
RESEARCH ARTICLE

Reliability assessment of off-policy deep reinforcement
learning: A benchmark for aerodynamics

Sandrine Berger1 , Andrea Arroyo Ramo1, Valentin Guillet2, Thibault Lahire2, Brice Martin2,
Thierry Jardin1, Emmanuel Rachelson2 and Michaël Bauerheim1

1Department of Aerodynamics and Propulsion, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
2Department of Complex Systems Engineering, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
Corresponding author: Sandrine Berger; Email: sand.qva@gmail.com

Received: 13 June 2023; Revised: 14 October 2023; Accepted: 24 November 2023

Keywords: Benchmark for aerodynamics; computational fluid dynamics; deep reinforcement learning; off-policy algorithms;
reliability

Abstract

Deep reinforcement learning (DRL) is promising for solving control problems in fluid mechanics, but it is a new field
with many open questions. Possibilities are numerous and guidelines are rare concerning the choice of algorithms or
best formulations for a given problem. Besides, DRL algorithms learn a control policy by collecting samples from an
environment, which may be very costly when used with Computational Fluid Dynamics (CFD) solvers. Algorithms
must therefore minimize the number of samples required for learning (sample efficiency) and generate a usable policy
from each training (reliability). This paper aims to (a) evaluate three existing algorithms (DDPG, TD3, and SAC) on a
fluid mechanics problem with respect to reliability and sample efficiency across a range of training configurations,
(b) establish a fluid mechanics benchmark of increasing data collection cost, and (c) provide practical guidelines and
insights for the fluid dynamics practitioner. The benchmark consists in controlling an airfoil to reach a target. The
problem is solved with either a low-cost low-order model or with a high-fidelity CFD approach. The study found that
DDPG and TD3 have learning stability issues highly dependent on DRL hyperparameters and reward formulation,
requiring therefore significant tuning. In contrast, SAC is shown to be both reliable and sample efficient across a wide
range of parameter setups, making it well suited to solve fluid mechanics problems and set up new cases without
tremendous effort. In particular, SAC is resistant to small replay buffers, which could be critical if full-flow fields were
to be stored.

Impact Statement

Deep Reinforcement Learning (DRL) algorithms, applied in Computational Fluid Dynamics (CFD), often face
challenges due to high computational costs. In CFD, the expense of sample collection, from which DRL
algorithms learn, can be significant. Effective DRL algorithm selection should aim at minimizing sample
requirements while ensuring each training yields a usable solution. This paper evaluates three algorithms that
utilize a replay buffer to store samples, potentially reducing sample needs and computational expenses. Notably,
the SAC algorithm demonstrates consistent reliability and sample efficiency across diverse conditions, making it
a promising choice for CFD applications and new case set-ups. Additionally, we introduce an aerodynamics
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benchmark, with increasing levels of data collection complexity, offering a valuable resource for future research
in this field.

1. Introduction

Deep reinforcement learning (DRL) holds great promise for addressing optimization and control
problems. It combines the capabilities of reinforcement learning (RL) approaches to control dynamic
systems (Sutton and Barto, 2018), with the power of artificial neural networks to approximate functions
(Goodfellow et al., 2016), and has led to significant achievements in recent years. From board games
(Silver et al., 2016) to robotics (Ibarz et al., 2021), or physics (Bellemare et al., 2020;Degrave et al., 2022),
many domains have found new control solutions with the aid of DRL algorithms.

In the field of fluid mechanics, various problems have recently been addressed with this technique.
Among them is the control of swimming fish with various objectives such as decreasing energy
consumption (Novati et al., 2017; Verma et al., 2018) or pursuit-evasion (Borra et al., 2022). Magnetic
microswimmers were also successfully controlled through a uniform magnetic field (Amoudruz and
Koumoutsakos, 2022). Some studies focused on cylinder drag reduction, either through simulations at
low Reynolds numbers (Rabault et al., 2019), in weakly turbulent conditions (Ren et al., 2021), or with an
experimental approach (Fan et al., 2020). Other applications showed the capability of DRL for controlled
gliding (Novati et al., 2019), addressing Zermelo’s problem (Biferale et al., 2019), navigating in vortical
flow fields (Gunnarson et al., 2021), and controlling chaotic problems such as the one-dimensional
Kuramoto–Sivashinski equation (Bucci et al., 2019), or unsteady falling liquid films (Belus et al., 2019).
Modeling for large eddy simulation was also addressed with RL approaches: Novati et al. (2021)
demonstrated the possibility of producing subgrid scale modeling in homogeneous turbulent flow,
Kim et al. (2022) performed the same exercise for wall-bounded flows, and wall modeling was addressed
in Bae andKoumoutsakos (2022). This list is not comprehensive, and the number of DRL applications for
fluid mechanics is growing fast. A recent review on the topic was proposed by Viquerat et al. (2022).

The versatility of DRL comes at a price. Deep learning and reinforcement learning are based on well-
established mathematical foundations, but their application to real-world problems often involves a lot of
tricks and fine-tuning of hyperparameters. These practices rarely follow universal rules or even logical
considerations at first glance and require countless hours of trial, debugging, and computing. Moreover,
these methods are relatively new and their capabilities and limitations for dealing with real-world
problems, such as those encountered in fluid mechanics, are still under investigation. Faced with a given
system to control, one has to choose and tune the control problem formulation, as well as the algorithm,
among multiple possibilities and with very few guidelines designed for the specific system at hand.

Researchers in the fluid mechanics community began to investigate some of the possibilities, analyze
specific components, or propose significant improvements. For example, Belus et al. (2019) exploited the
problem invariants and compared different solutions to deal with multiple actuators of the environment.
Zeng and Graham (2021) moved their problem to a reduced space by considering the flow symmetry. An
other example is the work of Gunnarson et al. (2021) who explored the influence of the input data
provided to the RL algorithm to observe the state of the environment, and compared these with optimal
control, aware of the full flow field. Other studies of input data optimized the sensor layout feeding the
algorithm (Paris et al., 2021; Xu and Zhang, 2023), or, in an experimental context, performed high-
frequency filtering of the state to enable the agent to learn a successful policy (Fan et al., 2020). Another
element of tremendous importance is the feedback signal provided to the RL algorithm indicating how
well it performed. On this topic, Li and Zhang (2022) proposed adding stability information to the
feedback signal, while Qin et al. (2021) implemented a reward function based on dynamic mode
decomposition of the flow. Finally, some authors investigated the use of specific types of neural networks
(Verma et al., 2018; Novati et al., 2019) in the learning process. At the time of writing this article, very few
comparisons between DRL algorithms can be found in the literature in the context of fluid mechanics.
However, we can quote the study of Novati et al. (2019) that compared three different RL algorithms,
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namely, RACER, NAF, and PPO for controlled gliding, as well as three different studies (Biferale et al.,
2019; Castellanos et al., 2022; Pino et al., 2023) that compared RL methods with other classic or more
advanced control techniques while solving fluid mechanics problems.

Solving a given task with an RL algorithm relies on the collection of samples from an environment.
When this environment is modelized with a computational fluid dynamics (CFD) solver, samples can be
computationally expensive to collect,1 which may hinder the applicability of DRL methods altogether.
Therefore, the choice of the algorithm is mainly constrained by the high computing cost of experience
collection: we want DRL algorithms that minimize the number of samples required to learn and for which
each training run generates a usable policy, or, in other terms, algorithms that are both sample efficient and
reliable. In addition, it calls for the creation of well-documented benchmarks of increasing complexity in
terms of data collection cost. These are the two main objectives of this paper: (a) evaluate the sample
efficiency, hyper-parameter sensitivity, and off-the-shelf reliability of existing DRL algorithms, and
(b) establish a benchmark that can be solved at various costs, from a cheap low-order model to a costly
CFD one. In contrast, the present work does not claim DRL policies to be superior to those obtained
throughmore traditional methods, nor does it aim at a performance comparison, but rather tries to provide
practical feedback and thoroughly evaluated guidelines for the implementation and practice of RL
algorithms for fluid mechanics.

Regarding the first objective, DRL algorithms are numerous. In the context of fluid mechanics, the
proximal policy optimization (PPO) algorithm (Schulman et al., 2017) is often used (Viquerat et al.,
2022). This algorithm, derived from the policy gradient theorem (Sutton et al., 1999), implements an
on-policy optimization approach that prevents samples collected from the environment to be reused
afterward in the learning process. This non-reusability is a heavy price to pay in situationswhere obtaining
data is costly. Some researchers applying DRL techniques to fluid mechanics control problems choose
algorithms from the family of approximate dynamic programming (Bertsekas, 2012) such as the twin
delayed DDPG (TD3) algorithm (Fujimoto et al., 2018; Fan et al., 2020) or its predecessor, the deep
deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2016; Bucci et al., 2019;Kim et al., 2022;
Pino et al., 2023). These algorithms are capable of sample reuse through the use of a replay buffer where
experience samples are stored. The learning process therefore draws from the replay buffer. While TD3 is
supposedly more reliable than DDPG, both exhibit some learning stability issues. As a result, they require
fine-tuning of hyperparameters, which is highly time-consuming. In the same family of approximate
dynamic programming, there is the state-of-the-art Soft Actor-Critic (SAC) algorithm (Haarnoja et al.,
2018). SAC introduces an additional entropy regularization term, which makes the optimization process
more reliable and induces at the same time an adequate exploration of the environment, which can be
critical for some applications. These three algorithms are studied in this paper. Note that other algorithms
are used in the fluid mechanics community (see the review by Viquerat et al., 2022).

The algorithms benchmarked in this study all store samples in a replay buffer. With such algorithms,
samples can be used several times in the learning process, which may decrease the number of samples
required to produce a good policy. The use of a replay buffer also opens the field of possibilities
regarding sample collection and usage. For example, among the samples stored in the replay buffer,
those retained for learning can be chosen based on how much the agent will actually learn from them
(Schaul et al., 2016; Lahire et al., 2022). Besides, while classically filled with previous experiences
obtained from interactions between the learning agent and the environment, the replay buffer may also
be prefilled with data obtained elsewhere. Such data could come from a similar environment explored
manually, from some experiments, or from some low-cost, low-order physics model. Reuse of
previously or otherwise collected experience samples raises fundamental issues2 that would need to
be addressed theoretically, but experience replay algorithms provide a potential modular way to transfer

1 This is in contrast to much of the work developing DRL algorithms, which often rely on classical benchmarks for which data
collection is fast and cheap.

2 The independence of the control policy learning process on the distribution of samples is not necessarily verified in practice and
reusing previously collected samples may also lead to reliability issues.
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useful information collected in various ways and, therefore, to decrease the computational costs
associated with sample collection. This is why such algorithms are evaluated in this paper. DDPG,
TD3, and SAC are benchmarked against a fluid mechanics control problem and compared regarding
reliability and sample efficiency, as well as the policies that they produce across a range of training
configurations. Note that this study does not aim at designing a new state-of-the-art method, fine-tuning
an existing method to achieve the best possible performance on a specific benchmark, or again
outperforming existing baselines. Conversely, it takes a practitioner’s perspective and endeavors to
assess the broad reliability and practical usability of some existing DRL algorithms in the fluid
dynamics context.

As a second objective, we propose a benchmark case that can be approached with both (a) a low-
fidelity approach that needs less than an hour on a computing core to train, and (b) a high-fidelity
approach that solves the Navier–Stokes equations and is 1,200 times more expensive. The low
computational cost of the former allows testing various algorithms and parameters. These are then
used to setup the high-fidelity case, which is closer to a realistic context of application for fluid
mechanics. The task consists in controlling an airfoil from an initial point A to reach a target point
B. In the first task, the target B is kept in a fixed position during both the learning and testing of the
policy (Figure 7), whereas in the second task, B may be anywhere in a given domain (Figure 16). The
first task is a “learn by heart” problem while the second aims at learning a controller able to reach any
point in a given domain and requires a closed-loop controller. The three DRL algorithms are evaluated
on both tasks, when solving the physics with either a low-order or a high-fidelity model, and with
various DRL hyperparameters, reward formulations, and environment parameters controlling the
dynamics.

The paper is organized as follows: First, the benchmark problem is described as well as the two physics
models, in Section 2. Then, Section 3 presents the control problem definition and some generalities about
the RL algorithms benchmarked in the study. Section 4 and Section 5 are dedicated to the results of the first
and second tasks, respectively.

2. Problem Description and Numerical Setup

An airfoil trajectory control problem is selected as a benchmark case: an airfoil (P) is initially
placed at point A, and the controller optimizes the airfoil pitch rate _β, along its trajectory, in order to
reach a target point B, as illustrated in Figure 1. There is no propulsion system in this problem: the
airfoil is released with an initial velocity, and the controller has to learn how to glide towards B by
controlling the airfoil pitch rate only. Two different tasks are considered. In the first task, A and B are
kept in fixed positions (Figure 7), while in the second task, B may take any position in a given domain
(Figure 16).

The problem considered is two-dimensional. The airfoil is a flat plate whose chord length is c= 0:01m,
and whose thickness is 2% of the chord length. The fluid and flat plate densities are, respectively, equal to
df = 1kgm�3 and ds = 30× df . The flat plate is released from a fixed initial position A = (xA = 0, yA = 0),
with an initial velocity purely horizontal and directed to the left: U0

�!
= �10 x!ms�1. After the release, the

Figure 1. Illustration of the airfoil trajectory control problem.
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airfoil is only subject to aerodynamic forces and gravity. Based on the flat plate chord length, the initial
velocity, and a kinematic viscosity ν= 3:333× 10�4m2 s�1, the Reynolds number is equal to Re= 300 and
remains almost constant along the trajectory. Note that in the remainder of the manuscript, “airfoil” and
“flat plate” are used interchangeably.

Such an aerodynamic control problem can be modeled through equations of various complexity,
ranging from the Navier–Stokes equations to a simple analytical model. The present study uses two
different levels of fidelity: the physics is either described through the unsteady Navier–Stokes equations
(Section 2.1), or through a quasi-steady empirical model (Section 2.2). Both models are described in the
following sections.

2.1. High-fidelity model based on the unsteady Navier–Stokes equations

The simulation of the fluid–solid interaction between the airfoil and the surrounding flow is performed
with STAR-CCM+. The numerical approach is similar to the one used in Jardin and Doué (2019). The
evolution of the flow follows the unsteady incompressible Navier–Stokes equations. These are solved
with a cell-centered finite volume method. The numerical schemes are second-order both in time and
space. The flat plate is placed in the center of a circular domain, whose radius is 20 times the chord length
of the airfoil. The latter is modeled as a no slip surface and the far-field is set through a null velocity
condition.

The flat plate rotation is imposed by the controller through the pitch rate _β. However, the airfoil is free
tomove by translation in both directions of the 2D space, based on its interactionwith the fluid. This fluid–
solid interaction is simulated with the 6-DOF solver of STAR-CCM+. The airfoil is submitted to the lift L

!

and dragD
!
aerodynamic forces, as well as gravity g!, as displayed in Figure 2. All angles are measured as

displayed in Figure 2 and signed counter-clockwise.3

Reducing the flat plate to its center of mass, the fundamental principle of dynamics is expressed as

m � a!=m � g! + L
!
+D

!
(1)

Figure 2. Lift L
!
, dragD

!
, and gravity g

!
forces applied to the center of mass of the flat plate. The flat plate

velocity is denoted V
!
, the pitch angle β and the angle of attack α. All angles are measured as displayed in

this figure and signed counter-clockwise: α is the angle going from the flat plate to the velocity vector so
that α> 0 in the figure and β is the angle going from the horizontal (� x!) to the flat plate so that β < 0 in the

figure.

3 α is the angle going from the flat plate to the velocity vector so that α> 0 on Figure 2 and β is the angle going from the horizontal
(�x

!
) to the flat plate so that β < 0 on Figure 2.
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wherem is the flat platemass, a! is the flat plate acceleration, g! is the acceleration of gravity, L
!
= Lx,Ly
� �

is the lift force, andD
!
= Dx,Dy
� �

is the drag force. Projecting Eq. (1) onto the x and y axes of a reference
frame attached to the ground leads to the following equations of motion:

m
d2x

dt2
= Lx +Dx,

m
d2y

dt2
= �mg + Ly +Dy:

(2)

In this high-fidelity physics model, aerodynamic forces L
!

and D
!

are computed by integration of the
pressure and viscous forces over the surface of the airfoil. These forces, along with the gravitational force
are then used to compute the translational motion of the flat plate by integration of the equations of motion
(Eq. 2) over small time steps of duration dt.

The simulation setup, mesh, and time step used to solve the flow are chosen in accordance with the
work of Jardin and Doué (2019), where the numerical approach has been validated for highly unsteady
cases. The flow is solved on a structuredmesh.Mesh convergence is assessed by computing the flow for a
constant angle of attack equal to α= 40∘ and a constant translation velocity equal to U0

�!
= �10 x!ms�1,

with three meshes of increasing resolution. The cell size at the wall, as well as the number of cells for each
mesh, are given in Table 1.

The airfoil lift and drag coefficients obtained with the two most refined meshes showed variations of
values below 1.5% compared to the coarse mesh. Therefore, the coarse mesh is selected for this study.
Similarly, simulations performed with a time step equal to dt = 5 × 10�5s, dt = 2:5× 10�5s or
dt = 1:25× 10�5s, exhibited differences on the aerodynamic coefficients below 0.1%. The larger time
step of dt = 5× 10�5s is thus retained to perform uncontrolled simulations at fixed angles of attack.
However, to ensure a correct temporal resolution of the pitch motion, and for stability reasons, a smaller
time step dt = 2× 10�5s is set for simulations controlled by the DRL algorithm (i.e., when the pitch
evolves during the simulation). Controlled computations are initialized with the converged solution
obtained at a fixed angle of attack α= 0∘ and a Reynolds number Re= 300.

2.2. Low-order physics model: Quasi-steady empirical approach

In order to decrease the computational cost associated with the simulation of the flat plate motion, the
high-fidelity model described above can be replaced by a simpler model to compute the aerodynamic
forces involved in Eq. (2). This quasi-steady surrogate model replaces the expensive computation
of the flow by empirical correlations between aerodynamic forces and the airfoil angle of attack.
Such correlations are obtained by solving the Navier–Stokes equations at various fixed angles of
attack with STAR-CCM+ and extracting the corresponding lift and drag coefficients. The evolution
of the time-averaged lift cL and drag cD coefficients with the angle of attack is shown in Figure 3.
These quasi-steady data reasonably agree with numerical data from Taira and Colonius (2009)
obtained for the same Reynolds number and a 2D flat plate whose thickness is 3.66% of the chord
length.4

Table 1. Mesh characteristics

Name Cell size at the wall Number of cells

Coarse 0:01c 29,000
Base 0:005c 140,000
Fine 0:0025c 700,000

4As a reminder, in the present study, the thickness is 2% of the chord length.
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As mentioned in Wang et al. (2004), data from Figure 3 can be approximated with trigonometric basis
functions. To do so, the simplex method described by Lagarias et al. (1998) is used. The fitting curves
(- - - in Figure 3) are given by

cL = 1:3433sin 2αð Þ,
cD = 1:5055�1:3509cos 2αð Þ: (3)

In order to solve the equations ofmotion (Eq. 2), these coefficients can then be used to compute the lift and
drag forces applied to the flat plate at each time step dt:

L=
1
2
dfU

2S � cL,

D=
1
2
dfU

2S � cD:
(4)

whereU is the norm of the instantaneous velocity, and S is equal to the chord length times the span of the
airfoil. This low-order model permits the simulation of the system’s dynamics at a reduced computational
cost compared to the resolution of the Navier–Stokes equations. Such cost reductions are critical to
perform the detailed study of both the control problem formulation and the DRL algorithms paramet-
rization presented in this article.

3. Reinforcement Learning for Airfoil Trajectory Control

In this section, the airfoil control problem described in Section 2 is cast as an optimal control problem,
which is then solved with an RL algorithm. To control the airfoil in time, the RL algorithm is coupled to
either the high- or low-fidelity model of the fluid–solid interaction.

3.1. Control problem definition

In Section 2, the flat plate motion is described through the values of its position variables x and y in a
reference frame attached to the ground. However, the DRL algorithm takes a self-centered perspective: it
should not build a control policy based on absolute positions in space, but instead on the relative position
of the airfoil to the target point B. For that purpose, a change of variables is performed to define the
systems’ state st ∈ S at any time step. The flat plate position and velocity are expressed in a polar
coordinate system ρ,θð Þ, relative to point B, as illustrated in Figure 4.

Figure 3.Evolution of the lift cL and drag cD coefficients with the angle of attack α. Results from Taira and
Colonius (2009) (■), present study using STAR-CCM+ (�), and fitting of the present study data using

Eq. (3) (- - -).
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The normalized state at time step t then reads:

st =
ρt
k1
, sin θtð Þ, cos θtð Þ, _ρt

k2
,
_θt
k3
, sin βtð Þ

 !
(5)

where k1, k2, and k3 are normalizing factors chosen in order to maintain the same order of magnitude
within the input variables of control policies and value functions, to avoid scaling effects which are
detrimental to stochastic gradient descent learning procedures. These state variables are chosen because
they define an intuitive first-order dynamics on variables that are relative to the target position, where st + 1
can be predicted from st and the current pitch rate _βt. At each discrete control time step t, the RL algorithm
observes the state st and controls the flat plate trajectory by setting the pitch rate _βt. This pitch rate defines
the controller’s action variable at ∈A at each time step, and may take any value in the interval � _β0; _β0

� �
.

The time span between two control steps is Δt. The low-order model of Section 2.2 induces a first-order
dynamic on the state st such that the state at time step t + 1 is only function of the state and action at time
step t: st + 1 = f st,atð Þ, for a constant action equal to at over the Δt time interval between time steps.5

Under a certain control strategy π prescribing an action at = π stð Þ at each time step, the system follows a
trajectory s0,a0,s1,a1,…ð Þ. To devise optimal control strategies, one introduces a quantitative criterion
J πð Þ that evaluates the induced trajectories. This criterion is defined as a sum of instantaneous rewards
rt = r st,at,st + 1ð Þ obtained at each control time step along the trajectory, averaged across possible starting
states s0. For a given starting state s0, this sum of rewards is called the return under policy π. Introducing a
discount factor γ< 1, quantifying the importance between immediate and future rewards,
J πð Þ=Es0

P∞
t = 0γ

trtjs0
� �

is the average over-starting state of the discounted return when controlled with
the strategy π. Therefore, the definition of the rewardmodel shapes the criterion which is optimized by the
RL algorithm.

In the airfoil trajectory problem, the goal is to reach point B. A first solution, when defining the reward
model is to give a higher value to a trajectory that strongly reduces ρ, and thus choose a model under the
form:

r st,at,st + 1ð Þ= �Δρ st,st + 1ð Þ (6)

whereΔρ is the variation of ρ between st and st + 1. Such a formulation evaluates whether the airfoil moved
closer or farther away from B over the last control time step. It is called dense since a non-null feedback
signal is given at each step. For such a reward model, the return J πð Þ, over a trajectory, indicates the
overall expected reduction in the distance toB, that is�Δρ s0,s∞ð Þ, where s∞ is the state reached by the flat
plate as t!∞.

An alternative reward model consists in giving a positive reward only when the flat plate reaches the
vicinity of B, which takes the form

Figure 4. Airfoil polar coordinates ρ,θð Þ defined relative to point B.

5 The use of sin θtð Þ and cos θtð Þ in place of θt follows a common practice in RL to represent angular quantities and avoid function
discontinuities around 2π.
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r st,at,st + 1ð Þ= 1 if ρ st + 1ð Þ< ε,
0 otherwise:

�
(7)

where ε is a tolerance constant. Note that this reward definition will produce a null signal most of the time,
since non-zero values will be obtained only when the airfoil reaches B: this reward is therefore sparse and
can be challenging for most DRL algorithms.

In this work, the reward model includes both a dense and a sparse term:

r st,at,st + 1ð Þ= c1 � rd st,at,st + 1ð Þ+ c2 � rs st,at,st + 1ð Þ, (8)

where

rd st,at,st + 1ð Þ= �Δρ st,st + 1ð Þ
ρ0

, (9)

rs st,at,st + 1ð Þ=
1 if ρ st + 1ð Þ< ε,
�1 if ∣θ∣ ≥ π=2,

0 otherwise,

8><
>: (10)

c1 and c2 are constant parameters and the tolerance ε is equal to ε= 10�2=ρ0. Note that compared to Eq. (7),
a penalty has been added in the sparse term (Eq. 10) if ∣θ∣ ≥ π=2, that is, when the airfoil goes left beyond
point B. In Eq. (8), the respective weights of the sparse and dense terms depend on the values assigned to
c1 and c2. In particular, setting c1 = 0 (respectively, c2 = 0), leads to a purely sparse (resp. dense) reward
model. Various values of these parameters are discussed in this paper.

Whatever the reward parametrization, an episode (or trajectory) may terminate in three different ways:

• ρ st + 1ð Þ< ε means that the airfoil reached B. This situation is called won (the “game” is won).
• ∣θ∣ ≥ π=2 means that the airfoil surpassed B. This situation is called lost.
• the maximum number of steps, set to 150, has been reached. The episode is also considered as lost.

If awon or lost condition is reached, the episode ends, and the airfoil state and parameters are reset to their
initial values.

To sum up, at the beginning of an episode, the flat plate position is set to point A and the velocity to the
initial velocity. The RL algorithm observes the state st and chooses an action at. Then, either the low-order
model or the Navier–Stokes equations are solved to obtain the new position and velocity of the flat plate
st + 1 and the instantaneous reward, associated with the transition is computed. These are fed to the RL
algorithm, which again chooses an action and so on until termination. The control time step Δt is equal to
the physical time step dt used to integrate the equations of motion of the airfoil.

Note that, in a practical application, one might desire a behavior that reaches point B with low velocity
or in a specific configuration. This would require expressing a more convoluted reward model, but would
not change fundamentally the practical steps of deploying RL algorithms on the problem. In the present
work, we retain the simplicity and representativity of the model introduced above.

The theory of discrete-time optimal control (Bertsekas and Shreve, 1996) guarantees that for such a
valuation of trajectories and such first-order dynamics, there exists an optimal control function a= π sð Þ
that only depends on s. Such dynamical systems described via the 4-tuple S,A, f ,rð Þ are called Markov
decision processes (MDP) (Puterman, 2014) and extend, in the general case, to stochastic transition
models that followMarkov’s property. Note that, in the case where the dynamics are obtained by solving
the Navier–Stokes equations with STAR-CCM+, the system still obeys a first-order differential equation,
but the latter involves the full pressure and velocity fields surrounding the flat plate, which are not
observed here for the control policy. In such a case, the control policy is still defined as a function of s, but
without formal guarantees of optimality.
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3.2. Reinforcement learning algorithms

RL algorithms solve the optimization problem maxπJ πð Þ, by exploiting samples st,at,rt,st + 1ð Þ obtained
by interacting with the physical system. Doing so, the algorithm has no explicit knowledge of the
underlying dynamics. To solve the optimization problem, one defines the value function Vπ which
represents the return from a given state of a trajectory controlled by π: Vπ sð Þ=P∞

t = 0γ
trt provided that

s0 = s and actions are picked according to π. Similarly, one can define the state-action value function
Qπ s,að Þ, which is the return when applying a in s, and thereafter applying the control policy π. In DRL,
neural networks are used to learn approximations of the value functionsVπ : S!ℝ and/orQπ : S×A!ℝ,
and the control functions π : S!A. In the present work, all neural networks are multilayer perceptrons
(MLPs) as illustrated in Figures 5 and 6. Activation functions are ReLU functions for all hidden layers.
Output neurons of value function networks use identity activation functions, while output neurons for
policy networks use tanh activation functions as per the common practice of each algorithm.

Methods that directly solve the maxπJ πð Þ problem from samples fall under the umbrella of direct
policy search. When they are gradient-based, such methods exploit the policy gradient theorem (Sutton
et al., 1999)which necessitates repeated collection of samples under the current control policy’s stationary
distribution (they are then called on-policy). The seminal proximal policy optimization (PPO) (Schulman
et al., 2017) algorithm, used for instance in the work of Rabault et al. (2019), is one such policy gradient
method. This makes such methods quite sample inefficient and quickly becomes a handicap for

Figure 5. Generic architecture of the policy π neural network.

Figure 6. Generic architecture of the state-action value function Qπ s,að Þ neural network.
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simulation-costly problems such as CFD control. On the other hand, the family of approximate dynamic
programming methods (Bertsekas, 2012) solves for the optimal value function, which is the unique
solution to the Bellman equation Q s,að Þ= r s,a, f s,að Þð Þ+ γmaxa0Q f s,að Þ,a0ð Þ,∀s,a, and then derives an
optimal policy as one that is greedy with respect to this optimal value function. The Bellman equation is
solved without knowledge of the r and f functions, and relies on a set of collected samples st,at,rt,st + 1ð Þ,
called a replay memory or replay buffer (Lin, 1992). This buffer is filled by following an exploration
behavior that selects actions at each time step. This behavior policy should often choose actions that are
deemed promising by the current value functionQ, but also balance themwith exploring new actions (this
is coined the exploration versus exploitation trade-off). The replay memory is sampled to solve the
Bellman equation through a sequence of supervised learning problems. Such methods are off-policy by
construction, decoupling the behavior policy from the one being optimized, which enables sample reuse
along the optimization process and makes them promising candidates for simulation-costly problems
such as CFD control. In this work, three state-of-the-art approximate dynamic programming algorithms
are compared, namely DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja
et al., 2018).

All threemethods share the same architecture, where an actor neural network π : S!A approximates
the solution of argmaxaQ s,að Þ in all s. Then, a critic network Q : S×A!ℝ approximates the mapping
st,at↦rt + γQ� st + 1,π st + 1ð Þð Þ for all experience samples st,at,rt,st + 1ð Þ, where Q� is called a target
networkwhich is periodically replaced byQ. Each of these networks approximate the true greedy policy
and value function by taking gradient steps towards them. This process is repeated until convergence
(convergence is guaranteed in the absence of approximation errors). In DDPG6, the actor network is a
deterministic policy, and the behavior policy is the actor’s policy when noise is injected artificially. TD3
(twin-delayed DDPG) is an attempt to fix some weaknesses of DDPG, by delaying actor updates (TD3
performs two critic updates for a single actor update), and introducing a second critic function to
account for possible over-estimation of the value function in stochastic environments. Both DDPG and
TD3, despite their overall good behavior on average, still exhibit specific flaws in their optimization
process. For instance, Matheron et al. (2020) illustrated how sparse rewards in deterministic environ-
ments could prevent altogether the convergence of these methods by inducing value function plateaus
and zero-gradient updates. A state-of-the-art alternative is SAC, which makes the actor policy
stochastic (the behavior policy is then the actor policy), forces this policy to imitate the soft-max of
Q (instead of the hard-max in DDPG and TD3), and introduces an entropy regularization term in the
resolution of the Bellman equation to make the optimization landscape smoother (Geist et al., 2019).
DDPG, TD3, and SAC are fairly close from a formal foundations perspective and often perform on-par,
outperforming each other depending on the practical problem at hand. Surprisingly, in a number of
applications, approximation errors or specific characteristics (such as deterministic dynamics) still
make DDPG very competitive.

Common practice in RL has demonstrated that methods designed to perform better in principle and on
average, fail on specific benchmarks. DRL are known to be very sensitive to the fine tuning of their
hyperparameters and fair evaluation of methods is an open problem (Henderson et al., 2018). This
sensitivity is an undesirable aspect for the fluid mechanics practitioner, which we try to quantify on the
benchmark case described in Section 2.

4. Results for the First Task: Fixed Starting and Target Points

4.1. Baseline RL controller

First, the case illustrated in Figure 7 is considered, where A and B are fixed during training and testing.
The starting and target point coordinates are, respectively, equal to A = 0,0ð Þ and B= �2c,0:2cð Þ, and the
flat plate initial velocity U0

�!
is purely horizontal and directed to the left.

6 Despite the name “policy gradient” in DDPG and TD3, these are approximate dynamic programming methods.
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Since B is higher than A, the controller has to learn how to create lift in order to gain altitude. The
baseline reward model follows Eq. (8) with c1 = 100 and c2 = 10. Therefore, for each transition, the agent
receives a reward:

r st,at,st + 1ð Þ= �100
Δρ st,st + 1ð Þ

ρ0
(11)

and an additional term at the end of the episode:

r st,at,st + 1ð Þ=
10 if ρ st + 1ð Þ< ε,
�10 if ∣θ∣ ≥ π=2,

0 otherwise:

8><
>: (12)

For a path reaching the vicinity of B, the reward associated with each transition is slightly below 1 and
the number of steps around 115. As a result, return values around 90 mean that the airfoil missed B by a
small margin, and values close to 110 correspond to the flat plate managing to reach point B.

For the first experiment, the physics is solved with the low-order model and the replay buffer
capacity is set to 500,000, which allows to keep track of all transitions experienced during training. The
policy is trained for 1,000 episodes and then tested without changing the position of A or B. The
learning process for one run performed with SAC is illustrated in Figure 8. During training, the learned
policy is monitored by performing a test (also called an evaluation) at the end of each episode. The
evolution of the return obtained from these evaluations is shown in Figure 8a, while all trajectories
explored during learning are plotted in Figure 8b. These trajectories allow the visualization of all
different positions contained in the transitions stored in the replay buffer. Recall that the state is six-
dimensional (Eq. 5) and that plotting the traces in the x,yð Þ plane does not fully reflect the trajectories in

Figure 7. Illustration of the first task: A and B are fixed.

Figure 8. (a) Evolution of the evaluation returns during the training phase. This return is obtained
through the evaluation of the policy at the end of each episode during training. To get a sense of the

learning “history” and convergence, the return is plotted at each episode and no smoothing or average is
performed. (b) Visualization of the 1,000 different trajectories explored during training. To link the

explored trajectories and the policy learning process, curves from both plots are colored by the episode
number.
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the state space. In Figure 8, curves from both plots are colored by episode number to link the evaluation
return and the explored trajectories.

The learning process may be decomposed into four phases, denoted from (i) to (iv) in Figure 8a:

(i) Warm-up phase: During the first eight episodes, actions are chosen randomly at each step and the
policy is not trained. The corresponding trajectories stay close to the horizontal or slightly fall
from point A towards the left under the combined effects of the initial velocity and gravity. This
phase allows to prefill the replay buffer with various transitions.

(ii) Discovery phase: The agent explores different trajectories, learns how to fly, and slowlymanages
to control the flat plate to fly closer to the target point B.

(iii) Stabilizing phase: The spread between trajectories decreases and the agent produces trajectories
that reach the vicinity of B. The return jumps up and down between approximately 90 (B was
missed by a small margin) and 110 (B was reached).

(iv) Stable phase: The trajectory dispersion becomes very low. Returns stabilize just below 110: the
agent has robustly learned to perform the task.

Among all the paths shown in Figure 8b, the one from the first and “best” episodes of the training are
presented in Figure 9a, as well as the trajectory obtained by testing the policy at the end of the 1,000
episodes. The so-called “best” path is the one that led to the highest return and was reached at the 393th
episode of the training. The actions _β corresponding to these three specific episodes are shown in
Figure 9b and the resulting pitch angle β in Figure 9c.

As mentioned above, actions are chosen randomly for the first episode, which can be observed in
Figure 9bwhere the evolution of actions is stochastic. The resulting pitch angle stays close to zero, and the
airfoil trajectory slightly falls while going left. The action signal associated with the best episode still
appears noisy since SAC learns a Gaussian probability density function. At each time step, the action is
drawn from this distribution without correlation with the action taken at the previous time step, hence the
noise and the high-frequency changes in the green curve. As the physical system acts as a low pass filter,
these high-frequency actions have a very moderate (but non-zero) effect on the state trajectory. Yet, the
information about the effects of actions is present in the samples and helps guide the optimization towards

Figure 9. (a) Trajectory, (b) normalized action _β= _β0, and (c) pitch angle β for three selected episodes of
the training and testing: the first and best episode (i.e., with the highest return) of training and the test

episode. Corresponding returns are respectively equal to 80.99, 109.78, and 109.69.
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better trajectories. On the contrary, for the test trajectory, the action is deterministically selected as the
mean of the probability density function learned by SAC. This leads to a smooth sequence of actions with
localized quick variations enabled by the non-linear neural network controller. For both cases, the pitch
rate is negative on average over an episode. The resulting pitch angle globally decreases over the episode,7

allowing the flat plate to gain lift to counteract the effect of gravity and to move upwards towards the
target. Despite the differences in the policies, the returns obtained for the best and test episodes are close
(109.7 and 109.5, respectively).

The reward model defined here does not strongly discriminate between policies and several quasi-
optimal policies may be found for this case. This is better evidenced in Figure 10: 20 different control
policies are independently trained and then tested after 1,000 episodes. All parameters remain the same for
these 20 trials except the random numbers generator’s seed.

Figure 10 shows different trajectories, policies, and pitch angles, which illustrates the diversity of
quasi-optimal control policies for the problem at hand. However, some trends can be observed:

• At the beginning, most policies apply a negative pitch rate, leading to a negative pitch angle which
allows the airfoil to gain lift and move upwards,

• then, the value of the angle globally stabilizes,
• finally, close to B, the angle values of the different policies spread as the controller adapts the pitch
rate to reach B.

Owing to the model of the dynamics as well as the reward formulation, a wide range of policies are
quasi-optimal. As a result, small differences in the states visited during the training aswell as in the actions
chosen at the beginning of each path may lead to different final strategies. This explains the high spread of
the test trajectories obtained within the 20 trials despite the fact that they have the same parameters.
Alternative physical constraints, reward models, or parametrization of the problem may lead to more
constrained strategies. Moreover, while the learning process shown in Figure 8 is smooth and while the
training curves presented in Figure 10 are all successful in performing the task, other learning trials have
displayed more erratic behaviors, most often due to overall instabilities during the policy learning process

Figure 10. (a) Trajectory, (b) normalized action _β= _β0, and (c) pitch angle β obtained by testing
20 identically parametrized agents. Returns from all the tests are in the range 109:12;109:58½ �.

7 Recall that β increases counter-clockwise.
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(e.g., catastrophic forgetting, McCloskey and Cohen, 1989; Ratcliff, 1990, or unlikely pathological
exploration). The next three sections aim to explore the influence of training parameters and control
problem definition on the learning reliability and sample efficiency, as well as on the resulting policy.
Specifically, we isolate the influence of the RL algorithm’s parameters, the sensitivity to the reward
model’s definition, and the influence of variations in the dynamics model.

4.2. Sensitivity analysis to DRL hyperparameters

In DRL, hyperparameters greatly affect policies and learning performance (Henderson et al., 2018).
Besides, their effects vary with the algorithm and the control problem. Therefore, this section investigates
the influence of RL hyperparameters on the learning reliability and sample efficiency of DDPG, TD3, and
SACon the first task considered in Section 4. First, the influence of the network size is assessed by varying
the number of hidden layers of the MLPs, as well as the number of neurons on each layer. For each case,
these variations are applied to all neural networks (policy network, value function network, and
corresponding target networks, if any) at the same time. Then, the effect of the replay buffer capacity
and the number ofwarm-up episodes is assessed. The former is of particular importance because, in a CFD
context where the whole field (e.g., pressure, velocity) would be stored as the state in the replay buffer,
keeping all acquired samples might causememory issues. Note that a preliminary study investigated other
parameters such as the batch size or specific techniques to compensate for poor distribution of samples in
the replay buffer (Schaul et al., 2016; Lahire et al., 2022). None of these evidenced a significant impact on
the reliability and sample efficiency of the algorithms and the results are not reported in this paper.

To establish proper metrics to evaluate the reliability of RL algorithms, the inherent stochasticity of the
learning process has to be taken into account. For this reason, for each set of parameter values tested in this
study, 20 learning trials, with different random numbers generator’s seeds are performed. Each of them
lasts 1,000 episodes. The policy obtained at the end of the 1,000th episode is then tested. The trial is
classified as won if the policy is able to reach B (i.e., ρ< ε), and lost otherwise. These 20 trials provide a
statistical estimate of each configuration’s characteristics. This permits highlighting global tendencies and
allows formulating guidelines for the application of RL algorithms to the present benchmark, and to some
extent to other flow control problems. Table 2 summarizes the values of the parameters and the number of
won trials over the 20 computed for each set of parameters.

Among the neural networks (NN) sizes tested here, cases NN2× 8 and NN 3× 8 induce a degraded
reliability for DDPG and TD3, while SAC is remarkably robust to the network definition. A small neural
network might be unable to accurately encode the optimal policy to reach point B, and increases the
likelihood of finding local minima during the optimization process (hence not reaching the optimal
policy), while the regularization term of SAC provides a smoother optimization landscape and consist-
ently escapes local minima. For the benchmark considered, a neural network with two hidden layers of
32 neurons is sufficient to correctly represent the policy. There is no clear-cut effect of increasing the
number of layers beyond 2, or the number of neurons on the layers beyond 32. Similarly, increasing the
number of warm-up episodes from 8 to 80 does not affect the reliability significantly.

Regarding the replay buffer, given the number of episodes and their average length, a replay buffer
maximum capacity equal to 500,000 means that every collected sample stays in the replay buffer during
the full learning. On the contrary, maximum capacities equal to 5,000 or 500 lead to a progressive
replacement of the first samples by newer ones, on a first-in-first-out basis. Such configurations induce a
non-stationary distribution of samples in the replay buffer, which is detrimental to the learning process and
may lead to unstable training. While the reliability is only weakly affected for case RB5000, it is strongly
degraded, for DDPG and TD3, when the replay buffer capacity is set to 500. More generally, Table 2
shows that SAC is more robust to parametric variations than DDPG and TD3, even where the other two
algorithms perform particularly badly.

Besides the reliability, sample efficiency is of particular interest for CFD applications because samples
are often computationally expensive to collect. A sample st,at,rt,st + 1ð Þ is collected and stored in the
replay buffer at each control step. Therefore, to compare the sample efficiency between algorithms and
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cases, Figure 11 shows the evolution of the ensemble average and standard deviation of the evaluation
return computed over all trials that led to a winning test trajectory as a function of the ensemble average
number of control steps (or equivalently, the number of collected samples). In all cases, SAC and DDPG
display similar learning curves, while TD3 is systematically slower to reach themaximum return. This can
be attributed to the inner workings of TD3, which updates the policy’s network only once every two
updates of the value function, hence trading off accuracy of the policy gradient for number of gradient
steps. This makes TD3 not suited to the present problem and possibly limits its usefulness for CFD
problems where sample efficiency may be critical. Looking at DDPG and SAC, the variance in score of
the latter decreases sooner across episodes in most cases (shaded area in Figure 11), meaning that the
learning of SAC is more stable. Cases with a lot of dispersion with SAC correspond to especially hard

Table 2. Influence of RL hyperparameters: cases characteristics and number of won trials over 20
realizations

Name NN size Batch size RB capacity Warm-up Algorithm Won

Baseline

Baseline 32, 32 64 500,000 8 DDPG 19
TD3 19
SAC 20

Influence of the network’s size

NN 3 × 32 32, 32, 32 64 500,000 8 DDPG 18
TD3 19
SAC 20

NN 2 × 8 8, 8 64 500,000 8 DDPG 13
TD3 11
SAC 18

NN 3 × 8 8, 8, 8 64 500,000 8 DDPG 17
TD3 6
SAC 19

NN 2 × 128 128, 128 64 500,000 8 DDPG 20
TD3 19
SAC 20

NN 3 × 128 128, 128, 128 64 500,000 8 DDPG 19
TD3 19
SAC 20

Influence of the number of warm-up episodes

P80 32, 32 64 500,000 80 DDPG 17
TD3 17
SAC 20

Influence of the replay buffer’s capacity

RB5000 32, 32 64 5000 8 DDPG 16
TD3 16
SAC 20

RB500 32, 32 64 500 8 DDPG 9
TD3 9
SAC 20

Note. Number of won trials smaller or equal to 15 are highlighted in bold red, and in black bold when equal to 20.
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situations, where DDPG and TD3 are anyhow less reliable. Despite these differences in the sample
efficiency, the three algorithms reach the same asymptotic maximal average score in most cases. The few
exceptions happen with TD3 where the algorithm would most probably reach the maximum return if the
learning lasted more than 1,000 episodes. Note that the associated policies obtained from all trials
discussed in this section lead to similar envelopes of optimal test trajectories (not shown), which suggests
that all algorithms produce similar sets of optimal policies. Finally, Figure 11 shows a sharp decrease at the
beginning of learningwith SAC inmost cases.While DDPG andTD3 only seek tomaximize the objective
term, SAC has an additional entropy term in the loss. Since Figure 11 does not show the full termwhich is
maximized but only the objective term, it is possible to conjecture that the decrease at the beginning is due
to the algorithm maximizing the entropy term at first.

4.3. Variations in the reward model definition

Besides the raw usability of RL algorithms for fluid mechanics problems, and the hyperparameter
sensitivity of such algorithms, onemaywish to study how these methods cope with alternative definitions
of the training objective, that is the reward model. Reward formulation can impact both the learning
performance and the learned policy (Ng et al., 1999; Henderson et al., 2018). In particular, two pitfalls
must be avoided. First, the agent may find a workaround instead of actually solving the task (see, for
instance, Rabault et al., 2019). Second, the agent may be very slow to find a solution, or even never find
one, if the reward provides too little information (e.g., sparse rewards).

In this section, various formulations are investigated. These include a dense and/or a sparse compo-
nent, as discussed in Section 3.1. The sparse part stands for the task that is actually solved (and on which

Figure 11. Ensemble average and standard deviation of the evaluation return computed with only trials
that led to a winning test trajectory (the averagemay therefore be performed with different number of runs
for each algorithm). The curves were obtained by evaluating the policy at the end of each episode during

training.
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the agent is tested), whereas the dense part guides the airfoil in the right direction. For all cases, the
discount factor is set to γ= 0:99 (see Section 3.1). As in Section 4.2, 20 learning trials are run for each set of
parameters. The reward formulations and the results on reliability are summarized in Table 3, while the
learning progress of selected cases is shown in Figure 12.

First, let us focus on cases Baseline (where c2 = 10), c02, c
100
2 , c10002 , and R0, leaving aside case R�1. In

caseR0, a non-null reward is only obtained at the end of the episode if awon or lost situation is reached: the
reward is purely sparse. On the opposite side, case c02 features a reward signal that tells the algorithm, at
each time step, whether the action has drawn the airfoil closer or farther away from the target; the reward is
purely dense. In this last case, the reward model does not fit explicitly the criterion used for evaluating
trajectories a posteriori (wonwhen the plate enters the ball of radius ε around point B and lost otherwise).
Conversely, the rewardmodel encourages the algorithm to learn how to fly as close as possible to B. Cases
Baseline, c1002 and c10002 use a combination of both a dense and a sparse term. The three cases vary in the
weight assigned to each term. Among all these cases, themost reliable optionwhen usingDDPGor TD3 is
the Baseline one, where the sparse term value is approximately 10 to 25% of the sum of the rewards
collected, at each time step, over an episode. On the contrary, among the less reliable cases for DDPG and
TD3 is the fully sparse R0 case. One should note that piecewise constant reward models and deterministic
dynamics fall out of the scope of application of deterministic policy gradient algorithms (Silver et al.,
2014). DDPG and TD3 belong to this class of algorithms so that they cannot be expected to perform well
in sparse reward cases such asR0. Besides, evenwhen theoretically applicable, sparse rewards oftenmake
the problem hard to solve since they induce a difficult uninformed exploration problem for the RL
algorithm. In case c10002 , the sparse term is approximately 10 times larger than the sum of the rewards

Table 3. Influence of the reward model (Eq. 8): cases characteristics and number of won trials over 20
realizations

Name c1 � rd c2 Algorithm Won

Baseline

Baseline �100 × Δρ st,st + 1ð Þ
ρ0

10 DDPG 19
TD3 19
SAC 20

Influence of c2 in the reward model

c02 �100 × Δρ st,st + 1ð Þ
ρ0

0 DDPG 16
TD3 16
SAC 20

c1002 �100 × Δρ st,st + 1ð Þ
ρ0

100 DDPG 15
TD3 11
SAC 19

c10002 �100 × Δρ st,st + 1ð Þ
ρ0

1,000 DDPG 2
TD3 5
SAC 18

Influence of c1 � rd in the reward model

R0 0 10 DDPG 9
TD3 6
SAC 20

R�1 �1 10 DDPG 7
TD3 1
SAC 2

Note. Number of won trials smaller or equal to 15 are highlighted in bold red, and in black bold when equal to 20.
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collected over an episode. The dense part might be too low for DDPG and TD3 to perform well. Overall,
while DDPG and TD3 are strongly affected by the reward formulations discussed here, SAC is way more
robust to these variations, owing to both the regularization term in its objective function and the better
exploration process of the stochastic policy.

Finally, in case R�1, a reward of�1 is applied at each time step, as well as a sparse term at the end of
each episode. Such a formulation defines a signal that directly minimizes the time taken to reach B, but
does not inform the behavior policy in terms of progress towards the goal: it boils down to the difficulties
of a piecewise constant and sparse reward problem. Indeed, as long as the algorithm does not meet point B
at least once by chance, given the data within the replay buffer, the most straightforward way to maximize
the return is to minimize the number of time steps per episode by terminating the episode as fast as
possible. Interestingly, the policy may therefore remain stuck in a local minimum corresponding to a
“suicidal” policy (which terminates each episode as fast as possible), and never explore enough to
discover there is a better way tomaximize the return.While SAC ismore reliable thanDDPGor TD3 in all
other cases, Table 3 evidences the very poor performance of all three algorithms for case R�1.

Changing the reward model implies that different control problems are actually solved, with possibly
different optimal trajectories for each scenario. Yet, as in Section 4.2, similar test paths are obtained
whatever the reward model (not shown here). Consequently, this benchmark can be used to assess the
sample efficiency in regard to the reward model applied. Despite the different scales, cases c10002 and R0

display very similar learning curves in Figure 12. The dense term in the reward of case c10002 may be too
small to be accurately taken into account in the learning so that this case is almost equivalent to theR0 case.
Regarding cases including both a dense and a sparse part, the smaller the sparse term, the quicker the
maximum return value is reached (or equivalently, the better the sample efficiency). For all cases
presented here, once again, similar learning curves are obtained for DDPG and SAC, whereas TD3 is
slower to learn, likely due to its over-caution and delayed updates.

4.4. Variations in the dynamics model

The control problem considered until now has simple dynamics: the environment is deterministic and the
task is permissive such that various policies can be quasi-optimal. Now, we investigate the behavior of

Figure 12. Ensemble average and standard deviation of the evaluation return computed with only trials
that led to a winning test trajectory (the averagemay therefore be performed with different number of runs
for each algorithm). The curves were obtained by evaluating the policies at the end of each episode during

training.
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algorithms in potentially more challenging situations, which could be encountered when moving towards
real-world applications. Four different variations from the baseline are considered: decreased actuation
frequency, increased airfoil density, added environment noise on the action, and, finally, replacing the
low-order model with the resolution of the Navier–Stokes equations to account for unsteady aerodynamic
forces. Such variations modify the dynamics of the problem and may therefore alter the learning
performance and the associated policy. Both are analyzed in this section.

The first parameter investigated is the control frequency. In this work, this is treated as a tunable
parameter. This may not be the case in physical problems that require a specific frequency to control a
given phenomenon, or if the goal is to mimic a specific actuation device. Decreasing the actuation
frequency leads to a lower-horizon control problem (fewer control steps in each episode) and could
therefore induce easier convergence. However, this can hit a threshold frequency underwhich the problem
is under-actuated and no successful policy can be found. The second parameter is the airfoil density. As the
density increases, the airfoil inertia increases as well, and the reachable states are increasingly limited.
One could then expect that with an increased density, the control problem to solve is harder because the
policies have less latitude. Next, environmental noise is added to the action prescribed by the controller:
the environment is not deterministic anymore. Note that unlike in robustness studies, here the noise is
added during both the learning and testing phases so that the policy learns how to deal with noise. This
added noise can resemble the uncertainty in the prescription of the action that can occur in an experimental
setting. However, here, the noise value is selected randomly according to a Gaussian distribution centered
in zero and of standard deviation σ � _β0, where σ is given in Table 4. Note that this is different from the
expected noise produced by experimental devices. Nevertheless, this allows a first assessment of the
algorithms’ behavior in the presence of environment noise.

Finally, the low-order model of the flying flat plate physics used until now is replaced by the resolution
of the Navier–Stokes equations with the STAR-CCM+ solver, described in Section 2.1. This introduces
more complex dynamics since addedmass, virtual camber, and wake effects on the aerodynamic loads are
captured, and therefore this case represents a step towards more realistic applications. The state
components fed to the RL algorithm are kept unchanged from the low-order model case. As a conse-
quence, the algorithm has now access to only partial information about the complete state describing the
underlying MDP: the state observed by the algorithm does not fully describe the environment state, since
it has no information on the whole flow fields. This situation leads to ambiguous situations where two
identical measurements fed to the policy might actually correspond to two different environment states
(e.g., same flat plate position, velocity, and pitch angle, but different surrounding flow field, such as a
different unsteady wake topology). Such a control problem moves away from the MDP theoretical
framework on which the three analyzed algorithms are built, but also better represents most real-world
problems. While the training lasted 1,000 episodes with the low-order model, here, only 500 episodes
were performed before testing the controller. This is sufficient to obtain a converged solution and allows to
reduce the computational cost of the trials with the high-fidelity model. Besides, a well-known unlearning
phenomenon (where the learned policy forgets after being able to perform the task) was observed in a few
cases when running the training for longer: a detailed analysis of this phenomenon is beyond the scope of
this current work. For all these four variations from the Baseline, Table 4 summarizes the values of the
parameters investigated and the corresponding learning reliability, while Figure 13 shows the learning
history of some selected cases.

In case f 1=2 (respectively, f 1=5), the actuation frequency is decreased compared to the Baseline case:
the physical time step dt is kept constant, while the control time step Δt is increased so that Δt = 2dt
(respectively,Δt = 5dt). As a result, for the same number of episodes, the number of collected samples and
neural network updates would be decreased by 2 (respectively, 5). To keep these constant across cases,
the number of episodes is increased accordingly so that the total number of collected samples remains of
the same order of magnitude. However, this increases the cost associated with sample collection, and,
incidentally, with each training trial. Results from Table 4 show that decreasing the control frequency has
no significant impact on reliability. However, comparing the curves obtained for theBaseline and the low-
frequency actuation case in Figure 13 reveals that a faster learning is achieved for the latter. Indeed, case
f 1=5 is a lower-horizon control problem: the average number of control steps between the initial state and
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the end of an episode is five times smaller. As a result, the sparse earning at the end of a winning episode is
faster to propagate towards initial states, resulting in a faster convergence.

To ensure that the global trend obtained when assessing the reliability of the RL algorithms is not
specific to the chosen setup, an additional flat plate configuration is tested: case d150 corresponds to a
different airfoil density compared with Baseline, whose density is ds = 30kgm�3. DDPG and TD3’s
reliability slightly decreases when increasing the flat plate density. This is consistent with the fact that the
problem is more challenging. Besides, the sample efficiency of DDPG and SAC is not significantly
affected, while TD3 requires more samples to converge toward the maximum value of the return.

In cases σ0:1 to σ0:75, where environmental noise is added to the action prescribed by the agent, all three
algorithms remain reliable whatever the noise intensity. Because the actuation frequency is high, and the

Table 4. Influence of the transition model: cases characteristics and number of won trials over 20
realizations

Name Environment Actuation frequency Number of episodes ds Action σ Algorithm Won

Baseline

Baseline Low-order 1
dt 1,000 30 0 DDPG 19

TD3 19
SAC 20

Influence of the actuation frequency

f 1=2 Low-order 1
2dt 2,000 30 0 DDPG 20

TD3 18
SAC 20

f 1=5 Low-order 1
5dt 5,000 30 0 DDPG 17

TD3 18
SAC 20

Influence of the airfoil density ds

d150 Low-order 1 1,000 150 0 DDPG 16
TD3 15
SAC 20

Influence of the environmental noise σ

σ0:1 Low-order 1 1,000 30 0.1 DDPG 19
TD3 19
SAC 20

σ0:2 Low-order 1 1,000 30 0.2 DDPG 19
TD3 20
SAC 20

σ0:5 Low-order 1 1,000 30 0.5 DDPG 19
TD3 20
SAC 20

σ0:75 Low-order 1 1,000 30 0.75 DDPG 18
TD3 19
SAC 20

Influence of the physics modeling

CFD CFD 1 500 30 0 DDPG 20
TD3 18
SAC 17

Note. Number of won trials smaller or equal to 15 are highlighted in red bold, and black bold when equal to 20.
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noise is random, its average over time equals zero, which yields a null global effect. A correlated noise
may lead to different results. Here, the sample efficiency remains similar to that of theBaseline for all three
algorithms.

Finally, in the case of CFD, whatever the algorithm, reliability stays high and sample efficiency is
slightly higher, compared to the Baseline. When using RL algorithms in conjunction with CFD solvers,
computing the samples is expensive in terms of CPUusage.A trial with the low-ordermodel lasts less than
an hour on a single computing core. With the CFD environment, the total computational cost required to
perform a trial (RL training and sample collection) is 1,200 times larger. This corresponds to the large
CPU time required to collect samples when coupling CFD and RL algorithms, the cost of the RL part
being negligible. This significant increase exemplifies the need for reliable and sample-efficient off-
policy RL algorithms, which is at the core of the present study.

While the variations in the dynamics model considered here have a limited impact regarding the
learning performance, their influence on policies is evidently high. Figure 14a shows all the winning test
trajectories and Figure 14b shows the corresponding controller actions, obtained with SAC, for each case
presented in Figure 13.Moreover, for each case, in an attempt to compare visually the policies obtained by
SAC, TD3, and DDPG, we count howmany times each action is taken along a trajectory, and average this
count over 20 trials. This provides a probability density function (PDF) of actions along trajectories which
is shown in Figure 14c. The trajectories and action signals of the Baseline case obtained with SAC have
already been discussed on Figure 10: policies vary a lot from one test to another, but most policies consist
in applying a negative pitch rate at the beginning, then stabilizing on average around a value close to zero.
Finally, near the end of the episode, close to point B, the different policies cover the whole range of
possible values. This leads to the PDF of the actions observed in Figure 14c for SAC, which peaks slightly
below zero. The PDFs obtained forDDPGand TD3 are, however, quite different.While a peak below zero
can still be observed for DDPG, TD3 evidences a much more evenly distributed pitch rate over the range
of possible values. Besides, DDPG and TD3 show a small peak of the PDF at the extrema, which is not
observed for SAC. This evidences some periods of action saturation with the former algorithms that are
not experiencedwith SAC. Variations of the PDF are strong between the algorithms for thisBaseline case.
On the contrary, all three algorithms present similar PDFs for the low frequency actuation case f 1=5. Apart
from the peaks at the extrema observed only for DDPG and TD3, the PDF curves overlap quite well.

Figure 13. Ensemble average and standard deviation of the evaluation return computed with only trials
that led to a winning test trajectory (the averagemay therefore be performed with different number of runs
for each algorithm). The curves were obtained by evaluating the policy at the end of each episode during

training.
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Because of the lower control frequency, this case leads to a graphically rougher action sequence signal
than the Baseline case but the trajectory envelope is similar. Then, when the plate density is increased, the
controller has much less room to maneuver the possible actions at the beginning of the episode. All
policies able to reach B consist of applying a significant upward pitch rate from the very beginning until
approximately half of the episode. Otherwise, the strong inertia of this case prevents the airfoil from
reaching the target. The associated PDF evidences a strong peak close to theminimal pitch rate allowed by
the problem. The test trajectories resulting from these resembling policies are very similar. Next, case σ0:75

depicts a very noisy action sequence due to the additional environment noise. However, the actuation
frequency is so high that the trajectories are barely affected by the noise and are very similar to that of the
Baseline. The three PDF shapes differ from one algorithm to another but they all appear flattened.

Finally, the action sequences in the CFD case are more saturated than in the Baseline case and do not
evidence the preference for a negative pitch rate at the beginning of the episode, as observed in all other
cases. Instead, the pitch rate values spread over thewhole range at the beginning of the episode. The action
PDFs are even more flattened than in the noisy case, and do not evidence any pattern apart from the peaks
at the extrema already observed for DDPG. Corresponding trajectories are less smooth and way more
spread than the ones obtained with the low-order model. This is most likely associated with the richer
dynamics involved and the more complex feedback coupling between the airfoil and the fluid when the
flow is solved with the Navier–Stokes equations. In particular, because the airfoil can experience large
accelerations in pitch, added mass forces (which are not included in the low-order model) are one to two
orders of magnitude larger than quasi-steady forces induced by translation, and the controller relies on
such forces (rather than quasi-steady forces) to drive the airfoil to point B. In fact, although not shown here
for the sake of conciseness, the effective angle of attack can be mostly negative throughout the maneuver,
hence mostly producing negative quasi-steady lift. Rather, gain and loss in altitude are correlated with

Figure 14. (a) Trajectory, (b) normalized action _β= _β0, and (c) normalized action probability density
function (PDF) for selected cases.
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rapid pitch-up and pitch-down (i.e., angular accelerations) of the airfoil. The control strategy is therefore
fundamentally different from that obtained with the simplified model, which most likely explains the
differences observed in Figure 14.We add that virtual camber and wake effects may also play a role in the
control strategy, but their order of magnitude is significantly lower than that of added mass effects. An
example of the vorticity field that develops around the airfoil during the maneuver is provided in
Appendix A.

4.5. Summary on the sensitivity analysis and reasons to choose SAC over DDPG or TD3

The overall performance of DDPG, TD3, and SAC on the first task in terms of reliability is summarized in
Figure 15. For each set of parameters tested in the previous sections, and detailed in Tables 2–4, the
percentage of won trials is reported in green as a positive number, and the percentage of lost trials is
reported in red as a negative number.

Figure 15 highlights clearly that SAC is more reliable than DDPG and TD3, which both evidence
strong reliability variations when parameters vary. On the other hand, SAC is less sensitive to parameter
tuning and especially “hard” problems for DRL algorithms (e.g., small network, low replay buffer
capacity). The only exception is the R�1 case (see Table 3), which leads to catastrophic performance
for all three algorithms.

On this benchmark, andwithout special optimization of any of the algorithms, SACwas observed to be
slightly more CPU consuming than DDPG or TD3 (which is consistent with its inner adjustment
mechanisms), but the computational cost gap between algorithms goes to zero when the physics is solved
with CFD. Indeed, in such a case, the cost associated to theRL algorithm is negligible compared to the cost
associated to the CFD computation.

To sum up, on the first task at hand here, SAC is more reliable, has the same cost when used with CFD,
and has a sample efficiency comparable to DDPG and superior than TD3. It is therefore more suitable to set
up this new control problem for which we had no prior knowledge in terms of parametrization. The
knowledge acquired on this simple task can then be used as a basis whenmoving towards more complexity.

Interpreting why SAC seems more robust and efficient is an open question in the RL literature, for
whichwe provide some elements here. First, andmaybe overall, the entropy regularization term in SAC is
known to make the optimization landscape smoother and to drive the optimization more consistently
towards the same minima (Geist et al., 2019). In the present case, this is reflected through the consistent
performance of SAC. Additionally, SAC provides amore principled way of performing exploration, as its
behavior policy benefits from an adaptive temperature parameter, while DDPG and TD3 rely on adding
Gaussian noise to a deterministic policy. This induces a possibly better coverage of the relevant states and
actions, and, in turn, better gradients for the value function and policy. Finally, SAC has been recently
analyzed under the lens of robust MDPs (Eysenbach and Levine, 2022) where the policy is optimized to

Figure 15. For all sets of parameters reported in Tables 2–4 the percentage of won trials is reported in
green as a positive number and the percentage of lost trials is reported in red as a negative number.
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performwell across a span of control problems (instead of a single one). The robustness of SAC policies to
variations in the control problem dynamics makes it less sensitive to both environment identification
errors and hyperparameter tuning. Nevertheless, SAC and TD3 are mathematically very close (both are
approximate value iteration algorithms, using a stochastic behavior policy) and claiming pure dominance
of an algorithm over another in RL is a delicate endeavor (Henderson et al., 2018). Consequently, the take-
away message of this section should not be that SACwill always dominate over TD3 or even DDPG. It is
actually very likely that there exists a set of hyperparameters for which TD3 or DDPG performs as well or
even better than SAC. However, in the present case—and possibly in other fluid dynamics cases such as
those studied by Bucci et al. (2019), Novati et al. (2019), and Rabault et al. (2019) for instance—SAC
appears less sensitive to hyperparameter tuning and is thus a good candidate for a fluid dynamics
practitioner wishing to set up a new case study.

5. Results for the Second Task: Variable Target Point

The agent is now trained and tested on a more complex task. For this second task, the position of the target
point B is drawn randomly in a given domain, as illustrated, at scale, in Figure 16. The domain is a portion of
a circular ring revolving around the starting point A, with inner and outer radius, respectively, equal to 1:5c
and 2:1c. The portion corresponds to the �8∘;8∘½ � angular interval around the horizontal line.

After each training episode, an evaluation is performed on a given set of B positions in the domain. Two
different sets were tested: one with 11 points as illustrated in Figure 17a and another with 4 points as
shown in Figure 17b. This evaluation is used to compare policies on a fairly fixed basis and identify which
one leads to the highest return, on average over the evaluation points. This best policy is the one saved and
used for testing. Introducing such a metric and saving the best policy according to this metric allows to
obtain a quasi-optimal policy even if unlearning happens. Note that this is different fromwhat was done in
Section 4,where the policy used for testingwas the one obtained at the end of the training (i.e., at the end of
the 1,000th [or 500th] episode [for the CFD case]).

All parameters are kept identical to the Baseline case and the control problem of this second task is
defined by the same MDP than the first task: the state and action variables, as well as the reward and

Figure 16. Illustration (at scale) of the second task: B can take any value in the domain delimited by
dashed lines.

(a)

(b)

Figure 17. Policy evaluation is performed on a given set of B positions in the domain. (a) Set of
11 evaluation positions and (b) set of 4 evaluation positions.
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transition models, are also kept identical to the Baseline of the first task. At this point, it is interesting to
note that

• Due to the reward formulation, shorter paths lead to lower returns than longer ones. Or said
otherwise, the closer B is to A, the lower the return. The evaluation return is therefore expected
to be lower than that of the first task since, on average, the evaluation points are closer to A.

• Since the state and reward are defined with respect to B, varying the position of B while keeping the
position of A constant is equivalent to varying the position ofAwhile keepingB at the same position.

When analyzing the results obtained with the low-order model on this task, it was observed that the
learning speed was very similar for each point of the evaluation set and that the two different sets of
evaluation positions led to similar results. For this reason, and to mitigate the cost of the training, only the
set of 4 evaluation points is used when training with the high-fidelity model and results are only presented
for this case. The best policies obtained for each training are assessed by testing over two different sets of
points. First, they are tested with respect to the evaluation points. This is where they are supposed to
perform the best, since this is the metric that was used to select the best policies. Then, they are tested over
100 points chosen randomly inside the domain, to analyze their capacity to actually perform the desired
task, that is, reach any point in the given domain.

Case characteristics aswell as reliability results from the various tests are presented in Table 5. First, for
both environments and all algorithms, almost all trials produce policies that successfully reach the
evaluation points. Parametrization follows the Baseline one from the first task, for which all three
algorithms performed well and while the task is slightly different here, the performance is still nearly
perfect for all three algorithms. Interestingly, some of the policies reach all points from the evaluation but
fail to reach some locationswhen tested on 100 randompoints of the domain. Thismeans that a policy able
to meet the metrics requirement does not guarantee that it is actually able to perform the desired task.
Choosing the metrics here is a trade-off between evaluation cost (that increases with the number of
evaluation points) and accuracy. Note that policies successful on evaluation points but not on all random
points missed between 2 and 52 of the 100 points, meaning that some are almost able to perform the task
while others perform badly more than half the time. Sample efficiency is then analyzed in Figure 18.
DDPG and TD3 keep a similar behavior in this second task, compared to the first one, while SAC is more
sample efficient.

Policies obtained from training on the first and the second tasks are then compared when applied to the
target point of the first task. Figure 19a shows the airfoil trajectory and the action obtained with SAC as
well as the actions PDFs of all trials that successfully reached the target, for the three algorithms. The
trajectory envelope tightens in caseBvarLO compared to theBaseline.Besides, while the PDF curve varies
a lot between algorithms in the Baseline, they become very similar in case BvarLO, with a peak centered in

Table 5. Second task, variable target point: cases characteristics and number of trials that won on all
the target positions tested over 20 trials

Name Environment B position for learning Algorithm
Won over

evaluation points
Won over 100
random points

Task two: variable target point

BvarLO Low-order Random DDPG 19 19
TD3 20 19
SAC 20 19

BvarCFD STAR-CCM+ Random DDPG 20 19
TD3 19 17
SAC 20 20
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zero. The only notable difference is the peak at the extrema, which is observed only for DDPG and TD3.
Note that casesBaseline andBvarLO differ in twoways: (a) the training is performed on a fixed target point
versus on a given domain, and (b) the last policy is saved versus the best policy is saved. Case BvarCFD

evidences the same trajectories of envelope tightening compared to its fixed target counterpart in
Figure 14. Besides, just like observed in Figure 14, the action trajectories obtained when solving the
Navier–Stokes equations spread at the beginning and the pitch rate values cover the full range of possible
values instead of the preference for a strong negative pitch rate at the beginning observed when using the
low-order model. The effect of such differences in the policies is easily observed in the corresponding
trajectories. Interestingly, there is a peak centered at a value close to zero for DDPG and SAC, in place of
the flattened PDFs observed when training with CFD on a fixed target point.

To further evaluate the capacities of the policies trained on this second task, they were compared on
their ability to reach points outside of the training domain. Results can be found in Appendix B.

6. Conclusion

In this study, three DRL algorithms: DDPG, TD3, and SAC are evaluated and compared regarding
reliability and sample efficiency as well as the policies they produce and their generalization capabilities.

Figure 18. Ensemble average and standard deviation of the evaluation return computed with only trials
that led to a winning test trajectory (the averagemay therefore be performed with different number of runs
for each algorithm). The curves were obtained by evaluating the policy at the end of each episode during

training.

Figure 19. (a) Trajectory, (b) normalized action _β= _β0, and (c) normalized action probability density
function (PDF) for selected cases.
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To do so, a benchmark case, which can be solved by a low-cost low-order approach as well as a high-
fidelity CFD approach is proposed. The task consists in controlling an airfoil from an initial point to reach
a target. In a first task, the target is kept in a fixed position during the training and testing of the policy,
while a second task consists to be able to reach any point in a given domain. The three RL algorithms are
evaluated on both tasks when varying the RL hyperparameters, the reward formulation, and the dynamics.
We observe that DDPG and TD3’s reliability depends greatly on the RL hyperparameters and the reward
formulation, while SAC is more robust to parameter variations and “hard” problems. Besides, the sample
efficiency of SAC and DDPG is similar and superior to that of TD3. When testing the algorithms on their
generalization capabilities across locations outside the training domain, all algorithms have the same
performance. Moreover, their performance is on average improved with CFD compared to the low-order
model. Overall, SAC appears both reliable and sample-efficient over a wide range of parametrization
setups. It is therefore suited to solve fluid mechanics problems and setup new cases without tremendous
effort. In particular, SAC is resistant to small neural networks or replay buffers. The latter is of practical
importance if full-flow fields were to be stored. SAC also resists to various reward formulations which are
of interest when setting up a new case and even performs well with sparse rewards. Finally, it performs
well in situations where optimal policies are unambiguous, that is where there are few optimal action
sequences leading to a winning situation (in opposition to situations where several very different
sequences enable reaching the goal).

Regarding the parameter variations analyzed in this study,while the sample efficiency varies a lot with all
parameters, the reliability is mostly affected by RL hyperparameters and reward formulation but not so by
dynamics. Interestingly, the successful parametrization identified on the low-ordermodel proved successful
with the CFD environment: DDPG, TD3, and SAC are all reliable and sample efficient in this case. This
means that a preliminary study can be performed on a cheaper version for this case. Unlike reliability and
sample efficiency, policies are barely impacted by RL hyperparameters and reward formulation but
evidently vary a lot with dynamics. In particular, while policies keep the same global pattern across tasks,
the overall strategy employedwhenRL algorithms are coupled to the low-ordermodel is quite different than
that produced when using the CFD solver. This limits the possibility of transferring a policy learned on the
low-ordermodel to directly apply it in theCFD.Somepreliminary tests have beenperformed in thatway and
did not prove successful. Such a transferwould be of tremendous interest since it would reduce the CPU cost
of learning. This can be viewed (for instance) under the prism of curriculum learning for RL, where a
sequence of learning contexts of increasing difficulty is defined by adding representative features (and the
corresponding samples) in the dynamics model, which closes the gap towards a more physically realistic
environment. In such a framework, fine-tuning with few samples, a policy that was pre-trained on a
computationally cheap low-order model, is yet a challenge for future research, which would constitute a
major step forward for the applicability of RL to fluid mechanics problems.
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A. Vorticity fields along the airfoil trajectory in the CFD-DRL framework
Figure A1 displays instantaneous vorticity snapshots obtained at four instants during amaneuver performing the first task (i.e., fixed
starting and target points). The action sequence of thismaneuver is obtained by testing one of the 20 policies obtained for the 20 trials
performed with SAC for the CFD case discussed in Section 4.4. At t = 0 s, the plate has its pitch axis located on A. The flow around
the plate is characterized by two thick, opposite-sign shear layers that advect into the wake. At t = 0.00078 s, the plate has pitched up
while traveling towards B. The pitch-up motion has caused the positive (blue) vorticity layer to roll up into a counter-clockwise
rotating vortex. The subsequent pitch-down motion then caused the vortex to shed into the wake and promoted the generation of a
clockwise rotating vortex. Alternate shedding of clockwise and counter-clockwise rotating vortices is also observed later in the
maneuver, at time t = 0.0017 s. These structures, together with wake oscillations, are the only clear footprint of pitch-up/pitch-down
motions defined by the controller once the plate has reached B at t = 0.00234 s. That is, for this specific task, there is no evidence of
leading edge flow separation that could promote more aggressive maneuvers through additional vortex lift, for example.

B. Out-of-domain generalization capabilities of the trained policies
The policies trained on the second task are compared to their ability to reach points outside of the training domain. These points are
all taken at the same x = �2c, while their y coordinate is varied to move the point further away from the training domain. Results are
presented in Table B1.

Figure A1. Instantaneous vorticity field at various time steps of the CFD-DRL framework applied to the
trajectory control of an airfoil going from point A to point B. The action sequence of this maneuver is
obtained by testing one of the 20 policies obtained for the 20 trials performed with SAC for the CFD case

discussed in Section 4.4.

Table B1. Generalization capabilities on the second task, variable target point: number of won trials
over 20 realizations

Name Algorithm

Won on Won on Won on Won on Won on Won on

y= 0:4c y= �0:4c y = 0:6c y= �0:6c y= 0:8c y= �0:8c

Task two: variable target point

BvarLO DDPG 18 17 14 14 3 4
TD3 17 19 8 16 4 8
SAC 20 19 13 12 4 3

BvarCFD DDPG 19 20 17 18 15 10
TD3 18 19 13 16 7 9
SAC 20 19 13 15 11 6

Note. Number of won trials smaller than or equal to 15 are highlighted in bold red.
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Generalization capabilities for points outside the domain are very random but globally decrease with distance to the training
domain. However, symmetrical points with respect to the horizontal do not lead to the same reliability, indicating that it is not
only a matter of distance. Interestingly, the policies trained with CFD are more robust than those trained with the low-order
model.
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