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Abstract. An interesting class of submanifolds of Hermitian manifolds is the
class of slant submanifolds which are submanifolds with constant Wirtinger angle.
In [1±4,7,8] slant submanifolds of complex projective and complex hyperbolic spaces
have been investigated. In particular, it was shown that there exist many proper
slant surfaces in CP2 and in CH2 and many proper slant minimal surfaces in C2. In
contrast, in the ®rst part of this paper we prove that there do not exist proper slant
minimal surfaces in CP2 and in CH2. In the second part, we present a general con-
struction procedure for obtaining the explicit expressions of such slant submani-
folds. By applying this general construction procedure, we determine the explicit
expressions of special slant surfaces of CP2 and of CH2. Consequently, we are able
to completely determine the slant surface which satis®es a basic equality. Finally, we
apply the construction procedure to prove that special �-slant isometric immersions
of a hyperbolic plane into a complex hyperbolic plane are not unique in general.

1991 Mathematics Subject Classi®cation. 53C40, 53C42.

1. Introduction. Let M be a Riemannian manifold and ~M an almost Hermitian
manifold with almost complex structure J. An isometric immersion f : M! ~M of M
in ~M is called holomorphic if at each point p 2M we have J�TpM� � TpM, where
TpM denotes the tangent space of M at p [9]. The immersion is called totally real if
J�TpM� � T?p M for each p 2M, where T?p M is the normal space of M at p.

Let ~Mm�4�� denote a KaÈ hlerian m-manifold of constant holomorphic sectional
curvature 4� and f : M! ~Mm�4�� an isometric immersion. We denote by h ; i the
inner product for M as well as for ~Mm�4��.

For any vector X tangent to M, we put JX � PX� FX; where PX and FX
denote the tangential and normal components of JX, respectively. For each nonzero
vector X tangent to M at p, the angle ��X�; 0 � ��X� � �

2 ; between JX and TpM is
called the Wirtinger angle of X. An immersion f : M! ~Mm�4�� is called slant if the
Wirtinger angle � is a constant [2]. The Wirtinger angle � of a slant immersion is
called the slant angle . A slant submanifold with slant angle � is called �-slant.
Holomorphic and totally real immersions are slant immersions with slant angle 0
and �

2, respectively. A slant immersion is called proper slant if it is neither
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holomorphic nor totally real. There exist ample examples of n-dimensional proper
slant submanifolds in complex-space-forms of complex dimension n (see, for
instance, [2,4,7,8,11]).

Let M be a proper �-slant surface in a KaÈ hlerian surface ~M2. If e1 is a unit
vector tangent to M, we choose a canonical orthonormal basis fe1; e2; e3; e4g de®ned
by

e2 � �sec ��Pe1; e3 � �csc ��Fe1; e4 � �csc ��Fe2: �1:1�

We call such an orthonormal basis an adapted orthonormal basis [2].
In [3] the ®rst author proved that the squared mean curvature H2 and the Gauss

curvature K of a proper slant surface M in a complex space form ~M2�4�� satisfy the
following basic inequality:

H2�p� � 2K�p� ÿ 2�1� 3 cos2 ���; �1:2�

at each point p 2M. The equality sign of �1:2� holds at a point p 2M if and only if,
with respect to some suitable adapted orthonormal basis fe1; e2; e3; e4g at p, the
shape operator of M at p takes the following form:

Ae3 � 3� 0
0 �

� �
; Ae4 � 0 �

� 0

� �
: �1:3�

A slant surface M in a KaÈ hlerian surface ~M2 is said to be special slant if, with
respect to some suitable adapted orthonormal frame fe1; e2; e3; e4g, the shape
operator of M takes the following special form:

Ae3 � c� 0
0 �

� �
; Ae4 � 0 �

� 0

� �
; �1:4�

for some constant c and some function �.
In contrast to the fact that there exist ample examples of proper slant minimal

surfaces in C2, we prove in section 3 that every proper slant surface in CP2 and in
CH2 is non-minimal. In section 4, we present a general construction procedure for
obtaining the explicit expressions of slant submanifolds of complex projective spaces
and of complex hyperbolic spaces. In section 5 we apply the procedure to construct
the explicit expressions of special slant surfaces and apply it to determine completely
the slant surface which satis®es the equality case of the basic inequality (1.2). In the
last section, we establish a non-congruent result by applying the construction pro-
cedure. In fact, we prove that, up to rigid motions of CH2�ÿ4�, there exist more than
one special �-slant isometric immersions for each � 2 �0; �2� from a surface of con-
stant negative Gauss curvature ÿ4 cos2 � into CH2�ÿ4� whose shape operators
satisfy �1:4� with c � 2.

2. Basic formulas. Let f : M! ~Mm�4�� be an isometric immersion of a
Riemannian n-manifold into ~Mm�4��. Denote by h and A the second fundamental
form and the shape operator of f, and by r and ~r the Levi-Civita connections of M
and ~Mm�4��, respectively. The Gauss and Weingarten formulas of M in ~M are given
respectively by
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~rXY � rXY� h�X;Y�; �2:1�
~rX� � ÿA�X�DX�; �2:2�

where X;Y are vector ®elds tangent to M and � is normal to M. The second funda-
mental form h and the shape operator A are related by hA�X;Yi � hh�X;Y�; �i: The
mean curvature vector ~H of the immersion is de®ned by ~H � 1

n trace h.
Denote by R and ~R the Riemann curvature tensors of M and ~Mm�4��, respec-

tively. The equation of Gauss is given by

~R�X;Y;Z;W� �R�X;Y;Z;W� � hh�X;Z�; h�Y;W�i
ÿ hh�X;W�; h�Y;Z�i; �2:3�

for vectors X;Y;Z;W tangent to M and �; � normal to M.
For the second fundamental form h, de®ne the covariant derivative �rh of h with

respect to the connection on TM� T?M by

� �rXh��Y;Z� � DX�h�Y;Z�� ÿ h�rXY;Z� ÿ h�Y;rXZ�: �2:4�
The equation of Codazzi is given by

� ~R�X;Y�Z�? � � �rXh��Y;Z� ÿ � �rYh��X;Z�; �2:5�

where � ~R�X;Y�Z�? denotes the normal component of ~R�X;Y�Z.
Let � ~M2m�1; g; �; �� be a �2m� 1�-dimensional almost contact metric manifold

with Riemannian (or a pseudo-Riemannian) metric g, the almost contact �1; 1�-tensor
�, and the structure vector ®eld �. An immersion f : N! ~M2m�1 of a manifold N
into ~M2m�1 is called contact �-slant if (i) the structure vector ®eld � of ~M2m�1 is
tangent to f��TN� and (ii) for each nonzero vector X tangent to f��TpN� and per-
pendicular to �, the angle ��X� between ��X� and f��TpN� is independent of the
choice of X.

3. A non-minimality theorem. There exist ample examples of proper slant
minimal surfaces in C2 and there also exist many examples of proper slant surfaces
in complex projective plane CP2 and in complex hyperbolic plane CH2 (see, for
instance [2,3,7,8]). In this section we prove the following non-minimality for proper
slant surfaces in CP2 and in CH2.

Theorem 3.1. Every proper slant surfaces in a complex space form ~M2�4�� with
� 6� 0 is non-minimal.

Proof. Suppose that M is a proper slant minimal surface in a complex space
form ~M2�4�� with � 6� 0. Denote by � the slant angle. Then � 2 �0; �2�.

Let

e1; e2 � �sec ��Pe1; e3 � �csc ��Fe1; e4 � �csc ��Fe2 �3:1�

be an adapted orthonormal local frame of M in ~M2�4��.
For any normal vector �, we put J� � t�� f�, where t� and f� denote the tan-

gential and the normal components of �, respectively. Then (3.1) yields
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te3 � ÿ sin �e1; te4 � ÿ sin �e2; fe3 � ÿ cos �e4; fe4 � cos �e3: �3:2�

Since the almost complex structure J on ~M2�4�� is parallel, (2.1) and (2.2)
yield

rX�PY� � h�X;PY� ÿ AFYX�DX�FY�
� P�rXY� � F�rXY� � th�X;Y� � fh�X;Y�: �3:3�

Comparing the normal components of both sides of (3.3) yields

DX�FY� � F�rXY� � fh�X;Y� ÿ h�X;PY�: �3:4�

Hence, we ®nd

De1e3 � �csc ��f!2
1�e1�Fe2 � h311 fe3 � h411 fe4 ÿ cos ��h312e3 � h412e4�g; �3:5�

where hrij � h�ei; ej�; er

 �

, i; j � 1; 2; r � 3; 4.
On the other hand, since [2]

AFXY � AFYX; �3:6�

we have h312 � h411 and h412 � h322. Thus, (3.1), (3.2), (3.5) and the minimality of M
yield !4

3�e1� � !2
1�e1�. Similarly, we have !4

3�e2� � !2
1�e2�. Hence, we get

!4
3 � !2

1: �3:7�

Let p be a non-totally geodesic point in M. We de®ne a function 
p by


p : UMp! R : v 7!
p�v� � hh�v; v�;Fvi; �3:8�

where UMp �: fv 2 TpM : hv; vi � 1g. Since UMp is a compact set, there exists a
vector v in UMp such that 
p attains its absolute minimum at v. Since p is a non-
totally geodesic point, it follows from (3.6) that 
p 6� 0. By linearity, we have

p�v� < 0. Because 
p attains an absolute minimum at v, it follows that
hh�v; v�;Fwi � 0 for all w orthogonal to v. So, v is an eigenvector of the symmetric
operator AFv. Thus, by choosing an orthonormal basis fe1; e2g of TpM with e1 � v,
we obtain

h�e1; e1� � ÿ�Fe1; h�e1; e2� � �Fe2; h�e2; e2� � �Fe1 �3:9�

for some real number �. If p is a totally geodesic point, (3.9) holds trivially for any
adapted orthonormal basis at p. Consequently, there exists a local adapted ortho-
normal frame e1; e2; e3; e4 such that the second fundamental form h of the proper
slant minimal surface M in ~M2�4�� satis®es

h�e1; e1� � ÿ�e3; h�e1; e2� � �e4; h�e2; e2� � �e3 �3:10�

where � � � sin �. Using (2.4), (3.7) and (3.10), we ®nd
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� �re2h��e1; e1� � ÿ�e2��e3 ÿ 3�!2
1�e2�e4; �3:11�

� �re1h��e1; e2� � �e1��e4 ÿ 3�!2
1�e1�e3; �3:12�

� �re1h��e2; e2� � �e1��e3 � 3�!2
1�e2�e4; �3:13�

� �re2h��e1; e2� � �e2��e4 ÿ 3�!2
1�e2�e3: �3:14�

On the other hand, it is easy to see that the normal component of ~R�e2; e1�e1 and
~R�e1; e2�e2 are given by

� ~R�e2; e1�e1�? � 3� sin � cos �; � ~R�e1; e2�e2�? � ÿ3� sin � cos �: �3:15�
Thus, by the equation of Codazzi, (3.11), (3.12) and (3.15) we obtain

e2� � 3�!2
1�e1� ÿ 3� sin � cos �; �3:16�

e2� � 3�!2
1�e1� � 3� sin � cos �: �3:17�

Combining (3.16) and (3.17) yields � sin � cos � � 0, which is a contradiction. &

As an immediate consequence of Theorem 3.1, we obtain the following.

Corollary 3.2. Let M be a slant surface of a complex space form ~M2�4��. If M
is minimal, then � � 0, or M is a holomorphic, or M is totally real.

4. A general construction procedure. In this section we ®x notation and at the
time present a general construction procedure to obtain the explicit expression of a
slant submanifold in a complex projective space or in a complex hyperbolic space
via Hopf's ®bration. The method presented in this section is di�erent from the one
used in [5,10] which represents totally real submanifolds in complex projective or
complex hyperbolic spaces.

Case (1): Slant submanifolds in CPm�4�. Consider the complex number �m� 1�-
space Cm�1. Let S2m�1 denote the unit hypersphere centered at the origin and
C� � f� 2 C : � �� � 1g: Then we have a C�-action on S2m�1 de®ned by z 7!�z. At
z 2 S2m�1 the vector V � iz is tangent to the ¯ow of the action. The quotient space
S2m�1= � under the identi®cation induced from the action is CPm�4� with constant
holomorphic sectional curvature 4. The almost complex structure J on CPm�4� is
induced from the complex structure J on Cm�1 via the Hopf ®bration:
� : S2m�1! CPm�4�: On S2m�1 consider the Sasakian structure obtained from the
projection of J of Cm�1 on the tangent bundle of S2m�1 and with the structure vector
®eld � � V � iz.

Let f : M! CPm�4� be an isometric immersion. Then M̂ � �ÿ1�M� is a princi-
pal circle bundle over M with totally geodesic ®bers and the lift f̂ : M̂! S2m�1 of f is
an isometric immersion such that the diagram:

M̂ÿÿÿÿÿÿ!f̂
S2m�1

� �

Mÿÿÿÿÿÿ!f
CPm�4�

�4:1�

commutes.
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Conversely, if  : M̂! S2m�1 is an isometric immersion which is invariant
under the action of C�, there is a unique isometric immersion  � : ��M̂� ! CPm�4�
such that the associated diagram (4.1) commutes. We simply call the immersion
 � : ��M̂� ! CPm�4� the projection of  : M̂! S2m�1.

Let r̂ and ~r denote the Levi-Civita connections of S2m�1 and CPm�4� respec-
tively and denote by � the horizontal lift. Follows from hX;Yi � hX�;Y�i and
�JX�� � �X� for X;Y tangent to M, we obtain the following.

Lemma 4.1. The isometric immersion f : M! CPm�4� is �-slant if and only if
f̂ : M̂! S2m�1 is contact �-slant.

Denote by h and ĥ the second fundamental forms of f and f̂, respectively. Then

ĥ�X�;Y�� � �h�X;Y���; ĥ�X�;V� � �FX��; ĥ�V;V� � 0 �4:2�

for X;Y tangent to M, where FX is the normal component of JX in CPm�4�.
It follows from Lemma 4.1 that in order to obtain the explicit expression of a

desired �-slant submanifold of CPm�4� with second fundamental form h, it is su�-
cient to construct a contact �-slant submanifold of S2m�1 whose second fundamental
form satis®es ��ĥ � h, and vice versa.

Case (2): Slant submanifolds in CHm�ÿ4�. Consider the complex number
�m� 1�-space Cm�1

1 with the pseudo-Euclidean metric g0 � ÿdz0d �z0 �
Pm

j�1 dzjd �zj:
Put H2m�1

1 � fz � �z0; z1; . . . ; zm� : hz; zi � ÿ1g; where h ; i denotes the inner pro-
duct on Cm�1

1 induced from g0. We have a C�-action on H2m�1
1 de®ned by z 7!�z. At

z 2 H2m�1
1 , iz is tangent to the ¯ow of the action. The orbit is given by zt � eitz with

dzt
dt � izt which lies in the negative-de®nite plane spanned by z and iz. The quotient
space H2m�1

1 = � is the complex hyperbolic space CHm�ÿ4�. The almost complex
structure J on CHm�ÿ4� is induced from the canonical complex structure J on Cm�1

1

via the totally geodesic ®bration: � : H2m�1
1 ! CHm�ÿ4�: On H2m�1

1 � Cm�1
1 con-

sider the Sasakian structure obtained from the projection of the J of Cm�1
1 onto the

tangent bundle of H2m�1
1 and with � � V � Jz.

Let f : M! CHm�ÿ4� be an isometric immersion. Then M̂ � �ÿ1�M� is a prin-
cipal circle bundle over M with totally geodesic ®bers and the lift f̂ : M̂! H2m�1

1 of f
is an isometric immersion such that the diagram:

M̂ÿÿÿÿÿÿ!f̂
H2m�1

1

� �

Mÿÿÿÿÿÿ!f
CHm�ÿ4�

�4:3�

commutes.
Conversely, if  : M̂! H2m�1

1 is an isometric immersion which is invariant
under the action of C�, there is a unique isometric immersion  � : ��M̂� !
CHm�ÿ4�, called the projection of  , such that the associated diagram commutes.

Similar to Lemma 4.1 we have

Lemma 4.2. The isometric immersion f : M! CHm�ÿ4� is �-slant if and only if
f̂ : M̂! H2m�1

1 is contact �-slant.
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Denote by r̂ and ~r the Levi-Civita connections of H2m�1
1 and CHm�ÿ4�, � the

horizontal lift, and by h and ĥ the second fundamental forms of f and f̂, respectively.
We also have (4.2). From Lemma 4.2 it follows that in order to obtain the explicit
expression of a desired �-slant submanifold in CHm�ÿ4�, it is su�cient to construct a
contact �-slant submanifold in H2m�1

1 � Cm�1 whose second fundamental form
satis®es ��ĥ � h, and vice versa.

Let M be a �-slant submanifold of CPm�4� (respect., of CHm�ÿ4�) and
z : S2m�1! Cm�1 (respect., z : H2m�1

1 ! Cm�1
1 ) the standard inclusion. Denote by �r

the Levi-Civita connection of Cm�1 (respect., of Cm�1
1 ). Then we have [6]

�rX�Y� � �rXY�� � �h�X;Y��� � hJX;Yiizÿ "hX;Yiz; �4:4�
�rX�V � �rVX� � �JX�� �4:5�
�rVV � "z; �4:6�

for X;Y tangent to M, where " � 1 if the ambient space is Cm�1; " � ÿ1 if the
ambient space is Cm�1

1 .
In principle, we obtain the representation of a desired �-slant submanifold by

solving system (4.4)±(4.6) of partial di�erential equations. The general construction
procedure goes as follows: First we determine both the intrinsic and extrinsic struc-
tures of the �-slant submanifold in order to obtain the precise form of the di�erential
system (4.4)±(4.6). Next we construct a coordinate system on the associated contact
�-slant submanifold M̂ � �ÿ1�M�. After that we solve the di�erential system via the
coordinate system on M̂ to obtain a solution of the system. The solution, say z, of
the system gives rise to the explicit expression of the associated contact �-slant sub-
manifold of S2m�1 or of H2m�1

1 which in turn provides the representation of the
desired �-slant submanifold via �.

5. Special slant surfaces with c 6�2. The main purpose of this section is to apply
the construction procedure to completely determine the slant surface which satis®es
the equality case of the basic inequality (1.2). In order to do so, ®rst we prove the
following.

Theorem 5.1. For each given a 2 �0; 1�, let z : R3! C3
1 denote the map of R3 into

C3
1 de®ned by

z�u; v; t� � eit
�
1� cosh avÿ 1

a2
� a2eÿavu2

2�4ÿ 3a2� ÿ iu

�������������
1ÿ a2
p

�1� eÿav����������������
4ÿ 3a2
p ;

2ÿ 2a2 � �2ÿ a2�eÿav
4ÿ 3a2

u� i

�������������
1ÿ a2
p

eÿav��4ÿ 3a2��eav ÿ 1��a2 ÿ 1� eav� � a4u2�
a2�4ÿ 3a2�3=2 ;

a
�������������
1ÿ a2
p

�1ÿ eÿav�
4ÿ 3a2

u� i
�4ÿ 3a2��2ÿ 2a2 � �2a2 ÿ 3�eÿav � eav� � a4eÿavu2

2a�4ÿ 3a2�3=2
�
: �5:1�

Then we have
(i) z de®nes an immersion of R3 into the anti-de Sitter space time H5

1,
(ii) with respect to the induced metric on R3, z : R3! H5

1 is a contact �-slant

isometric immersion with slant angle � � cosÿ1 a
����������
1ÿa2
4ÿ3a2

q� �
.
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(iii) the image z�R3� in H5
1 is invariant under the action of C�,

(iv) the projection �c : ��R3� ! CH2�ÿ4� of z : R3! H5
1 via � : H5

1! CH2�ÿ4�
is a special slant isometric immersion with slant angle � given in (ii) whose
shape operator satis®es

Ae3 � c� 0
0 �

� �
; Ae4 � 0 �

� 0

� �
; �5:2�

with respect to an adapted orthonormal frame ®led e1; e2; e3; e4, where

c � 8ÿ 3a2

4ÿ 3a2
2 �2; 5�; � �

�������������
1ÿ a2
p

; �5:3�

(v) �c : ��R3� ! CH2�ÿ4� has nonzero constant mean curvature and constant
Gauss curvature, and

(vi) up to rigid motions, every proper slant surface with constant mean curvature
in CH2�ÿ4� is obtained in the above way if the shape operator satis®es �5:2�
for some real number c 6� 2.

Proof. Let z : R3! C3
1 be the map of R3 into C3

1 de®ned by (5.1). Then
hz; zi � ÿ1. Thus, it de®nes a map from R3 into the anti-de Sitter space-time H5

1. It
follows from a direct computation that z : R3! H5

1 is an immersion. This gives
statement (i). Statements (ii), (iii) and (iv) follow from straightforward long compu-
tation. Statement (v) follows from statement (iv) and the equation of Gauss.

In order to prove statement (vi), we assume that f : M! CH2�ÿ4� is a proper
slant surface in the complex hyperbolic plane CH2�ÿ4� whose shape operator satis-
®es (5.2) for some constant c 6� 2 and some function �. Let z : M̂! H5

1 � C3
1 denote

the immersion of M̂ � �ÿ1�M� into C3
1 obtained from f : M! CH2�ÿ4� as men-

tioned in section 4.
From Theorem 3.1 and the proof of Theorem 5 of [4] we know that c 2 �2; 5�,

the metric tensor of M is given by

g � eÿ2aydx2 � dy2; a � 2

����������������
cÿ 2

3�cÿ 1�

s
�5:4�

where � is the slant angle given by

� � cosÿ1
1

3

����������������������������
�5ÿ c��cÿ 2�

cÿ 1

r !
; �5:5�

and moreover the shape operator takes the form:

Ae3 � c� 0
0 �

� �
; Ae4 � 0 �

� 0

� �
; � �

����������������
5ÿ c

3�cÿ 1�

s
�5:6�

with respect to an adapted orthonormal frame ®eld e1; e2; e3; e4 with e2 � @=@y.
Since a � 2

���������������������������������cÿ 2�=3�cÿ 1�p
, we have a 2 �0; 1� and

� � cosÿ1 a

���������������
1ÿ a2

4ÿ 3a2

r !
; � �

�������������
1ÿ a2
p

: �5:7�
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From (5.4) we ®nd

r @
@x

@

@x
� aeÿ2ay

@

@y
; r @

@x

@

@y
� ÿa @

@x
; r @

@y

@

@y
� 0; �5:8�

where r denotes the metric connection of M. Let e1 � eay@=@x and e2 � @=@y. Then
(5.8) yields

re1e1 � ae2; re1e2 � ÿae1; re2e1 � re2e2 � 0: �5:9�

Denote by E1; . . . ;E4 the horizontal lifts �e1��; . . . ; �e4�� of e1; . . . ; e4, respectively.
Then E1; . . . ;E4 can be regarded in a natural way as vector ®elds in C3

1 via the
inclusion H5

1 � C3
1.

From (1.1), (4.9), (5.6), and (5.9) we obtain

�rE1
E1 � aE2 � c�E3 � z; �5:10�

�rE1
E2 � ÿaE1 � �E4 � �cos ��iz; �5:11�

�rE2
E1 � �E4 ÿ �cos ��iz; �5:12�

�rE2
E2 � �E3 � z; �5:13�

�rVE1 � �rE1
V � �cos ��E2 � �sin ��E3; �5:14�

�rVE2 � �rE2
V � ÿ�cos ��E1 � �sin ��E4; �5:15�

�rVV � ÿz; �5:16�
where V � iz is tangent to M̂ � �ÿ1�M� and �r is the metric connection of C3

1.
Let F � eÿay E1 ÿ 2

a �cos ��Vÿ �
. Then by using (5.10)±(5.16) we obtain

�F;E2� � �F;V� � �E2;V� � 0:

Therefore, there exist coordinates fu; v; tg on M̂ � �ÿ1�M� such that

zu � eÿav E1 ÿ 2

a
�cos ��V

� �
; zv � E2; zt � V; �5:17�

where zu � @z=@u; zv � @z=@v and zt � @z=@t. From (5.17) we get

E1 � eavzu � 2

a
�cos ��iz; E2 � zv; V � zt: �5:18�

Since iE1 � cos �E2 � sin �E3, we have

E3 � eav�csc ��izu ÿ �cot ��zv ÿ 2 cot �

a

� �
z: �5:19�

Similarly, we have

E4 � eav�cot ��zu � �csc ��izv � 2 cos � cot �

a

� �
iz: �5:20�
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From (5.10)±(5.20) and a straight-forward computation we obtain

zuu � eÿ2av
�
eav c� csc � ÿ 4 cos �

a

� �
izu � �aÿ c� cot ��zv

� 1� 4 cos2 �

a2
ÿ 2c� cot �

a

� �
z

�
; �5:21�

zuv � eÿav
�
�� cot � ÿ a�eavzu � � csc � ÿ 2 cos �

a

� �
izv

� 2� cos � cot �

a
ÿ cos �

� �
iz

�
; �5:22�

zvv � �eav�csc ��izu ÿ ��cot ��zv � 1ÿ 2� cot �

a

� �
z; �5:23�

zut � izu; zvt � izv; ztt � ÿz: �5:24�

Solving (5.24) yields

z�u; v; t� � eitA�x; y�; �5:25�

for some C3
1-valued function A � A�u; v�. Substituting (5.25) into (5.21)±(5.23) yields

Auu � eÿ2av
�
eav c� csc � ÿ 4 cos �

a

� �
iAu � �aÿ c� cot ��Av

� 1� 4 cos2 �

a2
ÿ 2c� cot �

a

� �
A

�
; �5:26�

Auv � eÿav
�
�� cot � ÿ a�eavAu � � csc � ÿ 2 cos �

a

� �
iAv

� 2� cos � cot �

a
ÿ cos �

� �
iA

�
; �5:27�

zvv � �eav�csc ��iAu ÿ ��cot ��Av � 1ÿ 2� cot �

a

� �
A: �5:28�

Using (5.4), (5.7) and (5.26)±(5.28), we obtain Auuu � 0. Therefore,

A�u; v� � E�v� � uF�v� � u2G�v� �5:29�

for some C3
1-valued functions E�v�;F�v� and G�v�. From (5.29) we get

Auu � 2G�v�: �5:30�
On the other hand, substituting (5.25) into the right hand side of (5.26) we also

have

Auu � eÿ2av
�
eav c� csc � ÿ 4 cos �

a

� �
i�F� 2uiG� � �aÿ c� cot ���E0 � uF0 � u2G0�

� 1� 4 cos2 �

a2
ÿ 2c� cot �

a

� �
�E� uF� u2G�

�
: �5:31�
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By comparing the coe�cients of u2 in (5.30) and in (5.31), we obtain

�aÿ c� cot ��G0�v� � 2c� cot �

a
ÿ 1ÿ 4 cos2 �

a2

� �
G�v�: �5:32�

Hence, by applying (5.4) and (5.7), we obtain from (5.32) that G0�v� � ÿaG�v� which
implies

G�v� � �eÿav; �5:33�

for some constant vector � 2 C3
1.

Comparing the coe�cients of u in (5.30) and (5.31) and applying (5.33) yield

aF0�v� � a2F�v� � ÿ2
����������������������������������
�1ÿ a2��4ÿ 3a2�

p
i�: �5:34�

Solving (5.34) yields

F�v� � 
eÿav ÿ 2
����������������������������
4ÿ 7a2 � 3a4
p

a2
i�; �5:35�

for some constant vector 
 2 C3
1.

Comparing the coe�cients of u0 in (5.30) and (4.31) and applying (5.33) and
(5.35), we obtain

E0�v� � aE�v� � ÿ
����������������������������
4ÿ 7a2 � 3a4
p

a
i
 � �8ÿ 6a2�eav

a3
�: �5:36�

Solving (5.36) yields

E�v� � ÿ
����������������������������
4ÿ 7a2 � 3a4
p

a2
i
 � eÿav�� �4ÿ 3a2�eav

a4
�; �5:37�

for some constant vector � 2 C3
1. Combining (5.25), (5.29), (5.33), (5.35) and (5.37),

we obtain

z�u; v; t� � eit
�
aÿ4 4ÿ 3a2

ÿ �
eav�ÿ aÿ2

����������������������������
4ÿ 7a2 � 3a4

p
i�
 � 2u��

� eÿav��� u
 � u2��	: �5:38�

From (5.38) we ®nd

zu�0; 0; 0� � ÿ2aÿ2
����������������������������
4ÿ 7a2 � 3a4

p
i�� 
; �5:39�

zv�0; 0; 0� � aÿ4 4ÿ 3a2
ÿ �

�ÿ a�; �5:40�
zt�0; 0; 0� � iz�0; 0; 0�: �5:41�

By choosing the initial conditions:
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z�0; 0; 0� � �1; 0; 0�; �or equivalently, zt�0; 0; 0� � �i; 0; 0��;

zu�0; 0; 0� � ÿ 2
�������������
1ÿ a2
p���������������
4ÿ 3a2
p i; 1; 0

 !
;

zv�0; 0; 0� � 0;
a
�������������
1ÿ a2
p���������������
4ÿ 3a2
p i;

2ÿ a2���������������
4ÿ 3a2
p

 !
;

�5:42�

we obtain from (5.39), (5.40), (5.41) and (5.42) that

� � a2

2�4ÿ 3a2� ;
a2

�������������
1ÿ a2
p

�4ÿ 3a2�3=2 i;
a3

2�4ÿ 3a2�3=2 i
 !

; �5:43�


 � ÿ
�������������
1ÿ a2
p���������������
4ÿ 3a2
p i;

2ÿ a2

4ÿ 3a2
;ÿ a

�������������
1ÿ a2
p

4ÿ 3a2

 !
; �5:44�

� � 1

2a2
;
�1ÿ a2�3=2
a2

���������������
4ÿ 3a2
p i;

2a2 ÿ 3

2a
���������������
4ÿ 3a2
p i

� �
: �5:45�

Combining (5.38) with (5.43)±(5.45), we obtain (5.1). &

By applying Theorem 5.1 we are able to completely determine the slant surface
which satis®es the equality case of the basic inequality (1.2) identically.

Theorem 5.2. If M is a proper �-slant surface in CH2�ÿ4�, then the squared mean
curvature and the Gauss curvature of M satisfy

H2 � 2K� 2�1� 3 cos2 �� �5:46�
with the equality sign holding identically if and only if, up to rigid motions, M is given
by the projection �3 of the immersion z : R3! C3

1 de®ned by

z�u; v; t� � eit
�
ÿ 1

2� 3
2 cosh av� 1

6 u
2eÿav ÿ i

6

���
6
p

u�1� eÿav�;
1
3 �1� 2eÿav�u� i

���
6
p ÿ 1

3� 1
4 e

av � eÿav 1
12� 1

18 u
2

ÿ �ÿ �
;���

2
p

6
�1ÿ eÿav�u� i

���
3
p

1
6� 1

4 e
av � eÿav ÿ 5

12� 1
18 u

2
ÿ �ÿ ��

; a �
��
2
3

q
�5:47�

via the hyperbolic Hopf ®bration � : H5
1 ! CH2�ÿ4�.

Proof. Follows from Theorem 1 of [3] and Theorem 5.1. &

6. Special slant surfaces with c=2. Let U be a simply-connected open subset of
the Cartesian 2-plane R2 and let E � E�x; y� be a positive function on U satisfying
the following conditions:

@

@x

1

E

@

@x

1

E

@E

@y

� �� �
� 0;

@E

@y
6� 0: �6:1�
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For a given � 2 �0; �2�, we put G � 1
2 �sec ��Ey=E; Ey � @E=@y: Denote by M��;ÿ1;E�

the Riemannian surface �U; g� with metric tensor g � E2dx2 � G2dy2; where E and G
are given as above. Then M��;ÿ1;E� has constant negative Gauss curvature
K � 4� cos2 �. Thus, each M��;ÿ1;E� is locally isometric to the hyperbolic plane
H2�ÿ4 cos2 �� of curvature ÿ4 cos2 � < 0.

It was proved in [4] that, for each Riemannian surface M��;ÿ1;E�; � 2 �0; �2�,
there exists a special �-slant isometric immersion  �;ÿ1;E : M��;ÿ1;E� ! CH2�ÿ4�
of M��;ÿ1;E� into CH2�ÿ4� whose shape operator takes the forms:

Ae3 �
ÿ2 sin � 0

0 ÿ sin �

� �
; Ae4 �

0 ÿ sin �

ÿ sin � 0

� �
; �6:2�

with respect to the adapted orthonormal frame ®led fe1; e2; e3; e4g with
e1 � Eÿ1@=@x; e2 � Gÿ1@=@y. It was also proved in [4] that  �;ÿ1;E : M��;ÿ1;E� !
CH2�ÿ4�; � 2 �0; �2�; are the only non-minimal proper slant surfaces in a complete
simply-connected complex space form satisfying �1:4� with c � 2; moreover, from [4]
we know that �c (as de®ned in Theorem 5.1) and  �;ÿ1;E are the only nonminimal
proper special slant surfaces in CH2�ÿ4� with constant mean curvature.

One purpose of this section is to determine the explicit representation of some of
such slant surfaces by applying the general construction method.

Let U � f�x; y� 2 R2 : y > 0g denote the upper half-plane and E � y. Then E
satis®es condition (6.1). For each given � 2 �0; �2� we de®ne a metric on U by

g � y2dx2 � sec2 �

4y2
dy2: �6:3�

We denote this Riemannian 2-manifold �U; g� by M. Clearly, M �M��;ÿ1; y�.
From (6.3) we get

r @
@x

@

@x
� ÿ4y3 cos2 �

@

@y
; r @

@x

@

@y
� 1

y

@

@x
; r @

@y

@

@y
� ÿ 1

y

@

@y
: �6:4�

Let e1 � yÿ1@=@x and e2 � 2y cos �@=@y. Then (6.4) yields

re1e1 � ÿ2 cos �e2; re1e2 � 2 cos �e1; re2e1 � re2e2 � 0: �6:5�
Denote by E1; . . . ;E4 the horizontal lifts �e1��; . . . ; �e4�� of e1; . . . ; e4, respec-

tively. Then E1; . . . ;E4 can be regarded in a natural way as vector ®elds in C3
1 via the

inclusion H5
1 � C3

1.
From (1.1), (4.9), (6.2), and (6.5) we obtain

�rE1
E1 � ÿ2�cos ��E2 ÿ 2�sin ��E3 � z; �6:6�

�rE1
E2 � 2�cos ��aE1 ÿ �sin ��E4 � �cos ��iz; �6:7�

�rE2
E1 � ÿ�sin ��E4 ÿ �cos ��iz; �6:8�

�rE2
E2 � ÿ�sin ��E3 � z; �6:9�

�rVE1 � �rE1
V � �cos ��E2 � �sin ��E3; �6:10�

�rVE2 � �rE2
V � ÿ�cos ��E1 � �sin ��E4; �6:11�

�rVV � ÿz: �6:12�
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Let F � e2�cos ��y�E1 � V�. Then by using (6.6)±(6.12) we obtain

�F;E2� � �F;V� � �E2;V� � 0:

Therefore, there exist coordinates fu; v; tg on M̂ � �ÿ1�M� such that

zu � e2�cos ��vE1 � iz; zv � E2; zt � V;

E1 � e2v cos �zu ÿ iz; E2 � zv; V � iz:
�6:13�

where zu � @z
@u ; zv � @z

@v, zt � @z
@t and z : M̂! H5

1 � C3
1 is the immersion from M̂ into

C3
1 obtained from f : M! CH2�ÿ4� as mentioned in section 4.

Since iE1 � cos �E2 � sin �E3, we have

E3 � e2v cos ��csc ��izu ÿ �cot ��zv ÿ csc �� �z: �6:14�

Similarly, we ®nd

E4 � eÿ2v cos ��cot ��zu � �csc ��izv ÿ �cot ��iz: �6:15�

From (6.6)±(6.15) and a straight-forward computation we obtain

zuu � 0; �6:16�
zuv � �cos ��zu; �6:17�
zvv � ÿeÿ2v cos �izu � �cos ��zv; �6:18�
zut � izu; zvt � izv; ztt � ÿz: �6:19�

Solving (6.19) yields

z�u; v; t� � eitA�x; y�; �6:20�

for some C3
1-valued function A � A�u; v�. Substituting (6.20) into (6.16)±(6.18) yields

Auu � 0; �6:21�
Auv � �cos ��Au; �6:22�
zvv � ÿeÿ2v cos �iAu � �cos ��Av: �6:23�

Solving (6.21)±(6.23) yields

z�u; v; t� � eit �� ev cos ��
 � 2u�� ÿ ieÿv cos ��sec2 ���� 	
; �6:24�

for some vectors �; �; 
 2 C3
1.

From (6.24) we get

zu�0; 0; 0� � 2�; �6:25�
zv�0; 0; 0� � �cos ��
 � i�sec ���; �6:26�
zt�0; 0; 0� � iz�0; 0; 0�: �6:27�
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By choosing the initial conditions:

z�0; 0; 0� � �1; 0; 0�; �or equivalently, zt�0; 0; 0� � �i; 0; 0��;
zu�0; 0; 0� � �i; 1; 0�;
zv�0; 0; 0� � �0; i cos �; i sin ��;

�6:28�

we obtain from (6.25), (6.26), (6.27) and (6.28) that

� � i
2 ;

1
2 ; 0

ÿ �
; �6:29�

� � 1ÿ sec2 �;ÿi� i sec2 �;ÿi tan �
ÿ �

; �6:30�

 � 1

2 sec2 �; i2 �2ÿ sec2 ��; i tan �
ÿ �

: �6:31�

Combining (6.24) with (6.29)±(6.31), we obtain

z�u; v; t� � eit�sec2 � cosh�v cos �� ÿ tan2 � � iuev cos �;

uev cos � � i�ev cos � � tan2 � ÿ sec2 � cosh�v cos ���; i tan ��ev cos � ÿ 1��: �6:32�

It is straight-forward to verify that (6.32) de®nes a contact �-slant immersion of
�ÿ1�M� into H5

1. The special �-slant immersion  �;ÿ1;y of M��;ÿ1; y� into CH2�ÿ4�
is the projection of the contact �-slant immersion z : �ÿ1�M� ! H5

1 induced from
(6.32).

In summary, we obtain the following.

Proposition 6.1. �1� For each given � 2 �0; �2�,
z�u; v; t� �eit�sec2 � cosh�v cos �� ÿ tan2 � � iuev cos �;

uev cos � � i�ev cos � � tan2 � ÿ sec2 � cosh�v cos ���; i tan ��ev cos � ÿ 1��: �6:33�

de®nes a contact �-slant immersion into the anti-de Sitter space time H5
1.

�2� The projection of the contact �-slant immersion given by �6:33� is a special �-
slant immersion whose second fundamental form satis®es �6:2�.
�3� Up to rigid motions, the special slant isometric immersion  �;ÿ1;y is given by

the projection of the contact �-slant immersion de®ned by �6:33�.

Remark 6.1. For each M��;ÿ1;E�, there exists a special �-slant isometric
immersion  �;ÿ1;E of M��;ÿ1;E� into CH2�ÿ4�. In particular, there exists a special
�-slant isometric immersion  �;ÿ1;�x�y�ÿ2 from M��;ÿ1; �x� y�ÿ2� into CH2�ÿ4�
whose shape operator satis®es (6.2) with respect to e1 � Eÿ1@=@x; e2 � Gÿ1@=@y,
where G � sec �=�x� y�. It is easy to verify that re2e2 � �x� y�e1. Thus, the integral
curves of e2 are not geodesics in M��;ÿ1; �x� y�ÿ2� in general. On the other hand,
(6.5) implies that the integral curves of e2 are always geodesics in M��;ÿ1; y�. Since
both �-slant immersions  �;ÿ1;�x�y�ÿ2 and  �;ÿ1;y satisfy the same form of the shape
operator (1.4) with respect to e1; e2, these two �-slant immersions cannot be con-
gruent to each other in CH2�ÿ4�. Consequently, we obtain the following non-
uniqueness result.

Corollary 6.2. Up to rigid motions of CH2�ÿ4�, for each � 2 �0; �2� there exist
more than one special �-slant isometric immersions of a surface of constant negative
Gauss curvature ÿ4 cos2 � into CH2�ÿ4� whose shape operators satisfy �6:2�.
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