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Abstract

A system of two coupled nonlinear spectral transport equations is derived for two
obliquely interacting narrowband Gaussian random surface wavetrains, slowly varying
in space and time. Using these two equations, stability analysis is performed for two
initially homogeneous wave spectra, subject to unidirectional perturbations. We observe
that the effect of randomness produces a decrease in the growth rate of instability, but
it is higher than the growth for a single wavetrain. The growth rate of instability is
observed to decrease with the increase in spectral width.

2010 Mathematics subject classification: primary 76B15; secondary 76B07, 76E99.
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1. Introduction

One approach to examining the stability properties of a weakly nonlinear random
wavetrain is through the use of the spectral transport equation derived by Alber [2]
and Crawford et al. [5]. Alber obtained a spectral transport equation for narrowband
Gaussian random surface wavetrains, starting from the Davey–Stewartson equations
[6] for deep water. He showed that a random deep-water wavetrain becomes unstable
if the normalized spectral bandwidth is less than twice the root mean square wave
slope, multiplied by a function of the perturbation wave angle. Crawford et al.
also studied the evolution of a random inhomogeneous field of deep-water waves.
They derived a transport equation following Zakharov’s [19] approach and used
the Lorentz shape of spectrum [17]. They also studied the stability of an initially
homogeneous wave spectrum, subject to small oblique wave perturbations. Following
Alber [2] and Crawford et al. [5], a number of authors, including Dhar and Das
[7] and Senapati et al. [15], investigated the effects of randomness on the stability
properties of surface wavetrains in different contexts. It is also interesting to see
the effect of randomness in a situation of crossing sea states when two wave systems
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interact obliquely. Onorato et al. [12] considered such a crossing sea states situation.
They obtained evolution equations for weakly nonlinear interaction of two obliquely
propagating wave packets. Using these evolution equations which are coupled
nonlinear Schrödinger equations, Onorato et al. [12] performed stability analysis of
two uniform wavetrains meeting in crossing seas under unidirectional perturbations.
They found that the growth rate of instability of either wavetrain is much higher than
that for the case of a single wavetrain. This led the authors to conclude that freak
waves can be generated due to weakly nonlinear interaction in crossing sea states. The
analysis of Onorato et al. [12] is further extended by Shukla et al. who performed
stability analysis in a situation of crossing seas for bidirectional perturbations. Later,
many authors, including Laine-Pearson [10], Gramstad and Trulsen [8] and Ruban
[14], made investigations of the situation of crossing sea states.

The approach presented in all the above-mentioned papers is from a deterministic
point of view. As an alternative approach, we consider here the effect of randomness
in a situation of crossing sea states over infinite-depth water. Onorato et al. [11]
carried out numerical simulations of a cubic nonlinear Schrödinger equation to show
the formation of freak waves in a random sea characterized by the Joint North Sea
Wave Project spectrum [9]. Onorato et al. [13] conducted experiments in two different
wave basins to study the statistical properties of the ocean water surface elevation for
different degrees of directional energy distribution. Toffoli et al. [18] also conducted
an experiment in a large wave basin to study the statistical properties of the water
surface elevation in crossing sea conditions. They reported that the number of extreme
events depends on the angle between two interacting wave systems. This experimental
finding was also supported by numerical simulations, which they carried out using a
higher-order method for solving Euler equations.

In the present study, we consider a crossing sea states situation formed by two
obliquely interacting initially homogeneous Gaussian wave systems [17]. We derive
a pair of spectral transport equations for the two wave systems. Using these two
equations, we perform a stability analysis of two obliquely interacting initially
homogeneous Gaussian wave spectra for a range of spectral bandwidths. We obtain a
nonlinear dispersion relation in the form of a nonlinear integral equation. By solving
this integral equation numerically, we show the growth rate of instability in Figures
1 to 5. We find that the growth rate of instability is slightly less than that for the
corresponding deterministic situation. We also find that the growth rate of instability
decreases as the spectral bandwidth increases. We observe that the growth rate of
instability of one wave system increases as the mean square wave steepness of the
second wave system increases.

This paper is organized as follows. In Section 2 we derive the spectral transport
equations. In Section 3 we discuss the results of the stability analysis of a pair of
obliquely interacting random inhomogeneous wave systems subject to unidirectional
perturbations. In Section 4 we report the main results obtained in the stability analysis.
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2. Transport equations for the spectral functions

We start with the following two coupled nonlinear Schrödinger equations obtained
by Onorato et al. [12], which are correct up to third order in wave steepness:

i
∂A1

∂τ
+ iβ1

∂A1

∂x̃
+ iβ2

∂A1

∂ỹ
+ β3

∂2A1

∂x̃2 + β4
∂2A1

∂x̃∂ỹ
+ β5

∂2A1

∂ỹ2 = λ1A2
1A∗1 + µ1A1A2A∗2,

(2.1)

i
∂A2

∂τ
+ iβ1

∂A2

∂x̃
− iβ2

∂A2

∂ỹ
+ β3

∂2A2

∂x̃2 − β4
∂2A2

∂x̃∂ỹ
+ β5

∂2A2

∂ỹ2 = λ1A2
2A∗2 + µ1A2A1A∗1,

(2.2)
with i =

√
−1. In equations (2.1) and (2.2), x̃, ỹ, τ are slow space and time variables

defined by

x̃ = εx, ỹ = εy, τ = εt,

where ε is a small ordering parameter, and A1 and A2 denote the complex amplitudes
of the two wave envelopes

ζ1(x̃, ỹ, τ) = 1
2 [A1(x̃, ỹ, τ) exp{i(kx + ly − ωt)} + c.c.],

ζ2(x̃, ỹ, τ) = 1
2 [A2(x̃, ỹ, τ) exp{i(kx − ly − ωt)} + c.c.],

where (k, l) and (k, −l) are the carrier wavenumbers of the two wave packets and
c.c. denotes the complex conjugate of the previous term. The wave frequency ω is
determined by the linear dispersion relation

ω2 = g
√

k2 + l2,

g being the gravitational acceleration. The coefficients βi, λ1 and µ1 are given by
Onorato et al. [12] and also by Shukla et al. [16].

We assume that the above two obliquely interacting wave packets are random in
nature. Thus, A1(ξ̃, τ) and A2(ξ̃, τ) are random functions of ξ̃ = (x̃, ỹ). For the two
wave packets, we define the two-point space correlation functions as follows:

ρ1(~ξ1, ~ξ2, τ) = 〈A1(~ξ1, τ)A∗1(~ξ2, τ)〉,

ρ2(~ξ1, ~ξ2, τ) =
〈
A2(~ξ1, τ)A∗2(~ξ2, τ)

〉
,

where ~ξ1 = (x1, y1), ~ξ2 = (x2, y2) are two points in space, and the angle brackets denote
the ensemble average.

We now find equations governing the slow variation of ρ1 and ρ2. First of all, we
find one equation by considering equation (2.1) at the point ~ξ1 and multiplying both
sides of it by A∗1(~ξ2, τ). We obtain another equation from the complex conjugate of
equation (2.1) at the point ~ξ2, by multiplying both sides of it by A1(~ξ1, τ). Subtracting
the second equation from the first equation and then taking the ensemble average,
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we get

i
∂ρ1

∂τ
+ iβ1

(
∂

∂x1
+

∂

∂x2

)
ρ1 + iβ2

(
∂

∂y1
+

∂

∂y2

)
ρ1 + β3

(
∂2

∂x2
1

−
∂2

∂x2
2

)
ρ1

+ β4

(
∂2

∂x1∂y1
−

∂2

∂x2∂y2

)
ρ1 + β5

(
∂2

∂y2
1

−
∂2

∂y2
2

)
ρ1

= λ1〈A2
1(~ξ1)A∗1(~ξ1)A∗1(~ξ2)〉 − λ1〈A∗21 (~ξ2)A1(~ξ2)A1(~ξ1)〉

+ µ1〈A1(~ξ1)A2(~ξ1)A∗2(~ξ1)A∗1(~ξ2)〉 − µ1〈A∗1(~ξ2)A∗2(~ξ2)A2(~ξ2)A1(~ξ1)〉. (2.3)

On the right-hand side of equation (2.3), we have written A1(~ξ1, τ), A1(~ξ2, τ), A2(~ξ1, τ)
and A2(~ξ2, τ) simply as A1(~ξ1), A1(~ξ2), A2(~ξ1) and A2(~ξ2), respectively. Hereafter,
we will follow this notation for the sake of simplicity. Equation (2.3) shows that
the evolution of the second-order correlation function ρ1 depends on the fourth-order
correlation terms. We now rewrite equation (2.3) using the average coordinates

X = 1
2 (x1 + x2), Y = 1

2 (y1 + y2),

and the spatial separation coordinates

rx = (x1 − x2), ry = (y1 − y2).

Following Alber [2], we assume that A1(~ξ, τ) and A2(~ξ, τ) are initially Gaussian random
processes, and that they follow the same Gaussian statistical properties as they undergo
evolution. Sine the fourth-order cumulant of Gaussian statistics vanishes, we are able
to write the fourth-order correlation terms on the the right-hand side of equation (2.3)
in terms of the products of pairs of second-order correlations. Thus,

〈A1(~ξ1)A∗1(~ξ2)A1(~ξ1)A∗1(~ξ1)〉 = 2〈A1(~ξ1)A∗1(~ξ2)〉〈A1(~ξ1)A∗1(~ξ1)〉 = 2ρ1ā1
2(~ξ1),

where
ā1

2(~ξ1) = 〈A1(~ξ1)A∗1(~ξ1)〉

is the ensemble averaged mean square amplitude of the first wave packet. Similarly,
the ensemble averaged mean square amplitude of the second wave packet is given by

ā2
2(~ξ1) = 〈A2(~ξ1)A∗2(~ξ1)〉.

Now, ~ξ1 and ~ξ2 , in terms of the variables ~ξ = (X,Y) and r = (rx, ry), can be written as

~ξ1 = (X + 1
2 rx,Y + 1

2 ry) = ~ξ + 1
2~r,

~ξ2 = (X − 1
2 rx,Y − 1

2 ry) = ~ξ − 1
2~r.

By Taylor’s expansion of ā1
2(~ξ1) about the point ~ξ, we get

ā1
2(~ξ1) = exp

(1
2
~r.
∂

∂~ξ

)
ā1

2(~ξ).
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Thus, the first term on the right-hand side of equation (2.3) becomes

2λ1ρ1 exp
(1
2
~r.
∂

∂~ξ

)
ā1

2(~ξ).

Similarly, the second, third and fourth terms on the right-hand side of equation (2.3)
become

−2λ1ρ1 exp
(
−

1
2
~r.
∂

∂~ξ

)
ā2

1(~ξ), µ1ρ1 exp
(1
2
~r.
∂

∂~ξ

)
ā2

2(~ξ), −µ1ρ1 exp
(
−

1
2
~r.
∂

∂~ξ

)
ā2

2(~ξ),

respectively. Thus, in terms of the variables ~ξ and ~r, equation (2.3) becomes

i
∂ρ1

∂τ
+ iβ1

∂ρ1

∂X
+ iβ2

∂ρ1

∂Y
+ 2β3

∂ρ1

∂X∂rx
+ β4

(
∂2

∂X∂ry
+

∂2

∂Y∂rx

)
ρ1 + 2β5

∂2ρ1

∂Y∂ry

= 4λ1ρ1 sinh
(1
2
~r.
∂

∂~ξ

)
ā2

1 + 2µ1ρ1 sinh
(1
2
~r.
∂

∂~ξ

)
ā2

2. (2.4)

The wave-envelope power spectral density functions are defined by

F1(~P, ~ξ, τ) =
1

(2π)2

" ∞

−∞

ρ1

(
~ξ1, ~ξ2, τ

)
e−i(Pxrx+Pyry) drx dry

=
1

(2π)2

" ∞

−∞

ρ1

(
~ξ +

~r
2
, ~ξ −

~r
2
, τ

)
e−i~P·~r d~r,

F2(~P, ~ξ, τ) =
1

(2π)2

" ∞

−∞

ρ2

(
~ξ1, ~ξ2, τ

)
e−i(Pxrx+Pyry) drx dry

=
1

(2π)2

" ∞

−∞

ρ2

(
~ξ +

~r
2
, ~ξ −

~r
2
, τ

)
e−i~P·~r d~r.

(2.5)

Here ~P = (Px, Py) is the Fourier wavenumber conjugate to the spatial separation
coordinates ~r = (rx, ry). The Fourier inversions of the system of equation (2.5) are

ρ1

(
~ξ +

~r
2
, ~ξ −

~r
2
, τ

)
=

" ∞

−∞

F1(~P, ~ξ, τ)ei~P·~r d~P,

ρ2

(
~ξ +

~r
2
, ~ξ −

~r
2
, τ

)
=

" ∞

−∞

F2(~P, ~ξ, τ)ei~P·~r d~P.
(2.6)

Setting ~r = ~0 in (2.6) yields

ā1
2(~ξ, τ) = ρ1(~ξ, ~ξ, τ) =

" ∞

−∞

F1(~P, ~ξ, τ) d~P,

ā2
2(~ξ, τ) = ρ2(~ξ, ~ξ, τ) =

" ∞

−∞

F2(~P, ~ξ, τ) d~P.
(2.7)

Then, taking the Fourier transform of equation (2.4) and using relations (2.5)–(2.7),
we get the following spectral transport equation for the first wave packet:

∂F1

∂τ
+ (β1 + 2β3Px + β4Py)

∂F1

∂X
+ (β2 + β4Px + 2β5Py)

∂F1

∂Y

= 4λ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F1ā1

2 + 2µ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F1ā2

2. (2.8)
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On the right-hand side of equation (2.8), the spatial derivatives operate on ā2
1 or ā2

2,
and the wavenumber derivatives operate on F1(~P, ~ξ, τ). Thus,

sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F1ā2

1 = sin
(1
2
∂

∂X
·
∂

∂Px
+

1
2
∂

∂Y
·
∂

∂Py

)
F1ā2

1

=
1
2

[∂ā2
1

∂X
∂F1

∂Px
+
∂ā2

1

∂Y
∂F1

∂Py

]
−

1
3!

(1
2

)3[∂3ā2
1

∂X3

∂3F1

∂P3
x

+ 3
∂3ā2

1

∂X2∂Y
∂3F1

∂P2
x∂Py

+ 3
∂3ā2

1

∂X∂Y2

∂3F1

∂Px∂P2
y

+
∂3ā2

1

∂Y3

∂3F1

∂P3
y

]
− · · · .

Repeating the same procedure for the second evolution equation (2.2), we get the
following spectral transport equation for the second wave packet:

∂F2

∂τ
+ (β1 + 2β3Px − β4Py)

∂F2

∂X
− (β2 + β4Px − 2β5Py)

∂F2

∂Y

= 4λ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
ā2

2 + 2µ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F2ā2

1. (2.9)

The coupled nonlinear system of equations (2.8) and (2.9) governs the evolution of the
spectral transport functions F1 and F2 in a situation of crossing sea states over infinite-
depth water. Setting ā2

2 = 0 in equation (2.8), we can recover the spectral transport
equation for the propagation of a single wave packet.

3. Stability analysis

One basic solution ro the system of spectral transport equations (2.8) and (2.9) is
given by

F1 = F(0)
1 (~P), F2 = F(0)

2 (~P), (3.1)

where F(0)
1 (~P) and F(0)

2 (~P) are independent of ~ξ and τ. The solution (3.1) is statistically
uniform in space and time, and it is the random counterpart of uniform-amplitude
Stokes wavetrains in the deterministic theory of crossing seas. We assume that F(0)

1 (~P)
and F(0)

2 (~P) satisfy Gaussian properties. It is known that the evolving random statistical
amplitude field retains the same Gaussian statistical properties [4].

We now study the stability of the homogeneous solution (3.1) subject to the
infinitesimal perturbations

F1 = F(0)
1 (~P) + εF(1)

1 (~P, ~ξ, τ),

F2 = F(0)
2 (~P) + εF(1)

2 (~P, ~ξ, τ),
(3.2)

where ε is a small ordering parameter.
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Making use of (3.2) in (2.7),

ā2
1(~ξ, τ) =

" ∞

−∞

F(0)
1 (~P) d~P + ε

" ∞

−∞

F(1)
1 (~P, ~ξ, τ) d~P

= ā2
10 + εā2

11(~ξ, τ), (3.3)

ā2
2(~ξ, τ) =

" ∞

−∞

F(0)
2 (~P) d~P + ε

" ∞

−∞

F(1)
2 (~P, ~ξ, τ) d~P

= ā2
20 + εā2

21(~ξ, τ), (3.4)

where ā2
10 and ā2

20 are the mean square wave steepness of the first and second wave
packets, respectively. Substituting (3.2)–(3.4) in the spectral transport equations (2.8)
and (2.9) and then linearizing those equations yields

∂F(1)
1

∂τ
+

(
β1 + 2β3Px + β4Py

)∂F(1)
1

∂X
+

(
β2 + β4Px + 2β5Py

)∂F(1)
1

∂Y

= 4λ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F(0)

1 ā2
11 + 2µ1 sin

(1
2
∂

∂~ξ
·
∂

∂~P

)
F(0)

1 ā2
21, (3.5)

∂F(1)
2

∂τ
+

(
β1 + 2β3Px − β4Py

)∂F(1)
2

∂X
−

(
β2 + β4Px − 2β5Py

)∂F(1)
2

∂Y

= 4λ1 sin
(1
2
∂

∂~ξ
·
∂

∂~P

)
F(0)

2 ā2
21 + 2µ1 sin

(1
2
∂

∂~ξ
·
∂

∂~P

)
F(0)

2 ā2
11. (3.6)

We assume the space–time dependence of F(1)
1 , F(1)

2 , ā2
11, ā2

21 to take the form

F(1)
1 (~P, ~ξ, τ) = f1(~P) exp[i(LxX + LyY −Ωτ)],

F(1)
2 (~P, ~ξ, τ) = f2(~P) exp[i(LxX + LyY −Ωτ)],

ā2
11(~ξ, τ) = α1 exp[i(LxX + LyY −Ωτ)],

ā2
21(~ξ, τ) = α2 exp[i(LxX + LyY −Ωτ)],

(3.7)

where (Lx, Ly) is the perturbation wavenumber vector, Ω is the perturbed frequency,
and α1 and α2 are two constants. Substituting (3.7) in (3.5) and (3.6) and then equating
the coefficient of exp[i(LxX + LyY −Ωτ)] on both sides of these equations, we get

[−Ω + G+(~P)] f1(p) =
(
2λ1α1 + µ1α2

)[
F(0)

1

(
~P +

~L
2

)
− F(0)

1

(
~P −

~L
2

)]
, (3.8)

[−Ω + G−(~P)] f2(p) =
(
2λ1α2 + µ1α1

)[
F(0)

2

(
~P +

~L
2

)
− F(0)

2

(
~P −

~L
2

)]
, (3.9)

where
G±(~P) =

(
β1 + 2β3Px ± β4Py

)
Lx ±

(
β2 + β4Px ± 2β5Py

)
Ly.

Using (3.7) in (3.3) and (3.4),

α1 =

" ∞

−∞

f1(~P) d~P, α2 =

" ∞

−∞

f2(~P) d~P. (3.10)
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Having determined f1(~P) and f2(~P) from equations (3.8) and (3.9) respectively, we
substitute those in equations (3.10), yielding

(2λ1I1 + 1)α1 + µ1I1α2 = 0,

µ1I2α1 + (2λ1I2 + 1)α2 = 0,
(3.11)

where

I1 =

" ∞

−∞

F(0)
1

(~P + ~L/2
)
− F(0)

1
(~P − ~L/2)

Ω −G+(~P)
d~P,

I2 =

" ∞

−∞

F(0)
2

(~P + ~L/2
)
− F(0)

2
(~P − ~L/2)

Ω −G−(~P)
d~P.

(3.12)

The condition of non-trivial (non-zero) solution for the system of equations (3.11)
produces

(4λ2
1 − µ

2
1)I1I2 + 2λ1(I1 + I2) + 1 = 0. (3.13)

Thus, the perturbation wavenumber and perturbed frequency satisfy the nonlinear
integral equation (3.13). We assume that F(0)

1 (~P) and F(0)
2 (~P) are described by the

two-dimensional normal spectra

F(0)
1 (~P) =

ā2
10

2πσ2 exp
[
−

P2
x + P2

y

2σ2

]
,

F(0)
2 (~P) =

ā2
20

2πσ2 exp
[
−

P2
x + P2

y

2σ2

]
,

(3.14)

where σ is the bandwidth of an undisturbed spectrum; σ is, in fact, the degree of
randomness. We now make the vector transformations

~K1 =
(
2β3Lx + β4Ly

)
x̂ +

(
β4Lx + 2β5Ly

)
ŷ,

~K2 =
(
2β3Lx − β4Ly

)
x̂ −

(
β4Lx − 2β5Ly

)
ŷ,

(3.15)

where x̂, ŷ, ẑ are the unit vectors in the direction of increasing x, y and z, respectively.
The transformation (3.15) helps us reduce the double integrals in (3.12) to single
integrals. Using the vectors ~K1 and ~K2, we rewrite G±(~P) as

G+(~P) = β1Lx + β2Ly + ~P · ~K1 = β1Lx + β2Ly + P1|~K1|,

G−(~P) = β1Lx − β2Ly + ~P · ~K2 = β1Lx − β2Ly + P2|~K2|,

where P1 and P2 are the components of ~P in the directions of ~K1 and ~K2, respectively.
Thus,

P1 =
(2β3Lx + β4Ly)Px + (β4Lx + 2β5Ly)Py

[(2β3Lx + β4Ly)2 + (β4Lx + 2β5Ly)2]1/2 ,

P2 =
(2β3Lx − β4Ly)Px − (β4Lx − 2β5Ly)Py

[(2β3Lx − β4Ly)2 + (β4Lx − 2β5Ly)2]1/2 .
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If P
′

1 and P
′

2 are the components of ~P in the directions normal to ~K1 and ~K2
respectively, then

P
′

1 = ~P ·
(
ẑ ×

~K1

|~K1|

)
=

1

|~K1|
[
(
2β3Lx + β4Ly

)
Py −

(
β4Lx + 2β5Ly

)
Px],

P
′

2 = ~P ·
(
ẑ ×

~K2

|~K2|

)
=

1

|~K2|
[(2β3Lx − β4Ly)Py − (−β4Lx + 2β5Ly)Px].

Now, I1 can be rewritten as

I1 =

" ∞

−∞

F(0)
1 (~P + ~L/2) − F(0)

1 (~P − ~L/2)

Ω −G+(~P)
dP1 dP

′

1.

Performing integration with respect to P
′

1,

I1 =

∫ ∞

−∞

F̄(0)
1 (P1 + γ1/2) − F̄(0)

1 (P1 − γ1/2)

Ω − (β1Lx + β2Ly + P1|~K1|)
dP1, (3.16)

where

F̄(0)
1 (P1) =

∫ ∞

−∞

F(0)
1 (~P) dP

′

1, (3.17)

and

γ1 = (Lx, Ly) ·
~K1

|~K1|
.

Similarly, I2 can be rewritten as

I2 =

∫ ∞

−∞

F̄(0)
2

(
P2 + γ2/2

)
− F̄(0)

2
(
P2 − γ2/2

)
Ω −

(
β1Lx − β2Ly + P2|~K2|

) dP2, (3.18)

where

F̄(0)
2 (P2) =

∫ ∞

−∞

F(0)
2 (~P) dP

′

2, (3.19)

and

γ2 = (Lx, Ly) ·
~K2

|~K2|
.

Substituting the form of F(0)
1 (~P) and F(0)

2 (~P) from (3.14) into equations (3.17) and
(3.19) and keeping in mind that

P2
x + P2

y = P2
1 + P

′2
1 = P2

2 + P
′2
2 ,

we obtain

F̄(0)
1 (P1) =

¯a10
2

√
2πσ

exp
[
−

P2
1

2σ2

]
,

F̄(0)
2 (P2) =

¯a20
2

√
2πσ

exp
[
−

P2
2

2σ2

]
.
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Finally, substituting F̄(0)
1 (P1) in (3.16) and F̄(0)

2 (P2) in (3.18), we rewrite I1 and I2 as

I1 = −
iā2

10

σ|~K1|

√
π

2
[
w(Ω(+)

1 ) − w(Ω(−)
1 )

]
, (3.20)

I2 = −
iā2

20

σ|~K2|

√
π

2
[
w(Ω(+)

2 ) − w(Ω(−)
2 )

]
. (3.21)

Here w(z), a complex integral function introduced by Abramowitz and Stegun [1], is
defined as

w(z) =
i
π

∫ ∞

−∞

e−u2

z − u
du, Im(z) > 0;

w(z) can also be expressed in terms of the complementary error function as

w(z) = e−z2
erfc(−iz).

The arguments Ω
(±)
1 , Ω

(±)
2 appearing in equations (3.20) and (3.21) are given by

Ω
(±)
1 =

1
√

2σ|~K1|

[
Ω − β1Lx − β2Ly ± β3L2

x ± β4LxLy ± β5L2
y
]
,

Ω
(±)
2 =

1
√

2σ|~K2|

[
Ω − β1Lx + β2Ly ± β3L2

x ∓ β4LxLy ± β5L2
y
]
.

(3.22)

Substituting the forms of I1 and I2 as given in (3.20) and (3.21) respectively, we can
rewrite the nonlinear dispersion relation (3.13) as

AI
′

1I
′

2 + B1I
′

1 + B2I
′

2 + 1 = 0, (3.23)

where

A =
(4λ2

1 − µ
2
1)ā2

10ā2
20

2πσ2|~K1||~K2|
, B1 =

2λ1ā2
10

√
2πσ|~K1|

, B2 =
2λ1ā2

20
√

2πσ|~K2|
,

I
′

1 =

∫ ∞

−∞

e−u2

Ω
(+)
1 − u

du −
∫ ∞

−∞

e−u2

Ω
(−)
1 − u

du,

I
′

2 =

∫ ∞

−∞

e−u2

Ω
(+)
2 − u

du −
∫ ∞

−∞

e−u2

Ω
(−)
2 − u

du.

When the bandwidth of both the wave packets becomes vanishingly small, we can
recover the nonlinear dispersion relation for Benjamin–Feir [3] type instability for two
obliquely interacting deterministic wave packets from the nonlinear integral equation
(3.23). When σ→ 0, expressions in (3.22) show that Ω

(±)
1 and Ω

(±)
2 tend to infinity. As

z→∞, w(z) has the asymptotic behaviour

w(z) =
i
√
π

z−1 + O(z−3).
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Figure 1. Growth rate of instability Gr against perturbation wavenumber Lx for different values of θ in
the range 0◦ < θ < 45◦.

Therefore, as σ→ 0, the nonlinear dispersion relation (3.23) becomes

(4λ2
1 − µ

2
1)ā2

10ā2
20

( 1

Ω
(+)
3

−
1

Ω
(−)
3

)( 1

Ω
(+)
4

−
1

Ω
(−)
4

)
+ 2λ1ā2

10

( 1

Ω
(+)
3

−
1

Ω
(−)
3

)
+ 2λ1ā2

20

( 1

Ω
(+)
4

−
1

Ω
(−)
4

)
+ 1 = 0, (3.24)

where
Ω

(±)
3 =

√
2σ|~K1|Ω

(±)
1 , Ω

(±)
4 =

√
2σ|~K2|Ω

(±)
2 .

If in equation (3.24) 2ā2
10 and 2ā2

20 are replaced by their deterministic counterparts
a2

10 and a2
20 respectively, then one can recover the nonlinear dispersion relation of

Shukla et al. [16].
We consider long-crested perturbations in the x̃ direction for which Ly = 0. In

this case, Ω
(+)
1 = Ω

(+)
2 and Ω

(−)
1 = Ω

(−)
2 . Hence, it follows that I

′

1 = I
′

2. The dispersion
relation (3.23) can now be solved as

I
′

1 =
−(B1 + B2) ±

√
(B1 + B2)2 − 4A

2A
.

One can verify that I
′

1 is real. Substituting Ω = β1Lx + Ωr + iΩi, and Ωr, Ωi being real,
we get

I
′

1

α
=

∫ ∞

−∞

(Ωr + β3L2
x − αu − iΩi)e−u2

(Ωr + β3L2
x − αu)2 + Ω2

i

du −
∫ ∞

−∞

(Ωr − β3L2
x − αu − iΩi)e−u2

(Ωr − β3L2
x − αu)2 + Ω2

i

du,

(3.25)
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Figure 2. Growth rate of instability Gr against perturbation wavenumber Lx for different values of θ in
the range 45◦ ≤ θ < 90◦.

Figure 3. Growth rate of instability Gr against perturbation wavenumber Lx for different values of ā20
taking ā10 = 0.1, σ = 0.1, θ = 22.5◦.

where

α = σLx

√
2(4β2

3 + β2
4).

Since I
′

1 is real, it follows from equation (3.25) for I
′

1 that Ωr = 0. Equation (3.25) then
reduces to

I
′

1 = 2
∫ ∞

−∞

(p − u)e−u2

(p − u)2 + q2 du = 2π Im[w(p + iq)], (3.26)
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Figure 4. Growth rate of instability Gr against perturbation wavenumber Lx for different values of σ
taking ā10 = 0.1, ā20 = 0.1.

where p = β3L2
x/α and q = Ωi/α. Using equation (3.26), we have plotted several

figures which are limited to long-crested perturbations. In Figures 1 and 2 we have
plotted the growth rate of instability Gr against perturbation wavenumber Lx for
different values of θ, taking ā10 = ā20 = 0.1 and σ = 0.1. Here θ is the half-angle
between the directions of propagation of the two wave systems so that θ = arctan(l/k).
We observe that Gr decreases with the increase in θ for 0◦ < θ < 45◦, while Gr increases
with the increase in θ for 45◦ ≤ θ < 900. In Figure 3 we have plotted the growth rate
of instability Gr against perturbation wavenumber Lx for different values of ā20, taking
ā10 = 0.1 and θ = 22.5◦. Figure 3 shows that Gr increases as the value of ā20 increases.
In Figure 4 we have shown the growth rate of instability Gr against perturbation
wavenumber Lx for different values of σ, taking θ = 22.5◦ and 60◦. We observe that
the growth rate of instability decreases as the value of σ increases. Figure 5 shows
a comparison between the growth rate values for the deterministic situation and the
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Figure 5. Growth rate of instability Gr against perturbation wavenumber Lx: comparison with
deterministic growth rate values.

corresponding values when modified by the effect of randomness. We observe that the
growth rate of instability decreases due to the effect of randomness, but it is greater
than that for a single wave packet.

4. Conclusion

Making use of the evolution equations obtained by Onorato et al. [12] for crossing
sea states, we have obtained a set of two coupled nonlinear transport equations for the
spectral functions corresponding to two obliquely interacting random field of weakly
nonlinear gravity wave packets. These two equations are useful to study the effect of
inhomogeneity and the energy transfer mechanism associated with the homogeneous
spectrum. Using the two spectral transport equations derived here, we have carried out
stability analysis of a pair of obliquely interacting random wave packets following
a Gaussian distribution. We observe that randomness reduces the growth rate of
instability slightly, as in the case of a single wave system. Although the effect of
randomness has a stabilizing influence, it is interesting to note that the growth rate of
instability in a situation of crossing seas characterized by two random wave systems
is higher than that for a single wave system. We have shown that the growth rate
of instability decreases with the increase in half-angle θ between the directions of
propagation of the two wave packets for 0◦ < θ < 45◦. In the range 45◦ ≤ θ < 90◦, the
growth rate of instability increases as θ increases. As the mean square wave steepness
of one wave packet increases, the growth of instability of the second wave packet also
increases. This observation is similar to the corresponding deterministic situation. The
growth rate of instability is found to decrease with the increase of the bandwidth of
spectral functions.
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