
Probability in the Engineering and Informational Sciences, 30, 2016, 379–402.

doi:10.1017/S0269964816000061

FAST NON-NEGATIVE LEAST-SQUARES LEARNING
IN THE RANDOM NEURAL NETWORK

STELIOS TIMOTHEOU

KIOS Research Center for Intelligent Systems and Networks
University of Cyprus, Cyprus

E-mail: timotheou.stelios@ucy.ac.cy

The random neural network is a biologically inspired neural model where neurons interact
by probabilistically exchanging positive and negative unit-amplitude signals that has supe-
rior learning capabilities compared to other artificial neural networks. This paper considers
non-negative least squares supervised learning in this context, and develops an approach
that achieves fast execution and excellent learning capacity. This speedup is a result of
significant enhancements in the solution of the non-negative least-squares problem which
regard (a) the development of analytical expressions for the evaluation of the gradient
and objective functions and (b) a novel limited-memory quasi-Newton solution algorithm.
Simulation results in the context of optimizing the performance of a disaster manage-
ment problem using supervised learning verify the efficiency of the approach, achieving
two orders of magnitude execution speedup and improved solution quality compared to
state-of-the-art algorithms.

1. INTRODUCTION

The random neural network (RNN) is a neural network model inspired by the spiking behav-
ior of biophysical neurons [16,17]. When a neuron is excited, it transmits unit amplitude
signals called spikes to either excite or inhibit the receiving neurons. The combined effect
of excitatory and inhibitory inputs changes the potential level of the receiving neuron and
determines whether it will become excited. RNN has attracted a lot of attention in the scien-
tific community due to its analytical solvability, excellent learning capacity, implementation
ease, as well as its representational, modeling and universal approximation capabilities [19].
RNN has also been applied for the solution for different types of problems including opti-
mization (e.g., minimum Steiner tree [24], assignment of assets to tasks under uncertainty
[31], task assignment in distributed systems [2], rescuer assignment of emergency evacua-
tion [25], cognitive packet networks [28]) and modeling (e.g., G-networks [3,18,20,22], gene
regulatory networks [23], and protein interaction networks [42]) problems. Nonetheless, the
most important application area of RNN regards the solution of supervised learning prob-
lems such as laser intensity vehicle classification [35], wafer surface reconstruction [27], mine
detection [1] and denial-of-service attack detection [41].

In the context of supervised RNN learning, several algorithms have been designed over
the years aiming to optimize excitatory and inhibitory weight values to minimize some

c© Cambridge University Press 2016 0269-9648/16 $25.00 379

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and

reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

file:timotheou.stelios@ucy.ac.cy
https://doi.org/10.1017/S0269964816000061

380 S. Timotheou

non-convex cost function associated with the learning task. In [21] the standard gradient
descent supervised learning algorithm for recurrent RNN was developed while gradient
descent learning algorithms have also been developed for extension models such as the
Multiple-Class RNN [26], the RNN with synchronized interactions [30] and the feedforward
RNN [32]. In the same context more advanced optimization algorithms have also been
developed based on contrastive learning [43], quasi-Newton [38] and Levenberg–Marquardt
[4] methods. A survey of RNN models, learning algorithms and applications can be found
in [47].

Departing from the traditional approach of solving the supervised RNN learning
problem as a non-linear, non-convex optimization problem, in [45,46] the problem was
reformulated into a convex program and solved to optimality. This was accomplished by
approximating the equations governing the RNN into a linear system of equations with
non-negativity constraints, when the excitation levels of all neurons are fixed for each input
pattern (either to desired or random values). This approximation yielded a linear least-
squares problem with non-negativity constraints (NNLS) which is a quadratic programming
(QP) problem that can be optimally solved using convex optimization algorithms. Because
the large-scale nature of the underlying problem prohibited the accurate solution of the
NNLS problem using QP, a first-order recursive algorithm was developed for its solution.
NNLS learning has been shown to provide comparable performance to gradient descent
RNN learning with lower execution times.

Linear least-squares techniques for learning have also been utilized in feedforward con-
nectionist neural networks and shown to be very efficient, obtaining smaller training errors
and faster training times compared to backpropagation techniques. These methods are based
on the observation that the inputs to the neurons of a given layer is a linear function of the
outputs of the preceding layer. The non-linearity arises from the application of the activa-
tion function to the input of each neuron in order to obtain its output. Hence, if the outputs
of two consecutive layers are known then the optimal weights connecting the two layers can
be derived by minimizing the mean square error (MSE) between the actual and the desired
input to the second layer [6]. One problem with this approach is that it does not take into
consideration the scaling effect of the non-linear activation function. Attempts to improve
this deficiency include approximating the activation function with a linear combination of
convex functions [10], considering the slope of the activation function at the desired out-
put values to achieve better scaling [14] and restricting the output neuron values in the
non-saturation region of the activation function [48,49].

Least squares have also been considered in hybrid algorithms. One approach is to obtain
the weights of all layers by standard backpropagation algorithms, apart from the output
layer where least squares are used to exploit the desired output values from the training
data [15,33]. Other hybrid algorithms have sophisticated iterative methods for choosing the
desired weights or output values of the non-output neurons such as penalized functions
[12] and sensitivity analysis [11], but employ least squares to optimize the performance of
the network for given values of those parameters. Extreme learning machines [34] also rely
on least squares learning in a feed-forward architecture upon performing random feature
mapping, but the activation function can take any non-linear piecewise continuous form.

This paper revisits the NNLS supervised learning problem in RNN to develop a cus-
tomized algorithm for the solution of the NNLS learning problem that achieves more than
two orders of magnitude execution speedup. This is a result of significant enhancements
which regard (a) the development of analytical expressions for the computation of the gra-
dient and objective NNLS functions and (b) a novel limited-memory, quasi-Newton solution
algorithm for the NNLS problem. Our approach also differs from existing least-squares
techniques for connectionist neural networks because it is developed for a different neural

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 381

network model so that the approximation and solution approach are different; moreover, it
is applied to a fully recurrent network with the least-squares method applied to the whole
network rather than on a layer-by-layer basis.

The paper is organized as follows. Section 2 introduces some preliminary material on
the mathematical representation of RNN and the solution of the NNLS problem. Sections 3
and 4 outline the procedure to transform the supervised RNN learning problem into an
NNLS formulation and the overall solution approach. Section 5 describes the proposed
approach for the solution of the NNLS problem, while Section 6 presents the derived ana-
lytical expressions for the fast computation of the NNLS gradient and objective function.
Section 7 demonstrates the efficiency of the developed approach and Section 8 concludes
the paper.

Notation: All boldface letters indicate vectors (lower case) or matrices (upper case), while
calligraphic letters denote sets. The superscript (·)T denotes the matrix transpose. Matrix
I is the identity matrix. diag(x) is a diagonal matrix with elements of the main diagonal
given by the entries of vector x, and all other elements equal to zero. 1 = [1, . . . , 1]T is a
vector of all ones, while ei = [0, . . . , 1, . . . , 0]T is a vector of all zeros apart from a one at
position i. ||z||2 denotes the Euclidean norm of a vector z. Operator � denotes element-
wise multiplication and ⊗ denotes the Kronecker product which if applied on x ∈ R

N×1 and
y ∈ R

M×1 yields: x⊗ y = [x1yT, . . . , xNyT]T ∈ R
NM×1. U(a, b) and U int(a, b) represent the

uniform distribution in the interval [a, b] generating real and integer numbers, respectively.

2. PRELIMINARIES

2.1. The RNN Model

RNN is a recurrent network of N fully connected neurons which exchange positive and
negative signals in the form of unit amplitude spikes. At any time t, the state of neuron
i is described by its signal potential ki(t) which is a non-negative integer associated with
the accumulation of positive signals at the neuron. We say that neuron i is excited when
ki(t) > 0, else if ki(t) = 0 then it is idle or quiescent. A closely related parameter is qi(t) =
Pr[ki(t) > 0] ≤ 1, which is the excitation probability of neuron i.

When neuron i is excited, it can randomly fire according to the exponential distribution
with rate ri resulting in the reduction of its potential by 1. The fired spike either reaches
neuron j as a positive signal with probability p+(i, j) or as a negative signal with probability
p−(i, j), or it departs from the network with probability d(i). These probabilities must sum
up to one yielding

N∑
j=1

[p+(i, j) + p−(i, j)] + d(i) = 1, ∀i (1)

Hence, when neuron i is excited, it fires positive and negative signals to neuron j with
rates:

w+(i, j) = rip
+(i, j) ≥ 0, (2)

w−(i, j) = rip
−(i, j) ≥ 0. (3)

Combining Eqs. (1)–(3) an expression which associates ri with w+(i, j) and w−(i, j) is
derived:

ri = (1− d(i))−1
N∑

j=1

[w+(i, j) + w−(i, j)]. (4)

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

382 S. Timotheou

Positive and negative signals can also arrive from the outside world according to Poisson
processes of rates Λi and λi, respectively. Positive signals have an excitatory effect in the
sense that they increase the signal potential of neuron j by 1. Contrary, negative signals have
an inhibitory effect and cancel a positive spike if kj(t) > 0, while if kj(t) = 0 the negative
signal has no effect.

The values of the stationary parameters of the network, the stationary excitation prob-
abilities qi = limt→∞ qi(t), i = 1, . . . , N and the stationary probability distribution π(k) are
derived from Theorem 1.

Theorem 1 [16]: Let the total arrival rates of positive and negative signals λ+(i) and λ−(i),
i = 1, . . . , N be given by the following system of equations

λ+(i) = Λi +
N∑

j=1

rjqjp
+(j, i) (5)

λ−(i) = λi +
N∑

j=1

rjqjp
−(j, i) (6)

where

qi = min
{

1,
λ+(i)

ri + λ−(i)

}
(7)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the non-linear system of Eqs. (5)–
(7) such that qi < 1 ∀i, then:

π(k) =
N∏

i=1

πi(ki) =
N∏

i=1

(1− qi)qki
i (8)

The theorem states that whenever a solution to the signal flow Eqs. (5)–(7) can be
found such that qi < 1,∀i, then the stationary joint probability distribution of the network
has the simple product form (8) associated with the marginal probabilities of each neuron,
πi(ki). The condition qi < 1 can be viewed as a “stability condition” that guarantees that
the excitation level of each neuron remains finite with probability one.

2.2. Non-negative Least Squares

NNLS is a convex QP optimization problem [37] defined as:

min
w≥0

f(w) =
1
2
‖Bw− b‖22. (9)

Due to the special structure of NNLS, apart from classical QP solution approaches,
several other approaches has been proposed to solve large scale problems which can generally
be classified into active set algorithms and iterative approaches.

In active set algorithms variables are divided into two sets: the active set and the passive
set. A variable belongs to the active set if it is negative or zero when the unconstrained
problem is solved, otherwise it belongs to the passive set. When the unconstrained least-
squares problem is solved, negative or zero variables do not contribute to the constrained
problem; therefore, if the true active set is known then the solution can be found by solving
the unconstrained problem for the passive set of variables and setting the active variables
equal to zero.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 383

The most widely known active set algorithm is the one proposed by Lawson and Hanson
[37]. In this approach, initially all the variables are inserted into the active set. Then an
iterative procedure is followed where in each iteration variables that result in a strictly
better evaluation of the cost function are identified and removed from the active set. The
procedure continues until no more active variables can be freed to reduce further the cost
function. Although it is possible to free many variables at a single iteration, general practice
has shown that it is better to free only one variable at a time from the active set [13].

A modified version of this algorithm identifies calculations that can be computed before-
hand to reduce the computational cost. The algorithm called FNNLS (Fast Non-negative
Least Squares) [7] speeds-up the procedure, but requires the storage of the square matrix
BTB; thus, it is not suitable for our problem. Active set methods are also not appropriate
in our case because they require the solution of the unconstrained least-squares problem
which involves a matrix inversion operation, that is an operation we want to avoid.

Iterative approaches adhere to non-linear optimization methods to update w. Usually
the update of the current solution is based on projected gradient methods which can identify
several active set constraints in one iteration. In the projected gradient methods, the update
takes place toward the steepest descent direction; nonetheless, by using the projection oper-
ation it is ensured that the new point is within the feasible region as shown in Eqs. (10)
and (11).

wτ+1 = P [wτ − sτDτ∇f(w)], sτ ≥ 0, (10)

P [wi] =

{
wi, wi > 0,

0, otherwise.
(11)

Projected gradient methods usually differ in the procedure used for the selection of the
step-size sτ and the update of the gradient scaling matrix Dτ , which must be symmetric and
positive definite. They generally require simple matrix–vector operations and can perform
well in ill-conditioned systems. Dτ is computed based on second-order gradient information
and results in fast convergence to the solution. An efficient and simple projected gradient
quasi-Newton method that uses the gradient scaling matrix Dτ was proposed in [36]. The
method exploits the active and passive variables and also requires only simple matrix–vector
operations. Nonetheless, it requires the explicit storage of Dτ and cannot be used in our
case. In Section 5, we develop a projected gradient NNLS (PGNNLS) algorithm with all
the above desirable characteristics.

3. NON-NEGATIVE LEAST-SQUARES RNN LEARNING FORMULATION

In RNN, the kth input training pattern xk is represented by the vectors Λk = [Λ1k, . . . ,ΛNk]
and λk = [λ1k, . . . , λNk], k = 1, . . . ,K. Usually the approach taken is to assign the input
training values, xik to the exogenous arrival rates such that Λik = max{0, xik} and λik =
max{0,−xik}. The desired values of the kth pattern, yk, are represented by the steady-state
excitation probabilities of the neurons qk = [q1k, . . . , qNk] emanating from applying input
training pattern k to the network. The RNN weights updated during the learning process
are w+(i, j) and w−(i, j), ∀i, j.

Without loss of generality we assume that the error function to be minimized is a general
quadratic function of the form:

E =
K∑

k=1

Ek =
1
2

K∑
k=1

N∑
i=1

c̄i(gi(qik)− yik)2, (12)

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

384 S. Timotheou

where Ek is the error function of the kth input-output pair, c̄i ∈ {0, 1} shows whether
neuron i belongs to the set of output neurons (i ∈ Iout) or not (i ∈ Iout) and gi(qik) is a
differentiable function of neuron i.

Ideally we would like to observe the desired output yk for all patterns. This means,
that for all patterns we should have: qik = g−1

i (yik), i ∈ Iout, where g−1
i (·) is the inverse

function of gi(·). This is achieved, if the positive and negative weights are selected so that
the appropriate qik values are achieved for all neurons. Without loss of generality, in the
sequel we assume that gi(qik) = qik, so that g−1

i (yik) = yik.
Combining Eqs. (5)–(7) we obtain:

qik = min
{

1,
λ+(i, k)

ri + λ−(i, k)

}
= min

{
1,

Λik +
∑N

j=1 qjkw+(j, i)

ri + λik +
∑N

j=1 qjkw−(j, i)

}
∀i, k (13)

If we further assume that λ+(i, k) < ri + λ−(i, k) ∀i, k and also substitute Eq. (4) into (13)
we obtain:

qik(1− d(i))−1
N∑

j=1

(w−(i, j) + w+(i, j)) + qik

N∑
j=1

qjkw−(j, i)−
N∑

j=1

qjkw+(j, i)

= Λik − qikλik, ∀i, k. (14)

If the network is only composed of output neurons, and if we assume that qik = yik, ∀i, k,
then Eq. (14) becomes a linear system of NK equations with 2N2 non-negative unknowns,
the weights w+(i, j) and w−(i, j). If there are both output and non-output neurons then by
selecting appropriate values for the excitation probabilities of the latter we can still obtain
a linear system, as discussed in Section 4.

An accurate solution to Eq. (14) may not be available for two reasons. First, the number
of equations may be larger that the number of unknowns; this is true when K > 2N . Second,
the non-negativity constraints restrict the values of the variables and a solution may not
exist even if K < 2N . As a result we formulate Eq. (14) as an NNLS problem to approach
equality as much as possible in the least square sense yielding (9) with B ∈ R

NK×2N2
,

b ∈ R
NK×1 and w ∈ R

2N2×1.
The gradient of the objective function is given by:

∇f(w) = BTBw−BTb. (15)

The ik row of matrix B and vector b in Eq. (9), which correspond to the ith signal flow
equation of the kth pattern, are given by the following expressions:

B(ik, ij+) = qik(1− d(i))−1, ∀ j
= i

B(ik, ij−) = qik(1− d(i))−1, ∀ j
= i

B(ik, ji−) = qikqjk, ∀ j
= i

B(ik, ji+) = −qjk, ∀ j
= i

B(ik, ii+) = qik(1− d(i))−1 − qik, j = i

B(ik, ii−) = qik(1− d(i))−1 + q2
ik, j = i

B(ik, otherwise) = 0,

(16)

b(ik) = Λik − qikλik, ∀ i, k. (17)

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 385

The column indices of B, ij+ and ij−, indicate the position of the variables w+(i, j)
and w−(i, j) in w, respectively. Notice that every value of B can be found by only
using matrix Q = [q1, . . . ,qk, . . . ,qK], Q ∈ R

N×K , which holds the qik values of both out-
put and non-output neurons; the d(i) values are usually constant and for simplicity we
assume that d(i) = 0,∀i. Also, despite the fact that every row of matrix B has 2N2 ele-
ments, only 4N of them are non-zero and hence the density of non-zero elements in B
is 2/N .

One difficulty associated with the above formulations is the large dimensionality of B
which implies that it may not be possible to be stored in memory. For example, in Section 7
we consider supervised RNN problems with dimensions up to N = 300 and K = 1000, so
that matrix B has dimensions 300, 000× 180, 000 which prohibits its storage in memory.
Moreover, initial experimentation showed that B is ill-conditioned. Therefore, in Section
5 we develop a PGNNLS algorithm that does not require either storing large matrices or
performing matrix inversion operations. It is important that only simple operations are per-
formed, such as matrix–vector products, avoiding inefficient matrix–matrix multiplications
or matrix inversion operations. To achieve the requirements of the solution approach, it is
also important to consider the sparseness of B.

4. RNN–NNLS LEARNING ALGORITHM

Solving the NNLS problem can provide good learning performance only when all neurons are
output neurons. Nonetheless, because this is not the case we take the following approach: if
neuron i ∈ Iout then we set qik = yik, ∀k, while if neuron i ∈ Iout then we set qik = U(a, b),
∀k, with 0 ≤ a ≤ b ≤ 1. Following this approach, we obtain qik values for all neurons and
patterns; thus, an NNLS problem is derived (Eqs. (9), (16), (17)), which can be solved using
the PGNNLS algorithm developed in Section 5.

As already mentioned, due to the non-negativity constraints and depending on the
dimensions N , K the system of Eq. (14) may not have a solution; therefore, the obtained
weights from the solution of the NNLS optimization problem will not accurately satisfy Eqs.
(5)–(7), and the obtained weights will not result in good performance. To deal with this
issue, we use the weights acquired from the execution of Algorithm 2, to compute qik from
Eqs. (5)–(7). Then, a weighted version of the desired values qd

ik and the exact values qik is
computed and used as the new qd

ik values in PGNNLS. Using this iterative procedure, we
progressively move toward weights that satisfy qd

ik ≈ qik.
To retain our original goal of achieving the desired output values yik, i ∈ Iout we update

the output qd
ik values in two different ways: (a) there is a different weighting parameter for

these neurons, 0 ≤ αo ≤ 1, typically close to one so that their desired values slowly vary,
and (b) we restrict the neuron values within a desired region so that neurons corresponding
to “0” decisions must have qik ≤ 0.4 and neurons corresponding to “1” decisions must have
qik ≥ 0.6. By selecting the specific boundary values, we achieve to constrain each qik in the
desired region and to have a large variation range for the parameters.

The overall procedure is outlined in Algorithm 1, called RNN–NNLS. It is impor-
tant to note that the NNLS algorithm does not require matrix B as input, which would
be prohibitive for a large network. Due to Eq. (16), we can perform all the computa-
tions involving B using matrix Q which holds all the qik values. Thereby, the order of
memory required is the same with the standard RNN learning algorithm. The iterative pro-
cedure RNN-NNLS needs only a small number of iterations, NIRNN–NNLS, before the error
stabilizes.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

386 S. Timotheou

Algorithm 1 RNN–NNLS: RNN supervised learning algorithm based on NNLS
formulation

Input: xk, yk,∀k
Output: w
Initialize Λik and λik ∀ i, k based on xik;
Set qd

ik = yik, i ∈ Iout;
Set qd

ik = U(a, b), i ∈ Iout;
Form matrix Qd = [qd

1, . . . ,q
d
K], where qd

k(i) = qd
ik, ∀i, k;

for l = 1 to NIRNN-NNLS do
Update b according to Eq. (17);
w← PGNNLS(Qd,b);
for all k do

Obtain qik, i ∈ Iout by solving Eqs. (5)–(7);
end for
Set qd

ik ← αnoq
d
ik + (1− αno)qik, i ∈ Iout,∀k;

Set qd
ik ← αoq

d
ik + (1− αo)qik, i ∈ Iout,∀k;

for i ∈ Iout, k = 1, . . . ,K do
if ((yik = 1) AND (qd

ik < 0.6)) then
qd
ik = 0.6;

end if
if ((yik = 0) AND (qd

ik > 0.4)) then
qd
ik = 0.4;

end if
end for

end for

5. PROJECTED GRADIENT NON-NEGATIVE LEAST-SQUARES ALGORITHM

In this section we develop a PGNNLS algorithm based on updating the search-direction
using a limited-memory BFGS formula and performing an “Armijo rule along the projection
arc” (APA) line-search [5]. Our approach is a modified version of the quasi-Newton NNLS
algorithm proposed in [36]; nevertheless it is different both in terms of the employed line-
search (hyper-exponential instead of standard APA) and the procedure for updating the
search direction (limited memory instead of full BFGS); the developed approach is outlined
in Algorithm 2.

The key aspect of Algorithm 2 is that at iteration τ we only perform a line-search for
the variables that are in the free-set Fτ defined as:

Fτ = {i|wτ
i > 0 or (wτ

i = 0 and [∇f(wτ)]i ≤ 0)}. (18)

To understand the reason behind this, let us define the complement of Fτ , called the
binding set Bτ :

Bτ = {i|wτ
i = 0 and [∇f(wτ)]i > 0}. (19)

For the variables belonging to the binding set there are two possibilities about the search
direction: (a) dτ

i ≥ 0, and (b) dτ
i < 0. In the first case, we have that wτ+1

i = P [wτ
i − sτdτ

i] =
P [−sτdτ

i] = 0 so that this variable remains constant and does not affect the cost function. In
the second case, we have that wτ+1

i = P [wτ
i − sτdτ

i] = P [−sτdτ
i] = −sτdτ

i > 0; however, the
fact that −dτ

i [∇f(wτ)]i > 0 is undesirable, as it contributes negatively toward the condition
that guarantees function reduction at the particular direction (−(dτ)T∇f(wτ) < 0).

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 387

Algorithm 2 PGNNLS: Projected Gradient Algorithm for the NNLS problem
Input: Q = [q1, . . . ,qK], b, M
Output: wτ

Initialize: τ ← 0; wτ ← 0; sτ−1 ← 1;
Set fτ ← f(wτ) and gτ ← ∇f(wτ) using Eqs. (9) and (15);
Find the binding set Bτ according to expression (19);
Set d̃

τ
= ∇P f(wτ) using Eq. (21);

repeat
%Perform an APA line-search
[wtemp, stemp] ← lineSearchHE(fτ , ∇f(wτ), d̃

τ
, wτ , sτ−1, Q, b);

sτ ← stemp; τ ← τ + 1; wτ ← wtemp;
Set fτ ← f(wτ), gτ ← ∇f(wτ) using Eqs. (9) and (15);
Find the binding set Bτ according to expression (19);
%Update the search direction
if (sτ ≥ smin) then

if (τ > M) then
Discard the vector pair {Δwτ−1−M ,Δgτ−1−M} from storage;

end if
Store Δwτ−1 = wτ −wτ−1; Δgτ−1 = gτ − gτ−1;
dτ ← updateLBFGS(∇P f(wτ),Δwk,Δgk, k = max{0, τ −M}, . . . , τ − 1);
Define d̃

τ
according to Eq. (20)

else
Discard all stored vector pairs {Δwk,Δgk};
Set d̃

τ
= ∇P f(wτ) using Eq. (21);

end if
until a stopping criterion is met

As a result, variables belonging to Bτ should not affect the line-search procedure of
iteration τ . This is achieved by considering a modified direction d̃ defined as:

d̃τ
i =

{
d̄τ

i , i ∈ Fτ

0, i ∈ Bτ
∀i. (20)

where d̄τ = Sτ∇P f(wτ) and ∇P f(wτ) is the projected gradient given by Eq. (21).

[∇P f(wτ)]i =

{
[∇f(wτ)]i, i ∈ Fτ

0, i ∈ Bτ
, ∀i. (21)

In this way, Eq. (10) becomes:

wτ+1 = P [wτ − sτ d̃
τ
]

An equivalent expression can be obtained by updating only the variables belonging to the
free-set: wτ+1

F = P [wτ
F − sτ S̃

τ
gτ
F], where S̃

τ ∈ R
|F|×|F| is the principal submatrix of Sτ

corresponding to the free variables and similarly, gτ
i,F = [∇f(wτ)]F(i), i = 1, . . . , |F|.

As mentioned above, Algorithm 2 relies on a limited-memory BFGS update of the
scaling matrix. In each iteration, the BFGS formula is updated so that the new matrix is
symmetric, satisfies the secant equation and also is the closest to the current approximation

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

388 S. Timotheou

matrix in the least-squares sense. In addition, if the associated problem is strictly convex
and an appropriate line-search is considered, then the updated matrices are also positive
definite [44]. The BFGS formula for updating Sτ is given by:

Sτ = (Vτ−1)TSτ−1Vτ−1 + ρτ−1Δwτ−1(Δwτ−1)T, (22)

where ρk = 1/((Δgk)TΔwk), Vk = I− ρkΔgk(Δwk)T, and S0 = σBFGSI, σBFGS > 0.
Notice that Sτ is a rank-two modification of Sτ−1 which can be obtained using Δwτ−1

and Δgτ−1. Hence, if we store all vectors Δwk and Δgk from the start of the algorithm,
we can obtain Sτ without storing any matrix.

In the limited-memory variant of BFGS, instead of storing all vectors, we update Sτ

based on the M most recent Δwk and Δgk vector pairs. This is achieved with the use of
the following recursive formula which is directly derived from (22) [8].

Sτ = (Vτ−M · · ·Vτ−1)TSτ
0(Vτ−M · · ·Vτ−1) + ρτ−M (Vτ−M+1 · · ·Vτ−1)T

×Δwτ−M (Δwτ−M)T(Vτ−M+1 · · ·Vτ−1) + ρτ−M+1(Vτ−M+2 · · ·Vτ−1)T

×Δwτ−M+1(Δwτ−M+1)T(Vτ−M+2 · · ·Vτ−1) + · · ·+ ρτ−1Δwτ−1(Δwτ−1)T. (23)

Using Eq. (23) we can efficiently update the search direction dτ = Sτ∇f(wτ), without
storing Sτ at any iteration. As a result, the required memory for the quasi-Newton update
is reduced from 2N2 × 2N2 to 2M × 2N2. This is a substantial memory saving, as it has
been observed in practice that even small values of M (say M ∈ [3, 7]) provide satisfactory
results [8]. Nocedal and Wright [40] describe in detail the limited memory BFGS method and
outline an iterative procedure for updating the search direction based on (23); we outline
this procedure in Algorithm 3

Algorithm 3 updateLBFGS: Compute the product of the limited memory scaling
matrix and the gradient

Input: g,Δwk,Δgk, k = max{0, τ −M}, . . . , τ − 1
Output: d
for (k = τ − 1, . . . ,max{0, τ −M}) do

ρk ← 1/((Δgk)TΔwk);
αk

1 ← ρk(Δwk)Tg;
g← g− αk

1Δgk;
end for
d← Sτ

0g;
for (k = max{0, τ −M}, . . . , τ − 1) do

α2 ← ρk(Δgk)Td;
d← d + (αk

1 − α2)Δwk;
end for

The use of the limited-memory BFGS scheme also provides computational benefits.
Note that updating the scaling matrix using the BFGS method requires several matrix–
vector operations whose computational complexity is O((2N2)2). On the other hand, the
use of Algorithm 3 requires 5M vector-vector products so that its computational complexity
is O(5M(2N2)) which is significantly less than the complexity of a single matrix–vector
product.

Let us now turn our attention to the line-search procedure. As mentioned above, the
step-size sτ is found by employing the APA line-search [5]. In APA the step-size is chosen

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 389

to be equal to sτ = βm, where m is the smallest non-negative integer satisfying the APA
condition:

f(wτ+1
cand(βm))− f(wτ) ≤ σAPA∇f(wτ)T(wτ+1

cand(βm)−wτ), (24)

where wτ+1
cand(βm) = P [wτ − βmd̃

τ
], 0 < σAPA < 1/2 and 0 < β < 1. An important advan-

tage of the APA over other step-size rules is that it identifies many active constraints in one
iteration. In addition, it is proven that the sequence {wτ} produced when applying the APA
rule, converges to a stationary point {w∗} [5], which in our case is a global minimum. In [9],
a more detailed analysis of projected gradient algorithms further relaxed the convergence
conditions. The authors showed that convergence to a stationary point can be achieved
by choosing any step-size satisfying condition (24), under the assumptions that sτ is not
too small, the cost function is bounded below and the gradient is uniformly continuous
(Theorem 2.3 in [9]), which are true in the NNLS case. Hence, convergence is guaranteed
even if we choose any value of m satisfying (24) rather than the smallest integer, as long as
the selected βm are not too small.

Nevertheless, sequentially identifying the appropriate m value may require a large num-
ber of function evaluations and projections. In [46] we proposed to hyper-exponentially
alternate sτ for the identification of an appropriate step-size value. In the hyper-exponential
line-search (lineSearchHE), the first trial starts from sτ−1 and if the APA condition is
satisfied, (sτ ≥ sτ−1), we hyper-exponentially increase the step-size (division of the initial
step-size by β2k

, k = 0, 1, 2, . . .) until a step-size sτ
init/β2kv violating condition (24) is found;

otherwise, we hyper-exponentially decrease the step-size (multiplication of the initial step-
size by β2k

, k = 0, 1, 2, . . .) until a step-size sτ
initβ

2ks satisfying condition (24) is found. In
this way, an appropriate region for the optimal step-size is identified; then, a divide and
conquer procedure is followed to find the largest value βm satisfying Eq. (24).

Formally the stopping criterion that should be met for the termination of the PGNNLS
algorithm is related to the Karush–Kuhn–Tucker (KKT) optimality conditions. However, we
do not require the accurate solution of the NNLS problem as it is only used to approximately
train RNN. Hence, we employ the maximum number of iterations as stopping criterion.

The most costly operations that need to be performed at each iteration of Algorithm
2 involve the computation of f(w) and ∇f(w), which require matrix–vector product oper-
ations. In particular, at the start of each iteration, it is needed to evaluate f(w) and
∇f(w) once. Additionally, each trial of the line-search procedure requires the evaluation of
f(wτ+1

cand). In Section 6, we discuss two different approaches for the efficient evaluation of
f(w) and ∇f(w) and derive analytical expressions.

6. EFFICIENT COMPUTATION OF NNLS COSTLY FUNCTIONS

As already mentioned, the most computationally expensive functions in Algorithm 2 are
f(w) and ∇f(w). However, computing these functions directly is very inefficient, so that
the structure and sparsity of matrix B should be exploited to find efficient ways to compute
∇f(w). In this section, we develop two such approaches. The first is based on the efficient
computation of BTz1 and Bz2 where z1 and z2 are vectors of appropriate dimensions. The
second is based on first computing and storing BTB in order to compute (BTB)z. We show
that the computational complexity of the former approach is O(KN2) per evaluation, while
the complexity of the latter is O(N3) per evaluation plus an initialization cost of O(KN3).
This indicates that each of the two approaches can be faster than the other depending on
the problem dimensions (number of training pairs, K, and number of neurons, N). The
second approach is faster that the first if K N , otherwise the first approach is better.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

390 S. Timotheou

6.1. The Structure of Matrix B

Matrix B is composed of many different matrix blocks which correspond to entries associated
with positive or negative weights as well as different input–output training pairs. As a result
we can represent B as:

B =

⎡⎢⎣B+1, B−1

...
...

B+K , B−K

⎤⎥⎦, B ∈ R
KN×2N2

and B±k ∈ R
N×N2

, k = 1, . . . , K (25)

where B+k and B−k indicate the entries associated with the kth input–output training pair
of the positive and negative weights, respectively. These matrices are sparse and are also of
particular structure, as shown below for the case that N = 3, when d(i) = 0, i = 1, . . . , N .

B+k =

values corresponding to w+(i,j)︷ ︸︸ ︷⎡⎣0 q1k q1k −q2k 0 0 −q3k 0 0
0 −q1k 0 q2k 0 q2k 0 −q3k 0
0 0 −q1k 0 0 −q2k q3k q3k 0

⎤⎦

B−k =

values corresponding to w−(i,j)︷ ︸︸ ︷⎡⎣q1k+q2
1k q1k q1k q1kq2k 0 0 q1kq3k 0 0

0 q1kq2k 0 q2k q2k + q2
2k q2k 0 q2kq3k 0

0 0 q1kq3k 0 0 q2kq3k q3k q3k q3k+q2
3k

⎤⎦
Note that the structure of the above matrices allows their further decomposition into:

B+k = Ck + D+k, (26)

B−k = Ck + D−k, (27)

For example, for the case that N = 3 matrices Ck, D+k and D−k take the form:

Ck =

⎡⎣q1k q1k q1k 0 0 0 0 0 0
0 0 0 q2k q2k q2k 0 0 0
0 0 0 0 0 0 q3k q3k q3k

⎤⎦,

D+k =

⎡⎣−q1k 0 0 −q2k 0 0 −q3k 0 0
0 −q1k 0 0 −q2k 0 0 −q3k 0
0 0 −q1k 0 0 −q2k 0 0 −q3k

⎤⎦,

D−k =

⎡⎣q1kq1k 0 0 q2kq1k 0 0 q3kq1k 0 0
0 q1kq2k 0 0 q2kq2k 0 0 q3kq2k 0
0 0 q1kq3k 0 0 q2kq3k 0 0 q3kq3k

⎤⎦.

Notice that matrices Ck, D+k and D−k also have a special structure while all can be
decomposed further into N ×N sized submatrices such that Ck = [Ck1, . . . ,CkN], D+k =
[D+k1, . . . ,D+kN], and D−k = [D−k1, . . . ,D−kN]. Sub-matrices Cki, D+ki, D−ki ∈ R

N×N

are given by:

Cki = qik(ei1T), (28)

D+ki = diag([−qik,−qik, . . . ,−qik]) = −qikI, (29)

D−ki = qikdiag([q1k, q2k, . . . , qNk]) = qikdiag(qk). (30)

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 391

6.2. The First Approach for the Computation of f(w) and ∇f(w)

As already mentioned, functions f(w) and ∇f(w) can be computed according to Eqs. (9)
and (15), respectively, which can be written as:

f(w) =
1
2
(Bw− b)T(Bw− b) =

1
2
(ẑ− b)T(ẑ− b) =

1
2
zTz, (31)

∇f(w) = BT(Bw− b) = BTz, (32)

where we have defined ẑ = Bw, ẑ ∈ R
NK×1 and z = ẑ− b. As a result, for the computation

of f(w) the only expensive step is the calculation of ẑ = Bw. Similarly, the expensive
steps for the computation of ∇f(w) are the calculation of ẑ = Bw and z̃ = BTz, where
z̃ ∈ R

2N2×1. Note that the matrix–vector product Bw appears in both terms. As a result,
only two matrix–vector products are needed for the evaluation of both functions at the same
point wc: ẑc = Bwc and z̃ = BTzc, where zc = ẑc − b. As the naive calculation of these
matrix–vector products is not efficient, we manipulate the special structure and sparsity of
matrix B to derive expressions of low computational complexity.

Let us first examine the term ẑ = Bw. Expanding B and w we obtain:

ẑ = Bw =

⎡⎢⎣ C1 + D+1, C1 + D−1

...
...

CK + D+K , CK + D−K

⎤⎥⎦ [
w+

w−

]

=

⎡⎢⎣ C1w+ + C1w− + D+1w+ + D−1w−
...

CKw+ + CKw− + D+Kw+ + D−Kw−

⎤⎥⎦ =

⎡⎢⎣ ẑ1

...
ẑK

⎤⎥⎦, (33)

where ẑk ∈ R
N×1 and w+ represents the positive weights so that value w+(iN −N + j) ≡

w+(i, j) and w− represents the negative weights such that w−(iN −N + j) ≡ w−(i, j).
Note that to evaluate ẑ it is sufficient to derive expressions for terms ẑk:

ẑk = Ckw+ + Ckw− + D+kw+ + D−kw−. (34)

Hence, the computation of ẑk requires the efficient evaluation of Ckw+, Ckw−, D+kw+

and D−kw−. Manipulation of these terms using Eqs. (28)–(30) and matrix algebra yields

ẑk = qk � (σW+ + σW−)− (W+)Tqk + qk �
(
(W−)Tqk

)
, (35)

where the N × 1 vectors σW+ and σW− are given by

σW+ = W+1, (36)

σW− = W−1. (37)

This definition implies that the ith element of σW+ or σW− is equal to the sum of the
elements belonging to the ith row of the associated matrix.

Having computed ẑ and hence z, we can now proceed with the computation of z̃ = BTz.
If we define zT =

[
zT
1 , . . . , zT

K

]
, where zk ∈ R

N×1, and use Eq. (25) to expand matrix B

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

392 S. Timotheou

we obtain

z̃ = BTz=
[
BT

+1 · · · BT
+K

BT
−1 · · · BT

−K

] ⎡⎢⎣ z1

...
zK

⎤⎥⎦ =

[∑K
k=1 BT

+kzk∑K
k=1 BT

−kzk

]
=

[∑K
k=1(C

T
k zk + DT

+kzk)∑K
k=1(C

T
k zk + DT

−kzk)

]
.

(38)
By exploiting the structure of B and using matrix algebra for each of the appearing terms
CT

k zk, DT
+kzk and DT

−kzk yields the following expression:

z̃ =

⎡⎣ (∑K
k=1(qk � zk)

)
⊗ 1−∑K

k=1(qk ⊗ zk)(∑K
k=1(qk � zk)

)
⊗ 1−∑K

k=1(qk ⊗ (qk � zk))

⎤⎦. (39)

Having derived expressions to efficiently derive functions f(w) and ∇f(w) the com-
putational complexity of this approach is now examined. For the computation of Bw the
most costly operations are the evaluation of the matrix–vector products (W+)Tqk and
(W−)Tqk that appear in vectors ẑk in Eq. (35). The time complexity of these operations
is O(N2), and as there are K such terms to be computed, the total complexity of evalu-
ating Bw is O(KN2). For the computation of term BTz, for each k we need to evaluate
qk � zk, qk ⊗ zk and qk ⊗ δk which have O(N), O(N2) and O(N2) complexity, respectively.
In addition, summation of the latter two terms for all k requires O(KN2). If the required
multiplications are performed naively, then the computation of both Bw and BTz matrix–
vectors products would require O(2KN3), as the dimensions of B are KN × 2N2, while the
dimensions of w and z are 2N2 × 1 and KN × 1, respectively. Hence this approach provides
an O(N) complexity reduction compared to naive matrix–vector multiplication.

With respect to memory requirements, this approach involves the storage of the neces-
sary vectors that is, matrices W+ and W− which have N2 elements, and matrix Q which
have KN elements in total, as well as a small number of auxiliary vectors. Naively storing B
requires memory for 2KN3 elements which is min{KN, 2N2} times larger than the memory
required by our approach.

In sum, the computational complexity of computing f(w) and ∇f(w) is O(KN2), while
the approach does not require the storage of additional matrices other than the necessary
W+, W− and Q which require KN + 2N2 memory.

6.3. The Second Approach for the Computation of ∇f(w)

A second approach for the evaluation of functions f(w) and ∇f(w) is based on computing
(during the initialization phase) the quantities Γ = BTB and β = BTb. Then, functions
f(w) and ∇f(w) can be expressed using these quantities as:

f(w) =
1
2
(Bw− b)T(Bw− b) =

1
2
wTBTBw−wTBTb +

1
2
bTb

= wT(
1
2
Γ w− β) +

1
2
bTb, (40)

∇f(w) = BTBw−BTb = Γw− β. (41)

Based on the above expressions only the matrix–vector product Γw is required for
their evaluation and hence at a particular point both functions can be computed by just
evaluating Γw. Notice that B ∈ R

KN×2N2
and Γ ∈ R

2N2×2N2
so that the computation of

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 393

f(w) and ∇f(w) are depended both on K, N in the first approach and only on N in the
second. Expansion of matrix B according to Eq. (25) yields:

Γ = BTB =
[
BT

+1 · · · BT
+K

BT
−1 · · · BT

−K

] ⎡⎢⎣B+1 B−1

...
...

B+K B−K

⎤⎥⎦
=

[∑K
k=1 BT

+kB+k

∑K
k=1 BT

+kB−k∑K
k=1 BT

−kB+k

∑K
k=1 BT

−kB−k

]
=

[
Γ11 Γ12

Γ21 Γ22

]
. (42)

The terms Γlm, l,m = 1, 2, can be further decomposed into expressions involving Ck,
D+k and D−k through substitution of Eqs. (26) and (27), associated with B+k and B−k,
into (42). For example, Γ11 yields:

Γ11 =
K∑

k=1

CT
k Ck +

K∑
k=1

CT
k D+k +

K∑
k=1

DT
+kCk +

K∑
k=1

DT
+kD+k. (43)

Further substitution of Eqs. (28)–(30) into each of the subsequent terms of Γlm and matrix
algebra yields that these terms can be reproduced by only storing five vectors/matrices
computed during the initialization phase. These include vector σq ∈ R

N×1 and matrices
M ∈ R

N×N ,Ms ∈ R
N×N ,Ri ∈ R

N×N and Rs,i ∈ R
N×N , i = 1, . . . , N with elements:

σq(i) =
K∑

k=1

q2
ik,Mi,j =

K∑
k=1

qikqjk,Ms
i,j =

K∑
k=1

q2
ikqjk,

Ri
j,l =

K∑
k=1

qikqjkqlk, Rs,i
j,l =

K∑
k=1

qikqjkq2
lk. (44)

For the derivation of Γw it is true that:

z = Γw =
[
Γ11 Γ12

Γ21 Γ22

] [
w+

w−

]
=

[
Γ11w+ + Γ12w−

Γ21w+ + Γ22w−

]
=

[
z1

z2

]
(45)

where vectors w+and w− have already been defined in the first approach, while vectors zl =
Γl1w+ + Γl2w−, zl ∈ R

N2×1, l = 1, 2 can be further decomposed into zT
l = [zT

l1, . . . , z
T
lN]

with elements zli ∈ R
N×1. In order to obtain low complexity expressions for these terms,

we take advantage of the expressions derived for the composing matrices of Γlm, and of
Eq. (44), yielding the following expressions for z1i and z2i, i = 1, . . . , N

z1i = σz(i)1− mc
i � (σW+ + σW−) + (W+)Tmr

i − (Ri �W−)T1 (46)

z2i = σz(i)1 + ms,c
i � (σW+ + σW−)− (Ri � W+)T1 + (Rs,i �W−)T1 (47)

where vectors σW+ and σW− have already been defined in (36)-(37), vectors mc
i , mr

i ∈
R

N×1 are the ith column and row of matrix M, while the vector σz ∈ R
N×1 is defined as

σz = σq � (σW+ + σW−)− (M� (W+)T)1 + (Ms � (W−)T)1. (48)

The computational complexity of computing f(w) and ∇f(w) is dominated by the
computation of Γw. In this approach, we need to examine both the initialization cost and
the cost per function evaluation. The initialization cost is dominated by the derivation of

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

394 S. Timotheou

matrices Rs,i, i = 1, . . . , N which is of computational complexity O(KN3). The computa-
tional cost per objective function or gradient evaluation involves the computation of vectors
z1i and z2i, for i = 1, . . . , N given by Eqs. (46) and (47), as well as vector σz according
to Eq. (48), which are of computational complexity O(N3), O(N3) and O(N2). Hence,
the computational complexity of evaluating Γw is also O(N3). If the derivation is per-
formed naively, then the computation of Γ = BTB and Γw are of complexity O(KN5) and
O(N4) respectively. Hence, our approach achieves an O(N2) complexity reduction of the
initialization phase and an O(N) complexity reduction per objective function or gradient
evaluation.

In terms of memory requirements, this approach requires the storage of σq, M, Ms,
Ri and Rs,i for i = 1, . . . , N apart from the necessary W+, W− and qk, k = 1, . . . ,K. As
each matrix Ri or Rs,i has N2 elements, the total storage space required for this approach
is O(N3 + KN) which is limiting for large values of N . As a result, this approach is more
suitable for cases that K > N and N is small enough so that we can store at least 2N3 + KN
elements. Notice that if the above matrices are not used, then Γ requires the storage of 4N4

elements.
In sum, the computation of f(w) and∇f(w) has time complexity O(KN3) for initializa-

tion and O(N3) per evaluation, while it requires the storage of approximately O(2N3 + KN)
elements.

7. SIMULATION RESULTS

In this section, we evaluate the performance of the developed RNN–NNLS and PGNNLS
algorithms in the context of emergency management optimization by considering the
problem of assigning emergency units to incidents (AEUI), a problem first discussed in [29].

7.1. Problem Description

Consider that NL incidents occur simultaneously at different locations with Ij people injured
at incident j. NU emergency units or ambulances (say) are spatially distributed before the
time of the incident with unit i being able to collect ci ∈ N

+ injured and having response
time to incident j given by Tij > 0. We also assume that decisions are irrevocable so that
after a unit is allocated to some incident, it cannot be re-assigned to some other incident.

The objective is to collect all injured at the minimum possible response time to ensure
the quick collection and treatment of the civilians. The problem can be defined using
mathematical programming as:

min
X

NU∑
i=1

NL∑
j=1

TijXij (49a)

s.t.
NL∑
j=1

Xij = 1, ∀i, (49b)

NU∑
i=1

ciXij ≥ Ij , ∀j, (49c)

Xij ∈ {0, 1}, ∀i, j. (49d)

Constraint (49b) indicates that an emergency unit must be allocated to exactly one
incident, while (49c) expresses the fact that the total capacity of the units allocated to

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 395

an incident must be at least equal to the number of people injured there. The allocation
matrix X with elements Xij indicates whether agent i has been allocated to incident j
(Xij = 1) or not (Xij = 0). The above problem is NP-hard in the strong sense since it is
a generalization of the 0–1 Multiple Knapsack Problem which is of the same complexity
class [39]. This means that no known algorithms exist to solve the problem in polynomial
time. For this reason we rely upon heuristic algorithms that can provide fast and close to
optimal solutions to the problem. In the next section, we discuss a heuristic method based
on supervised learning that will be used to obtain fast and decentralized decision making,
as well as close to optimal results.

7.2. Supervised Learning Solution Approach

The approach taken for the solution of AEUI problem is to train a RNN using numerous
instances of the optimization problem with exact solutions which are obtained off-line. Then,
if a problem instance is presented to the trained neural network, it will be able to provide
a solution that is close to optimal, due to its generalization ability. As a result, the trained
RNN can be “handed out” to all decision agents (emergency units) to serve as an “oracle”
for decision making. When the emergency happens, each individual agent uses its “oracle”
to obtain fast and decentralized decisions. Since all agents have the same “oracle”, if they
have the same information there will be no conflicts in their decisions; the “oracle” provides
the same allocation matrix X to each agent, so that agent i is allocated to incident j′ with
Xij′ = 1.

7.3. Training Architecture

By fixing the Tij and ci parameters, the problem can be mapped to a supervised learning
context by representing the inputs to the network by Ij and the outputs by Xij . Because
Ij ≥ 0 ∀j, in the RNN they will be represented by the parameters Λj of the input neurons.
The output variables are associated with the excitation probabilities of output neurons.
Specifically, output neuron with index (i, j) represents decision variable Xij . During the
training phase, we represent decision Xij = 1 with q(i,j) = 1− εq, 0 ≤ εq < 1/2 and decision
Xij = 0 with q(i,j) = εq. During the testing phase, if the value of the particular neuron is
q(i,j) > 0.5 then we assume that Xij = 1, otherwise we take Xij = 0.

With respect to the number of hidden neurons, we consider a configuration where the
number of hidden neurons is twice the number of output neurons, that is, NH = 2NO.
Furthermore, we always assume that our network is fully connected in terms of the W+

and W− weight matrices. For the solution of the problem we considered two general NN
architectures. In the “collective” NN architecture we construct a single neural network
for all decisions which is comprised NO = NUNL output neurons. As the output of the
neural network provides the actions for all agents, each agent only performs the action
corresponding to him/her. In the “individual” NN architecture we construct and train a
different NN for each agent’s decision, so that we need to train NU architectures of NL

output neurons. In this case, the ith NN is trained using as outputs only the variables
Xij , j = 1, . . . , NL to advise agent i. Despite the fact that each NN provides a single action,
decision making is still consistent because training is performed using the optimal solutions
to the problem instances which are globally consistent.

To train the NNs, we have first generated at random 1000 problem instances for different
numbers of emergency units and locations of incidents. The remaining parameters have
been chosen at random with Tij = U(0, 1) and ci = U int(1, 4). For each problem instance,

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

396 S. Timotheou

the number of injured at location Ij is also chosen from the uniform distribution such that
Ij = U int(0.5ct/NL, ct/NL), where ct =

∑
i ci is the total capacity of the emergency units.

To evaluate the developed approach we have performed experiments with the following
numbers of emergency units and incidents: NU = {5, 10, 15, 20} and NL = {3, 5}. Among
the test cases considered, we only chose those whose required capacity was within the
total available capacity of the emergency units. The optimal solution in each case was then
obtained accurately by solving the combinatorial optimization problem in Matlab using
function bintprog which employs a branch and bound procedure for the solution of binary
combinatorial optimization problems. Testing after training was performed using a distinct
but similarly generated set of 250 test cases so that the training and testing were disjoint,
but with the same probability distributions for all parameters. The effectiveness of the
learning algorithms was evaluated on the basis of the following metrics:

• The percentage of instances that were solved so that all of the injured were evacuated
• The percentage of people collected averaged over all testing instances
• The average relative percentage deviation from the optimal, σopt, which evalu-

ates the closeness of the solution to optimality, taken over the number of problem
instances that the emergency units covered all casualties NF , defined as:

σopt =
1

NF

NF∑
i=1

f i
NN(X)− f i

opt(X)
f i
opt(X)

× 100, (50)

where f i
NN(X) and f i

opt(X) are the cost function values obtained from the heuris-
tic neural network learning algorithm and the exact algorithm for instance i,
respectively.

7.4. Performance Evaluation of PGNNLS

Before discussing the effectiveness of the RNN–NNLS algorithm for the solution of the
investigated problem, results are presented concerning the computational efficiency and
convergence speed of the developed PGNNLS algorithm. Specifically, the empirical compu-
tational performance of PGNNLS is examined for: (a) the fast computation of the objective
and gradient NNLS functions, and (b) the convergence speed of PGNNLS compared to two
other approaches.

To evaluate the efficiency of the two developed approaches for the computation of the
costly NNLS functions in Section 6, we have measured the execution time required for
the evaluation of 200 BT(Bw) operations which involve two matrix–vector products; the
execution time also includes the initialization time. To demonstrate the benefit from using
these approaches, a “naive” method for the computation of these products was implemented,
that takes into consideration the sparsity of B, but performs no analytical manipulation.

Fig. 1, illustrates the execution time ratio of the “naive” against the developed
approaches (speedup) for different RNN architectures. In the figures, Approaches 1 and 2
correspond to the computation methods discussed in Sections 6.2 and 6.3, respectively.
Fig. 1(a), shows the results of the “individual” RNN architecture when NL = {3, 5} and
various ratios of hidden to output neurons. In this case the NU parameter is not impor-
tant as the size of the network for each emergency unit depends only on NL. Because the
constructed neural network for the “individual” architecture is small, Approach 2 is signifi-
cantly better than Approach 1, while both approaches have an order of magnitude speedup
compared to the “naive” implementation. In fact, Approach 2 reaches an overall speedup
of fifty for NL = 5 and NH/NO = 2. On the contrary, for the “collective” architecture the

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 397

(a) (b)

(c) (d)

Figure 1. Performance of approaches for computing the objective and gradient NNLS
function compared to a “naive” one; the metric used is the ratio of execution times between
the naive and another approach.

number of neurons is significantly larger that the “individual” one, which is in favor of
Approach 1. Indeed, this is verified by the results which show that Approach 1 is better
than Approach 2 by up to seven times. Also as the network size increases, with the addition
of more hidden neurons, Approach 1 becomes more efficient and Approach 2 less efficient.
These results show that both architectures are useful, as they perform better under different
conditions, while they both provide a significant speedup over a “naive” implementation,
as discussed in the derivation of these approaches.

For the PGNNLS algorithm, we have chosen to perform 200 iterations with five
correction vectors (M = 5) and hyper-exponential line search with parameters β = 0.4,
σAPA = 0.25 and Sτ

0 = I, ∀τ (see Eqs. (24) and (23)). To examine the efficiency of the
proposed PGNNLS algorithm, we have compared its convergence in terms of iterations and
execution time with two other algorithms, gradNNLS [46], and PQN-SPG [44]. The former
is a projected gradient algorithm with first-order information (Sτ = I) which was developed
in conjuction with the introduction of the NNLS learning approach for RNN. The latter
is a state-of-the-art limited-memory projected quasi-Newton algorithm for box constrained
problems, such as NNLS. It is evident from Fig. 2 that the PGNNLS algorithm outper-
forms gradNNLS and PQN–SPG both in terms of the attained NNLS objective function
value and the number of iterations to achieve convergence. In fact, for NL = 5 where the

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

398 S. Timotheou

Figure 2. Comparison of iteration convergence between algorithms gradNNLS, PQN-SPG
and PGNNLS for NU = 20 and (a) NL = 3 and (b) NL = 5.

Figure 3. PGNNLS execution speed compared to gradNNLS and PQN-SPG for NU = 20
and (a) NL = 3 and (b) NL = 5; the number on each bar indicates the execution time of
the corresponding algorithm.

Figure 4. Convergence of RNN–NNLS algorithm for NL = 3 and NL = 5.

training architecture is larger, the attained results are even better compared to the two
other algorithms.

Fig. 3 depicts the execution speedup attained by the PGNNLS algorithm compared to
the two other algorithms to attain the objective NNLS value achieved by running PGNNLS
for 200 iterations. In all cases examined the speedup compared to PQN–SPG and gradNNLS
is in the range [×16,×34] and [×16,×37], respectively. Interestingly, Figure 2 indicates that

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 399

(a)

(b)

(c)

Figure 5. Comparison between the RNN–NNLS and RNN learning algorithms. The
four architectures considered are: (a) “Collective” RNN–NNLS, (b) “Collective” RNN,
(c) “Individual” RNN–NNLS, and (d) “Individual” RNN.

gradNNLS convergences faster for smaller problems (with NL = 3), while for larger problems
PQN-SPG is up to 2.5 times faster. Note that all three NNLS algorithms have employed
Approach 1 for the evaluation of the costly NNLS functions, which implies that the combined
benefit obtained from the developed approach is more that two orders of magnitude.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

400 S. Timotheou

7.5. Solving the AEUI Problem

In this section the performance of the RNN–NNLS algorithm for the solution of the
AEUI problem is evaluated. To solve AEUI using the RNN–NNLS learning algorithm,
we have employed the algorithm developed in 4. Specifically, we perform ten iterations
(NIRNN-NNLS = 10), checking the solution quality after each iteration and storing the
weights corresponding to the largest percentage of instances where all injured were col-
lected. For updating the desired values of the non-output and output weights we have set
αno = 0.75 and αo = 0.9 respectively. We have also normalized the inputs of the RNN so
that Λi ∈ [0.2, 1], while for the output neurons we have chosen εq = 1/3, so that “low”
and “high” neurons take values 1/3 and 2/3 respectively. The initial desired excitation
probabilities of the non-output neurons are generated according to U(0.25, 0.75).

Fig. 4 depicts the MSE with respect to the desired and attained excitation probabilities
for the output neurons for ten iterations of the RNN–NNLS algorithm. It is clear that the
MSE error decreases for subsequent iterations leading to the converge of the algorithm. In
fact, stabilization of the MSE is accomplished after a very small number of iterations (around
five). Although monotonic convergence cannot be guaranteed, the observed behavior is
sufficient to produce good trained weights that will derive high quality solutions.

Finally, Fig. 5 summarizes the best results for the “collective” and “individual” NN
architectures of the RNN–NNLS and RNN approaches. It is evident that the “collective”
RNN–NNLS algorithm yields the best results in terms of percentage of instances were all
injured were collected, as it is the most effective for NL = 5 and highly competitive for
NL = 3. On the other hand, the “individual” RNN architecture produces the best results
in terms of deviation from the optimal but has the worst performance in terms of the other
two metrics. Among the other three architectures the “collective” RNN is the one with the
best performance in terms of σopt but it is not as effective in collecting injured, especially
for larger problems.

8. CONCLUSIONS

In this work, we have studied non-negative least-squares learning in the context of the
RNN. For this problem, a solution algorithm has been developed that achieves two orders of
magnitude speedup compared to other state-of-the-art approaches. The speedup is a result
of a customized limited-memory quasi-Newton method for the solution of the problem, as
well as two efficient approaches for the computation of the gradient and objective functions
that appear in the problem. Apart from improved learning efficiency, the developed approach
has been shown to provide very good results for the solution of an emergency management
optimization problem.

References

1. Abdelbaki, H., Gelenbe, E. & Kocak, T. (2005). Neural algorithms and energy measures for EMI based

mine detection. Journal of Differential Equations and Dynamical Systems 13(1–2): 63–86.
2. Aguilar, J. & Gelenbe, E. (1997). Task assignment and transaction clustering heuristics for distributed

systems. Information Sciences—Informatics and Computer Science 97(1 & 2): 199–221.
3. Artalejo, J.R. (2000). G-networks: a versatile approach for work removal in queueing networks. European

Journal of Operational Research 126(2): 233–249.

4. Basterrech, S., Mohammed, S., Rubino, G. & Soliman, M. (2011). Levenberg–Marquardt training
algorithms for random neural networks. The Computer Journal 54(1): 125–135.

5. Bertsekas, D. (1995). Nonlinear programming. Nashua, NH, USA: Athena Scientific.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

FAST NNLS LEARNING IN RNN 401

6. Biegler-Konig F. & Barmann, F. (1993). A learning algorithm for multilayered neural networks based

on linear least squares problems. Neural Networks 6(1): 127–131.
7. Bro R. & Long, S.D. (1997). A fast non-negativity-constrained least squares algorithm. Journal of

Chemometrics 11(5): 393–401.
8. Byrd, R.H., Nocedal, J. & Schnabel, R.B. (1994). Representations of quasi-Newton matrices and their

use in limited memory methods. Mathematical Programming 63: 129–156.
9. Calamai, P. & Moré, J. (1987). Projected gradient methods for linearly constrained problems.

Mathematical Programming 39: pp. 93–116.
10. Castillo, E., Fontenla-Romero, O., Guijarro-Berdinas, B. & Alonso-Betanzos, A. (2002). A global

optimum approach for one-layer neural networks. Neural Computation 14(6): 1429–1449.

11. Castillo, E., Guijarro-Berdinas, B., Fontenla-Romero, O. & Alonso-Betanzos, A. (2006). A very fast
learning method for neural networks based on sensitivity analysis. Journal of Machine Learning
Research 7: pp. 1159–1182.

12. Cho, S.-y. & Chow, T.W.S. (1999). Training multilayer neural networks using fast global learning
algorithm—least-squares and penalized optimization methods. Neurocomputing 25(1–3): 115–131.

13. Dax, A. (1991). On computational aspects of bounded linear least squares problems. ACM Transactions
on Mathematical Software 17: 64–73.

14. Erdogmus, D., Fontenla-Romero, O., Principe, J., Alonso-Betanzos, A. & Castillo, E. (2005). Linear-
least-squares initialization of multilayer perceptrons through backpropagation of the desired response.
IEEE Transactions on Neural Networks 16(2): 325–337.

15. Fontenla-Romero, O., Erdogmus, D., Principe, J.C., Alonso-Betanzos, A. & Castillo, E. (2003). Linear
least-squares based methods for neural networks learning. In Proceedings of the International Conference
on Artificial Neural Networks and Neural Information Processing, Istanbul, Turkey, 26–29 June, pp.
84–91, Heidelberg: Springer-Verlag.

16. Gelenbe, E. (1989). Random neural networks with negative and positive signals and product form
solution. Neural Computation 1(4): 502–510.

17. Gelenbe, E. (1990). Stability of the random neural network. Neural Computation 2(2): 239–247.
18. Gelenbe, E. (1991). Product-form queueing networks with negative and positive customers. Journal of

Applied Probability 28(3): 656–663.
19. Gelenbe, E. (1991). Theory of the random neural network. In Neural Networks: Advances and

Applications. ed E. Gelenbe. Amsterdam, The Netherlands: Elsevier Science Publishers B.V., pp. 1–20.
20. Gelenbe, E. (1993). G-networks with triggered customer movement. Journal of Applied Probability

30(3): 742–748.
21. Gelenbe, E. (1993). Learning in the recurrent random network. Neural Computation 5: 154–164.
22. Gelenbe, E. (1994). G-networks: a unifying model for neural and queueing networks. Annals of

Operations Research 48(5): 433–461.
23. Gelenbe, E. (2007). Steady-state solution of probabilistic gene regulatory networks. Physical Review E

76(1): 031903.
24. Gelenbe, E., Ghanwani, A. & Srinivasan, V. (1997). Improved neural heuristics for multicast routing.

IEEE Journal of Selected Areas of Communications 15(2): 147–155.
25. Gelenbe, E. & Han, Q. (2014). Near-optimal emergency evacuation with rescuer allocation. In 2014

IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM
Workshops), IEEE, 24–28 March 2014, Budapest, Hungary, pp. 314–319.

26. Gelenbe, E. & Hussain, K. (2002). Learning in the multiple class random neural network. IEEE
Transactions on Neural Networks 13(6): 1257–1267.

27. Gelenbe, E. & Kocak, T. (2004). Wafer surface reconstruction from top-down scanning electron
microscope images. Microlectronic Engineering 75: 216–233.

28. Gelenbe, A.N.E. & Lent, R. (2004). Self-aware networks and QoS. Proceedings of the IEEE 92(9):
1478–1489.

29. Gelenbe, E. & Timotheou, S. (2008). Random neural networks with synchronised interactions. Neural
Computation 20: 2308–2324.

30. Gelenbe, E. & Timotheou, S. (2008). Synchronised interactions in spiked neuronal networks. The
Computer Journal 51(4): 723–730.

31. Gelenbe, E., Timotheou, S. & Nicholson, D. (2010). Fast distributed near-optimum assignment of assets

to tasks. The Computer Journal 53(9): pp. 1360–1369.

32. Georgiopoulos, M., Li, C. & Kocak, T. (2011). Learning in the feed-forward random neural network: A
critical review. Performance Evaluation 68(4): 361–384.

33. Guijarro-Berdinas, B., Fontenla-Romero, O., Perez-Sanchez, B. & Fraguela, P. (2007). A fast
semi-linear backpropagation learning algorithm. In Proceedings of the International Conference

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

402 S. Timotheou

on Artificial Neural Networks, Porto, Portugal, 9–13 September, Heidelberg: Springer-Verlag,

pp. 190–198.
34. Huang, G., Huang, G.-B., Song, S. & You, K. (2015). Trends in extreme learning machines: A review.

Neural Networks 61: 32–48.
35. Hussain, K. & Moussa, G.S. (2005). Laser intensity vehicle classification system based on random

neural network. In Proceedings of the 43rd Annual Southeast Regional Conference, Kennesaw, Georgia,
Alabama, USA, 18–19 March, New York: ACM, pp. 31–35.

36. Kim, D., Sra, S. & Dhillon, I. (2006). A new projected quasi-newton approach for the nonnegative
least squares problem. Technical Report, Department of Computer Sciences, The University of Texas
at Austin, December 2006.

37. Lawson, C.L. & Hanson, R.J. (1987). Solving Least Squares Problems. Philadelphia, PA, USA: Prentice
Hall.

38. Likas, A. & Stafylopatis, A. (2000). Training the random neural network using quasi-Newton methods.
European Journal of Operational Research 126(2): 331–339.

39. Martello, S. & Toth, P. (1990). Knapsack problems: algorithms and computer implementations.
Chichester, West Sussex, England: Wiley.

40. Nocedal, J. & Wright, S.J. (1999). Numerical optimization. New York, USA: Springer-Verlag.
41. Oke, G. & Loukas, G. (2007). A Denial of service detector based on maximum likelihood detection and

the random neural network. The Computer Journal 50(6): 717–727.
42. Phan, H., Stemberg, M. & Gelenbe, E. (2012). ‘Aligning protein–protein interaction networks using

random neural networks. In Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 4–7 October 2012, Philadelphia, USA, pp. 1–6.

43. Romariz, A. & Gelenbe, E. (2012). Contrastive learning in random neural networks and its relation
to gradient-descent learning. In Computer and Information Sciences II (E. Gelenbe, R. Lent, & G.
Sakellari, Eds.), London: Springer, pp. 511–517.

44. Schmidt, M., van den Berg, E., Friedlander, M.P. & Murphy, K. (2009). Optimizing costly functions
with simple constraints: a limited-memory projected quasi-newton algorithm. In Proceedings of the 12th
International Conference on Artificial Intelligence and Statistics (AISTATS), Florida, USA, 16–18
April 2009, pp. 456–463.

45. Timotheou, S. (2008). Nonnegative least squares learning for the random neural network. In Proceedings
of the 18th International Conference on Artificial Neural Networks (ICANN 2008), Prague, Czech
Republic, 3–6 September, Berlin, Heidelberg: Springer-Verlag, pp. 195–204.

46. Timotheou, S. (2009). A novel weight initialization method for the random neural network. to appear
in Neurocomputing 73(1–3): 160–168.

47. Timotheou, S. (2010). The random neural network: a survey. The Computer Journal 53(3): 251–267.
48. Yam, J.Y.F. & Chow, T.W.S. (2000). A weight initialization method for improving training speed in

feedforward neural network. Neurocomputing 30(1–4): 219–232.
49. Yam, Y.F., Chow, T.W.S. & Leung, C.T. (1997). A new method in determining initial weights of

feedforward neural networks for training enhancement. Neurocomputing 16(1): 23–32.

https://doi.org/10.1017/S0269964816000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000061

	1 Introduction
	2 Preliminaries
	2.1 The RNN Model
	2.2 Non-negative Least Squares

	3 Non-negative Least-Squares RNN Learning Formulation
	4 RNN--NNLS learning algorithm
	5 Projected Gradient Non-negative Least-Squares Algorithm
	6 Efficient computation of NNLS costly functions
	6.1 The Structure of Matrix B
	6.2 The First Approach for the Computation of f(w) and f(w)
	6.3 The Second Approach for the Computation of f(w)

	7 Simulation results
	7.1 Problem Description
	7.2 Supervised Learning Solution Approach
	7.3 Training Architecture
	7.4 Performance Evaluation of PGNNLS
	7.5 Solving the AEUI Problem

	8 Conclusions

