 4.8 in
[4] one can prove that

u(F(2 ~nWn® Vn) n (n(r(24nW^® Vp): p ̂  n+ 1)): n e N)

is not contained in the closure of T(A®B) in £ ® n F for AeB(E) and BeB{F).
Now since W = U for p^n + l, we can apply the positive result [4, §3.1] for (H,h~)
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and F to obtain for each ne N, CneB(F) such that

the closure taken in E®nF. Consequently, for (Wn+l)sB(E), (Cn)cB(F) the set

n

is not contained in F(A®B), the closure taken in E®nF. The conclusion follows from
Corollary 2. •
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