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Abstract  We consider a natural generalization of symmetric Nakayama algebras, namely, symmetric
special biserial algebras with at most one non-uniserial indecomposable projective module. We describe
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up to stable equivalence of Morita type. This includes the weakly symmetric algebras of Euclidean type
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Introduction

Let K be an algebraically closed field. In this paper we consider a generalization of
symmetric Nakayama K-algebras. A symmetric Nakayama K-algebra is a symmetric
K-algebra A such that all indecomposable projective modules are uniserial. These alge-
bras are well known and have been classified up to Morita equivalence: every symmetric
Nakayama algebra is Morita equivalent to exactly one algebra N;, defined by the quiver

as

°
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and the ideal of relations L,, in KA, generated by all paths of length nm + 1. Note that
in particular, the basic algebra associated with A is special biserial.

Our aim is to describe the basic indecomposable finite-dimensional K-algebras A that
are symmetric special biserial algebras with at most one non-uniserial indecomposable
projective module. These algebras include the symmetric Nakayama algebras, certain
algebras in [6] that occur in the classification, up to derived equivalence, of all weakly
symmetric algebras of Euclidean type, as well as some algebras of dihedral type (see [7]).
In this paper we also distinguish, up to derived equivalence and up to stable equivalence
of Morita type, the basic indecomposable finite-dimensional symmetric special biserial
algebras that have at most one non-uniserial indecomposable projective module. It is
well known that all special biserial algebras are tame [27]. Moreover, it was proved by
Al-Nofayee [1] (and by Rickard [23] for the symmetric case) that if A and B are derived
equivalent algebras, then A is self-injective if and only if B is self-injective. It was also
proved by Pogorzaly [21] that if A is a self-injective special biserial algebra that is not
a Nakayama algebra and if A and B are stably equivalent of Morita type, then B is
also a self-injective special biserial algebra. The algebras given in [6] are Brauer graph
algebras and we recall that Brauer tree algebras play an important role in the Morita
equivalence classification of blocks of group algebras of finite type (see [2,4]). We use
the theory of generalized Brauer tree algebras as part of the classification of our algebras
up to derived equivalence. We also refer the reader to [25], where Skowronski discusses
the extensive programme to determine the derived equivalence classes of all tame self-
injective algebras.

We begin this paper with some background and recall some properties of basic sym-
metric algebras so that, in §2, we can describe by quiver and relations all basic inde-
composable finite-dimensional algebras that are symmetric special biserial algebras with
at most one non-uniserial indecomposable projective module. In order to distinguish our
algebras up to derived equivalence and up to stable equivalence of Morita type, we use
several invariants including Hochschild cohomology, which we discuss in §3. The full
classification of our algebras up to derived equivalence is contained in §4 and, in addi-
tion to the dimensions of the Hochschild cohomology groups, we use Cartan invariants
(see [5, Proposition 1.5] for a proof of derived invariance) and Kiilshammer invariants
(or generalized Reynolds ideals, whose derived invariance was proved in [29]). The final
section gives the full classification of our algebras up to stable equivalence of Morita type
and the proof is based on the classification up to derived equivalence of §4 and uses
similar invariants.

We assume throughout that A is a basic indecomposable finite-dimensional algebra
over the algebraically closed field K so that A is isomorphic to KQ/I for some unique
connected quiver @ and admissible ideal I of KQ. We let rad(A) denote the Jacobson
radical of A.

For any two positive integers p and g with p < g we define the quiver Q, 4 to be the
quiver formed of two oriented cycles, of lengths p and ¢, respectively, joined at one vertex
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labelled 1, as follows:

oe<—eo o —>eo
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ap_3 ap—1_, ® ® Byg-1 Bg—3
N e T N B
o —=o o< — o

We denote the trivial path at the vertex i by e;. Paths are written from left to right. We
write o(a) for the trivial path corresponding to the origin of the arrow a and write t(«)
for the trivial path corresponding to the terminus of the arrow «. The vertices of the
quiver Q(, q) are labelled by 1,...,p+¢— 1 in such a way that o(a;) =i fori=1,...,p
and t(B;) =p+jforj=1,...,¢g—1 Thus, () =i+1fori=1,...,p—1, {a,) =1,
o(f1)=1and o(B;) =p+j—1forj=2,...,q

Set v =aqraz--ap and 6 = (152 - - - B5. We define the following two admissible ideals
in KQy,q)-

(a) For a positive integer r, let I,. be the ideal generated by

QpQiy, ﬁqﬁla (’75)T - (57)T7
i ap(dy) " Hayra; forall2<i<p—1,
By By(y0) ' ybr- By forall 2< < q— 1.

(b) For a pair of positive integers (s,t), let Ji, ;) be the ideal generated by

O‘P/Blv ﬂqo‘lv v - 5t7
iy oy forall 2 < <

g p_17
Bj- B0 BB forall2<j<qg—1,

where if p =1, then s > 2 andifg=1,thenp=1,s>2and ¢t > 2.

The algebras of type A,, considered in [6] are special cases of these algebras. Specifically,
A(p,q) = KQp,q) /11 so that r = 1 and A(n) = KQ1,n)/J2,2) s0 that p = 1, ¢ = n
and s = 2 = t. Moreover, some of these algebras are derived equivalent to algebras of
dihedral type (see [7]) in the classification of Holm [12]: K Q(; 1)/, is equal to D(1.4)7,
K Q(1,2)/1, is derived equivalent to D(2B)V7(0), and K Q(3,2)/1, is derived equivalent to
D(3K)™11, all three of which come from tame blocks of finite groups when char(K) = 2
and 7 is a power of 2, as well as K Q3 2)/J(s) that is derived equivalent to D(2R)bs:b1

and which does not come from blocks (see [11,12,17]).
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1. Background

The following result and especially its consequences will be used repeatedly. They are
given in [3], but we include the proofs here for completeness.

Proposition 1.1. Let Q be a quiver and let I be an admissible ideal in K Q such that
A = KQ/I is a symmetric algebra. Let p be a path in Q with p # 0 in A. There then
exists a cycle ppy in Q with pp; and p1p non-zero in A.

Proof. Since A is a symmetric algebra, there exists a symmetric form f: A — K on
A whose kernel contains no non-zero left or right ideals of A. Then pA is not contained
in Ker f so there exists a path p; such that f(pp1) # 0. In particular, pp; # 0 and
t(p) = o(p1). Moreover, since f is symmetric, f(p1p) = f(pp1) # 0so p1p # 0. Therefore,
t(p1) = o(p). Hence, pp1 and p;p are cycles in Q that are non-zero in A. O

Corollary 1.2. Let A = KQ/I be an indecomposable finite-dimensional symmetric
special biserial algebra that is not isomorphic to Ni = K[X]/(X?). The following then
hold.

(1) For any arrow « there is a unique arrow o’ such that o'« # 0, and a unique arrow
o such that aa # 0.

(2) For any vertex v in Q the number of arrows that start at v is equal to the number
of arrows that end at v and this number is either 1 or 2.

Proof. The second statement follows easily from the first and the definition of a
special biserial algebra. Here we prove the first statement.

First suppose that « is an arrow that is not a loop. Then « is a non-zero path and so,
by Proposition 1.1, there exists a path p # « such that ap and pa are non-zero cycles.
Therefore, we can take o’ to be the last arrow in p and «” the first arrow in p. The
uniqueness of these arrows follows from the definition of a special biserial algebra.

Now suppose that « is a loop. Assume for contradiction that a8 = 0 for every arrow 3
in Q. Then « is in the socle of the indecomposable projective module o(«)A. If no other
arrow starts at o(«), then, since A is indecomposable and o? = 0, we get A = K[X]/(X?),
a contradiction. Therefore, there is another arrow p with o(a) = o(p). Choose a path o
that is maximal with the property po # 0 so that po is in the socle of o(«)A. Since A is a
self-injective algebra, soc(o(a)A) is one dimensional so that there exists a non-zero ¢ € K
such that a = cpo, which is a contradiction since the ideal I is admissible. Therefore,
there exists an arrow o’ with o’a # 0. The proof of the existence of the other arrow o’
is similar. O

2. Classification theorem

Our main theorem in this section is Theorem 2.2, in which we classify, by quiver and
relations, all basic indecomposable finite-dimensional symmetric special biserial algebras
with at most one non-uniserial indecomposable projective module.
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Proposition 2.1. The algebras KQ;, q)/I, and KQ, 4)/J(s+) are symmetric special
biserial algebras with at most one non-uniserial indecomposable projective module.

Proof. It is easy to see that these algebras are special biserial and that all but one
of each of their indecomposable projective modules are uniserial. Moreover, the algebras
are weakly symmetric, that is, the top and the socle of each indecomposable projective
module are isomorphic. It remains to prove that the algebras are symmetric.

For A = KQ(p,q)/Ir, the socle of A has a K-basis consisting of

(69)", ;- ap(0y)"tar- ;-1 and Bj - 'ﬂq(’Y(S)T_l/Bl < Bi-1

for 2 < i< pand2<j< g, that is, all the paths obtained from cyclic permutations of
(vd)", where we recall that v = ajae -+, and 6 = 313 - - - §,. Complete this K-basis
of soc(A) with paths in KQ, ;) to obtain a basis of A and define f: A — K on this
basis by sending the elements in the socle to 1 and the others to 0. It then follows
from [13, Proposition 3.1] that Ker f contains no non-zero left or right ideals of A.
Moreover, f is clearly symmetric, since the paths on which it is non-zero are all the
cyclic permutations of a single path. Thus, A is a symmetric algebra.

For A = KQ(;.q)/1(s,) the argument is similar but this time the socle of A is generated
by all the cyclic permutations of the two paths v* and §°. (|

We now have the following result.

Theorem 2.2. Let A be a basic indecomposable finite-dimensional symmetric spe-
cial biserial algebra with at most one non-uniserial indecomposable projective module.
Then A is isomorphic to a Nakayama algebra N for some positive integers m and n, or
to KQ(p.q)/1» for some positive integers p, g and r, or to K Q(;, q)/J(s,+) for some positive
integers p, q, s and t.

Proof. Set A = KQ/I for some quiver Q and some admissible ideal I. It is already
known that a symmetric (special biserial) algebra with no non-uniserial indecomposable
projective module is isomorphic to a Nakayama algebra NN,,. We may therefore assume
that all except one of the indecomposable projective A-modules are uniserial. Conse-
quently, using Corollary 1.2 (2), we must have one vertex that is the end point of exactly
two arrows and the starting point of exactly two arrows, which we label 1, and the other
vertices are the end point of exactly one arrow and the starting point of exactly one
arrow. Therefore, the quiver of A must be Q, , for some positive integers p and gq.
Without loss of generality we may assume that p < q.

Now consider the composition ay,c;. There are two cases: apor; = 0 and apanq # 0.

Case 1 (apa; = 0). First assume that a,a; = 0. Then it follows from Corol-
lary 1.2 (1) that a,81 # 0, Gqon # 0 and 5,61 = 0. Now, for each vertex k with k # 1,
erA is uniserial and, since A is symmetric, top(exA) = soc(exA) = S, the simple
module at k. Therefore, for i # 1, we get a relation a; - - a,(67)%daq - - - a; = 0 with
;- ap(dy)*day - - ay—1 # 0 for some integer u;, and, for j # 1, we get a relation

B Bp(y8)ViyBr---B; = 0 with §;--- Bp(v0)% By ---Bj—1 # 0 for some integer v,.
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Now consider e; A. Since rad(e; A) = ay A + 1A and soc(eg A) 2 Sy, there is an element
in soc(e1A) of the form (y4)" or (yd)"y for some integer r and there is an element of
soc(e; A) of the form (6+v)® or (6v)*d for some integer s. But soc(e1A) is simple so we
must have a relation of one of the following forms.

(i) (76)"y = c(67y)® # 0 for some non-zero ¢ € K. Note that since I is admissible, we
must have s > 1. But then, if » > s, we would have (v6)"y = v(6v)%(dy)"* =
c Yy (8)"y(6v) =% = 0, which is a contradiction, and if 7 < s, we would have
(67)* = 6(y0)* L= (78)"y = c6(y8)*~17"(§v)* = 0, which is also a contradiction.
Therefore, we cannot have this type of relation.

(ii) (y0)" = ¢(dy)%6 for some non-zero ¢ € K. As in the previous case, this relation
cannot occur.

(iii) (v0)™y = ¢(d7)?d # 0 for some non-zero ¢ € K. Then, if r > s, we have
(v0)"y = v(07)" = 7(87)°0(y0) 1%y = ¢y (y0)"y(v8) " %y = 0, which is a
contradiction, and if s > r, we have a similar contradiction. Therefore, s = r.
Now, we also have g ---a,(07)"*0a1s = 0 so, multiplying on the left by ay
and on the right by as---a,, we get v(67)“2™! = 0 so that uz + 1 > r. But
Qg ap(67) 01 = ¢ lag - a,(y8)"yan = 0 so uz < r, which is impossible.
Therefore, a relation of this form cannot occur either.

(iv) (v9)" = ¢(67)® for some non-zero ¢ € K and this is the only possible type of relation.
Here, again, if 7 > s, then (76)" = v(67)%(67)"~*710 = ¢ 1y (78)"(67)" 5716 = 0,
which is a contradiction and if s > r we get a similar contradiction. Therefore,
r = s so that the relation is (70)" = ¢(d7)" for some r > 1 and ¢ € K*.

Given this relation, we are now able to determine the u; and the wvj;. Since
;- op(67)"Saq - aim1 = ¢ ray o ap(¥0) 0o i = 0, we must have r > w;.
Moreover,

(’)/6)“7+2 =qQq--- ai—l(ai e ap(éfy)/u”&al e az)al_,’_l e ap(s = O

so that u; +2 > r. Hence, u; = r — 1 for all i = 2,...,p. Similarly, v; = r — 1 for all
j =2,...,q. Moreover, we note that the relations a,(dv)" " 'day - - - a;, = 0 (when i = p)
and (3,(y6)" "1y -+ B, = 0 (when j = ¢) are superfluous and so are not required to give
a minimal generating set of the ideal I,..

Finally, we show that ¢ must be equal to 1. Since A is symmetric, there exists a symmet-
ric linear map f: A — K whose kernel does not contain any non-zero left or right ideal.
In particular, the socle of A is not contained in Ker f. But, from the relations obtained
above, we see that the socle is generated as a K-vector space by all the paths obtained
by cyclic permutations of (v4)". Since f is symmetric, it follows that f((yd)") # 0. But
we have

F((v0)") = f((07)") = f(e(vd)") = cf((vd)")
so that ¢ = 1.
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We have hence shown that A= KQ, /1.

Case 2 (apa; # 0). Now assume that opa; # 0. Then it follows from Corol-
lary 1.2 (1) that a1 = 0, Bga1 = 0 and 3,61 # 0. The same methods as in the previous
case show that we must have a relation of the form ~* = ¢ for some non-zero ¢ € K
and some positive integers s and ¢ (by considering the structure of e; A), and relations
;- apy oy forall 2 < i < pand B B,00 1B - B for all 2 < j < g (from
the structure of the other indecomposable projectives and using the relation v% = ¢6?).
Moreover, since K is algebraically closed, we may replace a; by ¢'ay, where ¢’ is a tth
root of ¢, and thus we may replace the relation v° = ¢é' by v° = §*. Again, we may find
a minimal set of relations and so conclude that A = K Q, )/ J(s.1)- O

3. Hochschild cohomology groups

Our aim now is to investigate the derived equivalences among these algebras. It is well
known that Hochschild cohomology is an invariant under derived equivalence and this
section determines some of the Hochschild cohomology groups of the algebras K Q, ¢/
and K Q, ¢)/J(s,+) s0 that a full classification up to derived equivalence can be given in § 4.

Let I'(p,q;7) = KQ(p,q)/ I and A(p,q; s,t) = KQp ¢/ J(s+)- The special cases of the
algebras I'(p,q;1) and A(1,n;2,2) were considered in [6], where, in their notation, we
have A(p,q) = KQp,q)/I1 = I'(p,q;1) and A(n) = KQ1 n)/J2,2) = A(1,1;2,2).

We begin by describing HH’(A) and HH'(A) for the algebras A = A(p, q; s,t) and
A = I(p,q;r). Recall that HH’(A) = Z(A), the centre of the algebra A.

3.1. HH°(A) and HH'(A) for the algebra A = A(p, q; s,t)

We begin with the algebra A(p, ¢;s,t) = KQp.q)/J(s,), where 1 < p < g. Recall that
Y=g -apand § = G182+ By Let vi = o - opog - -ay—q for i =1,...,p and let
(5]‘ :Bj"'ﬁqﬂl"'ﬁj—l fOI‘j: 1,...,qsothat7:71 andézél.

Proposition 3.1. Consider the algebra A(p, g;s,t) andlet 1 <p < q. Let x =Y %_, v
and y = > 7_, §;. Then

dim HH(A(p, ¢; 5,t)) =p+q+ s+t —2
and the set
{1,x,...,xs_1,y,...,yt_l,’yf,(ié fori=1,...,pand j=2,...,q}
is a K-basis of HH"(A(p, ¢; 5,t)).
Proof. We note that v;8; = 0 = 3;v; and dja; = 0 = ;6; forall ¢ = 1,...,p,
j=1,...,q 80 z,y € Z(A(p, gq;s,t)). Moreover, A(p,q;s,t) is weakly symmetric so all

socle elements are central, namely, v; and 5;1 are central for i = 1,...,p, j = 2,...,q.
The result now follows. |
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We remark that Proposition 3.1 may be simplified if p = ¢ = 1 since then
A(1,1;s,t) is the commutative algebra Kla, 8]/(af8,a® — B¢) with s > 2, t > 2. Thus,
HH°(A(1,1;s,t)) = A(1,1;5,t), which has a K-basis of {1,a,...,a°, 3,...,8* '} and
dimension s + .

In order to compute the first Hochschild cohomology group, we now fix a minimal set
of generators of the ideal J, ;) and denote this set by g°.

Proposition 3.2. Consider the algebra A(p, q;s,t) with 1 < p < q.
If p > 2, then the following elements form a minimal set of generators for the ideal

‘](S,t):

gl =" =0
g?:arnap'ysflal-uai forall2 <i<p—1;
gp = apf;

9;2)+1 = Byai;
Gus =By B8 Br By forall2<j<q— 1.
If p = 1, then the following elements form a minimal set of generators for the ideal
J(s,0)
g = ="
gi = afi;
gg = By
Gii1 =B B8 Pr--- By forall2<j<q—1.
We now compute the first Hochschild cohomology group HH' (A(p, ¢; 5,t)). We use the
explicit description of the start of a minimal projective bimodule resolution (P*,d*) for

A(p, ¢; s,t) as given in [9]. All tensors are over K so we write ® for ® . For ease of
notation, we write A for A(p, ¢; s,t). Let

P? = P Ao(g}) ® t(gp) A,
k

Pl = @ Ao(a) @ t(a)A
and

p+q—1
Pl = @ Ae, ® e, A.
v=1

Then the minimal projective bimodule resolution of A begins

2 1 0
s P2 pr i po

L

with the following maps. The map d° is the usual multiplication map. The map d': P
P? is given by

d':o(a) ®t(a) — o(a) ® a —a® t(a),
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where the first term o(a) ® a lies in the summand Ao(a) ® 0(a)A and the second term
a®t(a) lies in the summand At(a)®t(a)A. Now, each element of g2 is a linear combination
of paths in KQ, ) so, for x € ¢g°, we may write

r
xr = E cja/lj"'akj”'asj'j7
j=1

where ¢; € K and the ay; are arrows in Q, ,). With this notation for z € g%, the map
d?: P2 — P! is given by

Sj

T
d?: O(ZL‘) ® f(.’E) — ch Zalj T k=15 ® k41500 Qsyg5
J=1 k=1

where the term ay; - - - ar—1; ® a1 - - - as,; lies in the summand Ao(ag;) @ t(ar;)A of Pt

We now apply Hom ge(—, —) to this resolution, where A° = A ® A°P is the enveloping
algebra of A. Let 0': Home (P!, A) — Homye (P2, A) be the map induced by d? and
let 9°: Homye(P°, A) — Homye(P', A) be the map induced by d'. Then HH'(A) =
Ker 9! /Tm 9°.

Proposition 3.3. If ¢ > 2, then

s+t if char K | ged(s, t),

dim HH* (A(p, ¢; 5,t)) =
(A(p.q ) {ertl otherwise.

If g=1, then p =1 and

s+t+1 ifchar K | ged(s,t),

dim HH (A(1,1; 5, 1)) = _
s+t otherwise.

Proof. There are three cases to consider.

Case 1 (p > 2). We start by calculating Im 0°. Let ¢ € Hom(P°, A(p, ¢; s,t)) so that
3°(p) = @d*. Suppose that ¢ is given by

p: e1®e; —cioer+ciavi+ o+ ey Fdiid e+ d1,t—15§_1,
ei @ e; > i€ + Ci1Yi + o+ CisYy fori=2,...,p,
ep—1+4i ® €p_14i = dioep_14i + di 10 + - + di,t(sf fori=2,...,q,

where ¢; j,d; ; € K.
We have

ed" (o(a1) @ t(an)) = pler ® a1 — 1 @ e3)
= ple1 ®er)ar — arp(ez ® ea)
1

=(c10—c20)on + (11 —co1)m100 + -+ (€151 — C25-1)7; Q1.
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In a similar way we get

ed' (0(az) @ t(az)) = ez @ ap — a2 @ e3)

= (2,0 —c30)2 + (c21 — €3,1) Y2002 + - - + (C2,5-1 — C3,s—1)7§_1042,

‘Pdl(o(ap) @ t(ap)) = plep ® ap — ap @ eq)
= (p.0 = c1.0)ap + (Cp1 — L) Vpap + -+ + (Cpoc1 — CLs 1)y ap,
@d' (0(B1) @ (1)) = pler ® Br — Bi @ €py1)

= (1,0 — d2,0)B1 + (d1,1 — d21)1 81 + -+ + (di g1 — d2y—1)05 ' B,

<Pd1(°(ﬂq) ® t(By)) = p(eptq—1 @ By — By @ €1)
= (dg,0 — 1,008 + (dg1 — d11)8Bq + -+ + (dg,e—1 — d1,e—1)6, ' Bg.
Thus, dimIm % = (p — 1)s + (¢ — 1)t.

Now let 1 € Kerd' so that ¥d?> = 0 and suppose that ¢ € Hom(P*, A(p, q;s,t)) is
given by

P o(ay) @ ta;) = cioay +ciavioy + o+ ci7s_wf_1ai,

0(8) @ t(B3;) = dj0Bj + dja8; B + -+ djr 16515
fori=1,...,p,j=1,...,q and where ¢y ;,d,; € K.
From Proposition 3.2 with p > 2 and recalling that v = «; and § = §;, it is easy to
see that ¥d*(o(g?) ® t(g?)) is immediately O for k = 2,...,p+ ¢ — 1 and so we do not

get any restrictions on the constants in the cases where g,% is a monomial. It remains to
consider g? = 4% — §t. The condition d?(0(g?) ® t(g?)) = 0 gives that

(3(01,0 +coot+-+ Cp,o) — t(dLo + d2,0 R dq70))’}/s =0

so that s(c10+co,0+ -+ cpo) —t(d1,0+dao +---+dgo) = 0. Hence,

dim Ker 91 ps+qt if char K | ged(s, t),
imKer9" =

ps+ qt —1 otherwise.

Thus, for p > 2, we have

. L s+t if char K | ged(s, t),
dim HH" (A(p, ¢; 5, 1)) =
s+t—1 otherwise.
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Case 2 (p = 1 and q > 2). To calculate Im 8°, let ¢ € Hom(P°, A(1,¢;s,t)) so that
3°(¢) = @d*. Suppose that ¢ € Hom(P°, A(1,q;s,t)) is given by

pre1®@er > crper +eigat e Hdigdy e+ dy o160
ei @ e dioei +di16; + -+ di 15

fori=2,...,q and where ¢y ;,d; ;,d; ; € K.
We have

ed' (o(a) @t(a)) =pler@a—a®er) = ple; ®er)a —aple; @ep) =0,
since o € Z(A(1,¢;s,t)). Now,

@d' (0(B1) @ (1)) = p(e1 ® 1 — 1 @ e2)
=(c10 —doo)B1+ (di1 —d21)01 1+ + (d1i—1 — d2,t—1)5§_1ﬂ1,

@dl(ﬂ(ﬁq) RBy)) = pleq ® By — By @ e1)
= (dq,o — C1,o)ﬁq + (dq,l — d171)5qﬁq 4ot (dq7t_1 _ dl,t—1)5f1_1ﬁq.

Thus, dimIm 8° = (¢ — 1)t.
Now let 1 € Kerd' so that ¥d?> = 0 and suppose that ¢ € Hom(P?!, A(1,q;s,t)) is
given by

P 0(04) (2 f(Oé) —c1 061+ i+ -+ Cl’SOéS + 61)151 + -+ El,t_léi_l,
o(B:) @ (Bi) = diofi +di16:Bi + -+ dig_10L B

fori=1,...,q and where ¢ ;,¢1,5,d;; € K.
From Proposition 3.2, the minimal generating set for J(, ) is

{96 =0~ 0" gi = abr,gi = B, Gi1 =B+ B0 "B B | 2<j<q— 1},

where we recall that § = 1. Starting with g7, the equation ¥d?(0(g?) @ t(g7)) = 0 gives

that
0=1¢(o(a) @ t(a)) B + ap(o(B1) @ t(B1))
= (c10e1 + 1101 + -+ E14-100 By
Hence, c10 = ¢1,1 = -+ = €14-1 = 0. So we may immediately simplify our expression
for ¢ to

Pro(a)@ta) — a4+ -+ 508,
0(Bi) @ UB;) — diofs + di 105 + -+ + di,t715§_1/3i

for i =1,...,q. It then follows that ¢d*(o(g7) ® t(g3)) is 0 for j = 2,...,q and so we do
not get any restrictions on the constants here. Finally,

0 =vd*(o(g5) ® t(g5)) = (sc11 — t(dro + dao + -+ + dg0))®
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so that sc1 1 —t(d1,o + do,0 + -+ - + dg0) = 0. Hence,

s+qt if char K | ged(s,t),

dim Ker 9! =
s+ qt — 1 otherwise.

Thus, for ¢ > 2, we have

s+t if char K | ged(s,t),

dim HHY(A(1, ¢; 5,t)) =
(A(Lq ) {s—i—t—l otherwise.

Case 3 (p = 1 = q). To calculate Im9°, let ¢ € Hom(P°, A(1,1;s,t)) so that
3°(¢) = pd'. We have

ed' (o(a) @ t(a)) =pler@a—a®er) = ple; ®e)a — aple; @ey) =0

since A(1,1;s,t) is commutative. Similarly, od!(o(8) ® t(3)) = 0. Thus, Im9° = (0).
Hence, HH'(A(1,1;5,t)) = Kerd'. Let ¢ € Kerd! so that ¢»d> = 0 and suppose that
1 € Hom(PY, A(1,1;s,t)) is given by

Y:o(a) @ta) = crper + et ter s +dia 4+ di1 B
0(8) @ t(B) = coper + o+ +easat +do S+ +doy 1870

where ¢; j,d; ; € K.
From Proposition 3.2, the minimal generating set for Ji, ;) is {95 = o® = ', g7 =
af, g3 = Ba}. Starting with g%, the equation ¥d?(o(g?) ® t(¢?)) = 0 gives that

c1oB+di1 B3+ +di a8 g patea 0’ g2 T (dy i1 ez s1)a = 0.

Hence, c1o=di1=--=dig2=cpg=cy1 = -=cos_2=0and dyy_1+cos1=0.
So we may simplify our expression for ¢ to

P:o(a) @ a) = cpa+ -+ sa’ + du_lﬂt*l,
P:0(B) @tB) = —di 10+ o0 +do B+ +doy 1B

We then have that
0= 1/)d2(0(gg) ® t(gg)) = SCLlas — td2,1ﬂt = (80171 — tdg’l)as

and hence sci 1 — tda;1 = 0. The final equation ¥d?(o(g3) @ t(g2)) = 0 gives no new
information. Hence, 1 € Ker 9! is given by

Y:o(a) @ta) = e+ +ep s +dy1 870
P:o(fB) @t(B) — _dl,t—las_l +epa® +do 1S+ + dz,t—lﬁt_l

with the additional linear dependency that sc; 1 — tds,; = 0. Therefore,

s+t+1 if char K | ged(s,t),

dim HH'(A(1,1; s,t)) = dim Ker 9* =
s+t otherwise.

This completes the proof. O
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3.2. HH°(A) and HH"'(A) for the algebras A = I'(p, q; 1)

We now turn to the algebras I'(p, q;r) = KQp o)/ Ir. Set n; = o - - - apdary - - - oy for
1 <4< p(sothat ;1 = ~d) and set 6; = G-+ Bgyfr---Bj—1 for 1 < j < ¢ (so that

01 = 7).
Proposition 3.4. Let p < ¢ be positive integers and consider the algebra I'(p,q;r).
Set
P q
z= Zm + Z 0;.

i=1 j=1
Then

p+q+r—1 ifp>1,

dimHH(I'(p,¢;7) =< g+ 7 +1 ifp=1andq>1,
r+3 ifp=1=¢q

and a basis for HH(I'(p, ¢;r)) is given by

{1; (y0)"; 2%, I<k<r—1;n;0; for2<i<pand2<j<gq} ifp>1,
{1;(v0)" 28, 1 <k <r—1;(6v)"16; 07 for 2 < j < q} ifp=1andq>1,
{1;(v0)"; 28, 1 <k <r—1;(78)" 1y (67)" 16} ifp=1=q.

Proof. It is clear that (v0)", n; and 6} are in the centre of I'(p, q;r) since they are
socle elements and it is easy to check that (v8)"~!vy and (6)" 1§ are in the centre in the
appropriate cases.

Conversely, a central element ¢ must be in @ii‘{_levl“(p,q;r)ev and therefore is a
linear combination of (y§)* for 0 < k < r, (§7)k for 1 <k <r—1, (v5)¥y and (5v)*§ for
0<k<r—1,and 772’-“ and 9;? for2 <i<p,2<j<qgandl <k <r. Writing the equations
a;¢ = Ca; and B;¢ = (f3; gives the result (noting that n¥ = a; - o, (07) 1ay - i1
and 0% = B; - B,(v0) 1y By -+ Bi1).

We now use the same method as for A(p,g;s,t) to compute HH'(I'(p, ¢; 7)), starting
with a minimal set g2 of generators of I,..

Proposition 3.5. Consider the algebra I'(p,q;r) with 1 < p < q.
If p > 2, then the following elements form a minimal set of generators for the ideal I,.:

gt = (v8)" — (67)"s
gt =nla; forall2<i<p-—1;
9;% = QpQy;

92.4-1 = ﬂqﬂl;

giﬂ» =08, forall2<j<q-1
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If p =1, then the following elements form a minimal set of generators for the ideal I,.:

95 = (v6)" — (07)";

gi = a%;
gg = ﬂqﬂlQ

gl =0;8; forall 2<j<q—1.

The proof of the next result giving the first Hochschild cohomology group is a similar
calculation to that of Proposition 3.3 and so is left to the reader.

Proposition 3.6. If p > 2, then
dim HHY(I"(p, ¢;7)) = r + 1.
If p=1 and q > 2, then

dimHH'(I'(1,¢;7)) =

r+4 ifchar K =2,
r+2 if char K # 2.

If =1, then p =1 and

2r+6 if char K =2,

dim HHY(I"(1,1;7)) =
2r +2 if char K # 2.

3.3. Higher Hochschild cohomology groups for I'(p, g;r)

In order to distinguish the algebras of the form I'(p,q;r) up to derived equivalence
we need the dimensions of the Hochschild cohomology groups up to HH?? _2(F (p,q;7)).
If p = 1, this is just HH’(I'(1,¢;7)), which we already know, so we shall assume that
p > 1 in the remainder of this section. We begin by giving the start of a projective
bimodule resolution of I'(p, ¢; ) to enable us to find these groups. For ease of notation,
set I' = I'(p,q;1).

The projective bimodules P™ in a minimal projective bimodule resolution of I" are
known from [10]; specifically, the multiplicity of I'e; ® e;I" as a direct summand of P™ is
equal to the dimension of Ext7.(S;,S;), where Sy is the simple module at the vertex k.
We thus define projective I'-I"-bimodules (equivalently I"-modules) P, P!, ... P?P that
will be the projectives in our minimal projective bimodule resolution for I'.

Definition 3.7. Let I" = I'(p, ¢; ) with p > 1. We define projective I'-I"-bimodules
PO Pl ..., P? a5 follows:

p+q—1

PO = @ Ie; ®e; I
i=1

p—1
P'=Pre@e I @le,®el
i=1
qg—1
<) @F€p+j—1 ® eptjl @ leprq—1 @e1l D I'er ®epilh
j=2
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p—n p—1
Pr=Preceml® P Tei®eipnppl ©le,@enl
=2 i=p—n+1
q—n
® P Ieprjo1 @ eprjonl
j=2
q—1
b @ Feprj—1 @ epijin—gl @ Lepig-1 @ epinl @ ey @erl”
Jj=q—n+1
for 1 < n <p;
p—n p—1
P2n—1 :®F6i®ei+nl—1® @ F€i®€i+n,p1—’@r€p®€n[‘@[‘€1 ®€n+1[‘
=2 i=p—n+1
q—n
® P Ieprj1 ® eprjpnl
j=2
q—1
& P Ieprjor®eprjin—gal ®leprg
J=q—n+2

® eptn_1l ©le1 @epynl @ lepiqgpn el for 2<n < p;

p q—p
p2p—1 — @Fei ®e;l' B @F€p+j_1 & €2p+j_1F
i=1 j=2

q
D @ F€p+j,1 X 62p+j7q71]_‘ @D Feq &® €1F &b F61 &® €2pF;

J=q—p+2
p—1 q—p
2
PP — EBFei ® ei_HF D @F€p+j_1 & €2p+j_1F
i=1 j=2

q
D @ F€p+j,1 X 62p+ijF &) Fep & 61F @D F61 & 61F.
Jj=q—p+1

The first maps
d:P' - P! fori=1,23

of a minimal projective bimodule resolution are given in [9]. For our algebra I", we extend
the resolution in [9] in a similar way to [26] to make the following definition of maps

di: PP - P fori=1,...,2p.

Definition 3.8. Let I' = I'(p, ¢;r) with p > 1. We define I'-I"-bimodule homomor-
phisms d’: P* — P! fori=1,...,2p as follows.

> d?nl: p2nol o P22 for 1 < < pr

0c; ®€itn € Qtn-1—a;Qeiyn, for2<i<p—n,
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°¢c; ®€ifn—p >
()P e @l + ()P Doy oy @ ar o pric1 — 1) ® eitn—p
p—1i
_ (_1)71(_1)(17*1‘)("*1) Z (_1)m(n*1)ai e Qpem

m=1
-1
® an—m41--* ap5(’75)r Ql - Qp—pti—1

n—1
+ ()M (=)EDED S (LD g (8y)" " dan - apem
m=p—1i+2
® An—m41" "+ Qn—pti—1| forp—n+2<Li<p,
®Cp—n+1 ®er — €p—n+1 ® Qp
n—1
+ (D" Z (*1)m(nil)0‘p—n+l ©Op—m @ Qn—m41 - 0‘p5(75)T71 — Qp—n41--ap @ e,
m=1
n—1
eci ®entl > (—1)"71 |:€1 Qar--ap+ (-1)" Z (—1)m(”71)6(75)’"71a1 CQp_m
m=1

X Op—m-41 - Qn + (*1)na1 ® €nt1|,

®Cptj—1 @ €ptjtn—1 > —€ptj—1 @ Bjtn-1+0j @eptrjn-1 for2<j<qg—n,
®eptj—1® eptjtn—q—1 "

(=17 epyjm1 @07 g+ ()OI B B @ Br - By g1 — 0F @ eptjtn_qg—1

q—J
_ (_1)n(_1)(q*j)("*1) Z (—1)m("71)5j o Bg—m

m=1
® Bn—m+1"" ‘ﬂq(Vé)T717ﬂ1 o Bn—gti—1
n—1
+ (=) (=nlamDmD N ()T h g e By (87)" T B By m
m=q—j+2
® Brn—m+1- Bn_grj—1| forg—m+2<j<gq,
n—1
®eptg—n @ €1 — {ep+q—n ® B + (=1)" Z ()™ By g1 Bg—m
m=1
® Brn—m+1 """ Bq('Yé)T717 - 5q—n+1 By ® 61} ,
n—1
ee1 ®epyn — (=1)" {61 ®Br B+ (=1)" Y (=)™ (46) By By
m=1

® Bn—m+1-Bn +(=1)"51 ® €p+n}

> d2n: p2n 5 p2n—l for 1 < n < p:

.
k —k
eci®eitn— »_ nf @i}

k=0
r—1 rp—i—n
k —k—1
+ Z Z Ny Qigm @ Qipmegn+1 - Qpdod -« Q1M 4
k=0 m=0
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1—2
+ Z 77?011‘ coeapban cam @ Qb1 ai+n,1n;;’f’1
m=0
q—n
+(=1)" Z nfa; - apBi--B; @ Bjynt1 - Bgar - ai+n717];‘_‘:,’fil for2<i<p—n,
Jj=0

0e; Q€itntlp— € ®yn_p— (—1)"0; @ €i4nt1—p forp+1-—n<i<p,
r—1

061®61D—)Z|:

k=0

p n
> (6(v0) o - i @ g - ap(dy) TR
1=0

+ (D)™ (v8) o1+ 0 ® qtigngr - ap(8y)"FT1S)

q—n
+ D (VN B+ By @ Bt - Ba(y0) TR
7=0

+ (=1)™(6Y)EB1 -+ B @ Bjantr - Bg(v0) T,

®eptj—1®eptjtn—qrr ptj—1®Bjtn—q— (—1)"Bj ®eptjin—q forg+l-n<j<yq,

-
k r—k
® €ptj—1 @ Eptjtn—1 Z 07 ®0;1n
k=0
r—1

q—j—n
+> { > 058 Bitm @ Bipmintr - BaVBr- - Birn105 k!
k=0 m=0

ji—2
+ Z eécﬁg e Bq'}/ﬁl c 5777, & /67n+n+1 o /6j+n710;;7§71
m=0

p—n
+ (=" Z 9?5]’ e Bear @ Qg1 apfBrce ‘ﬁj+n710;;:71 for2<j<q—n.
i=0

> d2p—1. p2r—1 _ p2p—2;
e, ®e; —

(1) [m‘ @nl + (1P Vg o, ®@ar a1 — ] De;

p—i
— (PP ST )M oy € gt apb(78) ar i
m=1

p—1
+(DP(=)ETIED YT () Dag g () o apm @ apomg i
m=p—i+2
for 2 < i < p,
p—1
eci Qe el @y — Z (71)771(1771)&1 e Opem @ Qp_mg1 apﬁ('y&)T71
m=1

p—1
+ ()P 3 ()P D(38) e - A ® A1 -0 + (~1)Py @ e,
m=1

®eptj—1®e2ptj—1 = —€pij—1® Bprj—1+ 0 ®ezppj-1

for2<j < q—p,
®eptj—1®e2ptj—q—1+>

(=1 epyj1 @ 0py 5 o+ (1) DEPNE 8 @ B1 - Bpyjgo1 — 0) @ eaprjg-1
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q—J
— (=1)P(=1)@a=D-1 Z (_1)m(p—1>5j o Byem
m=1

Q Bp—m+1--- 5(1(75)7'71751 o Bp—q4j—1

p—1
+(~DP(=D)@ D@D N ()BT By (57) T By By
m=q—j+2
® Bp—m+1- Pp—gq+j—1| forg—p+2<Lj<yq,
p—1
eec; el — — [eq ® Bq + (1) Z (*1)m(p71>5q—p+1 o Bg—m
m=1

® Bp—mi1- Bg(¥0) Iy = Bg_py1 By ® 61} )

p—1
-el®ezw(—1)p{e1®ﬁ1---ﬁp+( 1P 3 (— ) D (48) Ly - g
m=1
® Bp—m+1--Bp + (=1)PB1 ® 624'

> d%r. p2p — p2p—1;
ec;Reip1—e;®a; — (—1)Pa; ®eipr for1<i<p—1,

eep, Qe = ep®ap — (—1)Pap @ey,

s e Z [ 175(+0)" ® (67~ + (16)* @ (7)1
q—p
- Z('Y((S'Y)kﬁl ce ﬂj ® ﬁj+p+1 cee ﬁq('yé)r_k_l

J=0

+(=DP(E) P16 @ Bjtpt1 - Ba(¥8)" 1),
®eptj—1®eptjtp—q > ptj—1 O Bitp—g— (-1)PBj @ eptjip—q forg+1-p<j<y,

s
k: r—k
o eprj-1®eppi1 Y 07 @0y
k=0
r=1rq—j—p

+ Z { Z Hfﬂj o Bitm @ Bjtmapt1 - Ba¥B1 - Bitp— 10]+p

Jj—2
+ > 60585 By Bm ®5m+?+1"'ﬂj+l’—19;;§_1

— 08B By @B Bip 10 kT for2<ji<qg—p

It remains to show that the projective bimodules and homomorphisms that we have
defined do indeed give the start of a minimal projective bimodule resolution of I'.

Theorem 3.9. With the above notation,

dzp J42r—1 d42 d
P2p P2p—1 . Pl PO r 0

is the beginning of a minimal projective resolution of I' as a I'-I'-bimodule (whenp > 1).
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Proof. It may be verified directly from the definitions that d?> = 0, and thus we have
a complex. The strategy for proving exactness is identical to that of [26, Theorem 1.6]
(see also [9, Proposition 2.8]), whereby we apply (I'/rad(I") ® —) to the complex and
show that the resulting sequence is a minimal projective resolution of I'/rad(I") as a
right I'-module. Minimality is then immediate since we know that the projectives are
those of a minimal projective resolution of I" as a I'-I"-bimodule from [10]. O

We are now in a position to give the dimensions of the Hochschild cohomology groups
up to HH*?~2(I"). We only give those in even degree since we shall not need the others.
The details of the proof are left to the reader.

Theorem 3.10. For 2 < n < p < g we have

T if n is odd and char K { 2r,

dim HH2"2(I") r+1 ifn is odd and char K | 2r,
im =

T if n is even and char K # 2,

r+1 ifn is even and char K = 2
and for 2 < p < q we have

r—1 ifpis odd and char K { 2r,

r if p is odd, char K # 2 and char K | 2r,
r+1 ifp is even and char K # 2,

r+2 ifchar K = 2.

dim HH?*P~2(I") =

4. Derived equivalence classes

It was shown in [6] that two algebras of the form A(p,q) = I'(p,q;1) or A(n) =
A(1,n;2,2) are derived equivalent if and only if they are isomorphic. The main result
in this section is to extend this to all algebras of the form I'(p,q;r) and A(p,q;s,t),
and hence to all basic indecomposable finite-dimensional K-algebras A that are symmet-
ric special biserial algebras with at most one non-uniserial indecomposable projective
module.

We start with some properties of these algebras, all of which are invariants under
derived equivalence.

Proposition 4.1. Suppose that 1 < p < ¢. The algebras I'(p,q;r) and A(p,q;s,t)
have the following properties.

(1) The number of simples of

I'(p,q;r) isp+q—1,
Ap,q;s,t) isp+q—1.
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(2) The Cartan invariants of

1,1,...,1,4r ifr(p+q— 2) is even,
———
I(p,g;r) are ¢ PF172
1,1,...,1,2,2r ifr(p+q—2) is odd,
——
p+q—3
Alp,q;s,t) are 1,1,...,1,s+t+ (p+q—2)st.
—_———

p+q—2
(3) The Cartan determinant of

I'(p,q;r) s 4r,
Alp,g;s,t) iss+t+ (p+q—2)st.

Proof. (1) This is immediate from the number of vertices of the quiver Q, ..

(2) Let Z,,, be the m x m identity matrix, let 7, be the n x n matrix with all entries

equal to 1 and set u = p+ ¢ — 2. We start with the algebra I'(p, ¢; ). The Cartan matrix
of I'(p,q;7) is the (p+ ¢ —1) x (p+ ¢ — 1) matrix

4r 2r e 2r
2r
Cr =
Iu + rju
2r
The Smith normal form for Cr is
L 0] if ru is even
0 d4r Ve
Zuei 0 O]
0 2 0 if ru is odd,
0 0 2r

and thus the Cartan invariants of I'(p, ¢;r) are

1,1,...,1,4r if ru is even,
———
p+q—2
1,1,...,1,2,2r if ru is odd.
——
p+q—3
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Now consider the algebra A(p, ¢; s,t). The Cartan matrix of A(p,q;s,t) is the (p+ ¢ —
1) x (p+ ¢ — 1) matrix

s+t ¢t t s s
t
: Tp1+tTp—1 0
Cyh= t
s
O qul +5\7q71
s

The Smith normal form for C is

T, 0
0 s+t+ust

so the Cartan invariants of A(p,¢;s,t) are 1,1,...,1, s+t + (p+ q — 2)st.
—_——
pt+q—2
(3) This is immediate from (2). O

We now consider isomorphism classes of algebras of the same form. It is clear that
Alq,q;s,t) = A(q,gq;t,s) and the next result shows that, with this one exception, two
algebras both of the form I'(p, ¢; ) or of the form A(p, ¢; s, t) are pairwise non-isomorphic.

Theorem 4.2.
(1) The algebras of the form I'(p,q;r) (with 1 < p < ¢) are pairwise non-isomorphic.

(2) The algebras of the form A(p, q;s,t) (with 1 < p < q) are pairwise non-isomorphic
with the exception that A(q,q;s,t) = Alq, ¢;t,s).

Proof. (1) First, suppose that the algebras I'(p, ¢;r) and I'(p’,¢’;r’) are isomorphic
with 1 <p < gand 1 < p < ¢ Since both algebras are basic, the quivers are uniquely
determined and hence Q, ) = Qp.q)- Thus, p = p’ and ¢ = ¢'. From the Cartan
determinant in Proposition 4.1 (3), we have that r = 7’.

(2) Suppose that A(p,q;s,t) = A(p',¢';s',¢) with 1 < p < qgand 1 < p' < ¢. Since
both algebras are basic, we again have that p = p’ and ¢ = ¢’. Then, using the zeroth
Hochschild cohomology group from Proposition 3.1, we have s +t = s’ + t/. Equality of
the Cartan invariants from Proposition 4.1 (2) gives that st = s't’. Hence §', ¢’ are the
two roots of the equation 2% — (s +t)z + st = 0. Thus, we have either s = s’ and t = ¢/
(which gives us the algebra A(p,g;s,s)) or s =t and t = ¢’. In the latter case we have
the algebras A(p, q; s,t) and A(p, g;t, s), and it remains to show p = ¢ when s # t. The K
dimension of A(p, ¢; s,t) is tp? +s¢*>+p+q—2 and that of A(p, ¢; t, s) is sp? +tq> +p+q—2.
Thus, tp? + sq® = sp? + tq° so that (t — s)(p+q)(p —q) = 0. Since p+¢ >0 and s # ¢
we have p = ¢, which is precisely the case A(q, ¢;s,t) = A(q, q;t, s). O
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Our next theorem classifies up to derived equivalence all basic indecomposable finite-
dimensional K-algebras A that are symmetric special biserial algebras with at most one
non-uniserial indecomposable projective module.

Theorem 4.3.

(1) An algebra of the form A(p, q; s,t) (with 1 < p < q) is derived equivalent to exactly
one algebra in the following list:

(a) AL, p+q—1;s,t) with2 < s < t;
(b) NPFI=1 with p 4 ¢ > 2 and min(s, t) = 1, max(s,t) = M.

(2) An algebra of the form I'(p,q;r) (with 1 < p < q) is derived equivalent to an
algebra of the form A(p,q; s,t) if and only if they are isomorphic. This is only the
case for I'(1,1;1) = A(1,1;2,2) and char K # 2.

(3) The algebras I'(p,q;r) and I'(p’,¢';7") (with1 < p < g and 1 < p’ < ¢') are derived
equivalent if and only if (p,q,r) = (p', ¢, r").

Proof. (1) The algebra A(p, g; s,t) is the generalized Brauer tree algebra, associated
with the Brauer tree in Figure 1, in which the vertices a and b have multiplicities s and
t, respectively (we refer the reader to [4, §4.18] or [20] for the definition of a Brauer tree
algebra and a generalized Brauer tree algebra).

It was proved in [20, Theorem 9.7] that generalized Brauer tree algebras up to derived
equivalence depend only on the number of edges in the graph and the set of multiplicities.
Therefore, A(p, ¢; s,t) is derived equivalent to the generalized Brauer tree algebra asso-
ciated with the Brauer tree in Figure 2, in which the vertices ¢ and d have multiplicities
m = min(s,t) and M = max(s,t), respectively, and {a,b} = {¢, d}. This algebra is equal
to

e cither KA,y 1/Ly = NYFTUif m = 1, that is, if (s,t) = (M,1) or (s,t) =
(1, M), with M > 1,

e or A(1,p+q—1;m, M) if m > 1, that is, if s > 2 and ¢t > 2.
Moreover, none of these algebras are derived equivalent, again by [20, Theorem 9.7].

(2) First, we show that the algebras I'(1,1;1) and A(1,1;2,2) are isomorphic when
char K # 2. Since K is algebraically closed, let € be a square root of —1 in K. Then the
map
a— a+ef,

w: I'(1,1;1) = A(1,1;2,2) given by
B—a—ef

is an isomorphism of algebras.

Suppose that there is a derived equivalence between the algebras I'(p,q;r) and
A(p',q'; s,t). Then the algebras have the same number of simple modules so, from Propo-
sition 4.1, we have p+q = p’+¢. From (1), the algebra A(p’, ¢'; s, t) is derived equivalent
to exactly one algebra in the list above. Moreover, s + ¢t = m + M, where m = min(s, t)
and M = max(s, t).
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Figure 2. Brauer tree derived equivalent to that in Figure 1.

Case 1 (m = min(s,t) = 1). Let I' = I'(p,¢;r) and A = A(p',¢;s,t). From
Propositions 3.1 and 3.3, dimHH"(A) = p + ¢+ M — 1 and dim HH*(A) = M. We first
assume that p = 1 so that ¢ > 1. From Proposition 3.4, dim HH(I") = ¢ 4+ r + 1 so that
M = r + 1. However, Proposition 3.6 gives

r+4 if char K = 2,

dim HHY(I") =
r+2 if char K # 2,

which is a contradiction. So I'(1, g; ) is not derived equivalent to A(p’, ¢’; s,t).

On the other hand, if p > 1, then dim HH*(I") = p 4 ¢ +r — 1 so that M = r. But
dimHHY(I") = r + 1 so that M = r + 1, a contradiction. Again, I'(p,¢;r) is not derived
equivalent to A(p’,¢’; s, t).

Case 2 (m = min(s,t) > 1). We use Propositions 3.1, 3.3, 3.4 and 3.6 without
further comment. We begin with the case p = 1. If ¢ = 1, then dim HH’(A) = s + ¢
and dimHH®(I") = r + 3. From Proposition 4.1 (3), the Cartan determinant of I' is
4r and that of A is s +¢. Hence, r +3 = s+ ¢ = 4r so that r = 1 and s = 2 = ¢.
If char K # 2, then we have an isomorphism I'(1,1;1) = A(1,1;2,2) from above. If
char K = 2, then dim HH"(A) = 5 and dim HH'(I") = 8, which is a contradiction and
I'(1,1;1) is not derived equivalent to A(1,1;2,2). For the case in which ¢ > 1 (keeping
p = 1), a similar consideration of the zeroth and first Hochschild cohomology groups and
the Cartan determinant shows that I'(1, ¢; r) is not derived equivalent to A(p’,¢’; s, t).

Now suppose that p > 1. We have dim HH*(A) = p+ ¢+ s+t — 2 and dim HH(I") =
p+q+r—1sothat r =s+t—1. So dimHH (') = r+ 1 = 5+t and we must have
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char K = /| ged(s,t). From Proposition 4.1 (3), the Cartan determinant of I" is 4r and
the Cartan determinant of A is s+t+ (p+q—2)st so that 3(s+t) = (p+¢—2)st—4. Thus,
£]4 so that £ = 2 and s and ¢ are both even. Thus, we are in the situation where I'(p, ¢; )
is derived equivalent to A(p’,¢’;s,t), char K = 2, both s and ¢ are even, r = s +¢ — 1
and p + q = p’ + ¢'. We shall use Kiilshammer invariants and the same arguments as
in [13, §4.5.2] for this case. Recall from Proposition 2.1 and its proof that the algebras
A(p',¢';s,t) and I'(p, g;r) are symmetric; moreover, once we have fixed a K-basis of paths
for the socle of a symmetric algebra A and completed it to a K-basis B4 of paths for A,
the linear map f: A — K that is defined on B4 by sending socle elements to 1 and the
rest to 0 defines a symmetric non-degenerate associative bilinear form on A. Orthogonals
will be taken with respect to this bilinear form. Let x(A) be the commutator subspace
of A and, for any non-negative integer n, define T,,(A) = {z € A; 22" € x(A)}. Tt was
proved in [29] that the generalized Reynolds ideals (or Kiilshammer invariants) T, (A)+
are derived invariant. Note that soc(A) C T, (A)*+ € Z(A) for every n. It is well known
that the centre Z(A) is a derived invariant. Given a vector space V, let By denote a
basis of V.

e We start with the algebra I" = I'(p,q;r). A basis Br of paths of I' is given by the
union over all ¢, j with 1 <4, j < p+ ¢ — 1 of all paths from e; to e; of length at most
(p+q)r except (67)". Recall from Proposition 2.1 the basis Byc(ry = {(79)";:n], 2 <i <
p; 07, 2<j < q} CBr of soc(I') and from Proposition 3.4 the basis

Bz = {1;(70)"; 2%, I<k<r—1;n;0; for2<i<pand 2<j<q}
of Z(I'), where
P q
N
i=1 j=1
Then dimx(I") = r((p +¢q)? — 1) — 1 and a basis of x(I") is given by

Byory = {7(67)%;6(v6)%; (v0)F T — (o)t — it 1< < s
Oyt — 01T 2 < < s for 0< k<r—1}U{b € Br;o(b) # t(b)}.

Now, as in §4.5.2 of [13], work in I'/k(I') to find a basis Bp )y = Be) U
{(v0)k; (r+1)/2 < k < r} of Ty(I') (recall that 7 is odd), then work in Z(I")/soc(I")
to find a basis Br,(ryr = Beoo(r) U {2" (r+1)/2 < k < r— 1} for Ty(I')* so that
I'":= Z(I')/Ty(I)* has a basis Br = {1;2%;1 < k < (r — 1)/2}. We now consider the
Jacobson radical tr of the algebra I", which is spanned by {z*; 1 <k < (r—1)/2}, and
its square t%,, which is spanned by {z*; 2 < k < (r — 1)/2}, so that dimg v /t%, = 1.

e We now turn to the algebra A = A(p/, ¢'; s,t). Since they are derived equivalent, we may
assume that A = A(1,n;m, M) with n = p+ ¢ — 1 (to simplify notation). Note that m
and M are even. Set a = ;. We follow the same method as for I', using Propositions 2.1
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and 3.1:
By = U {all paths from e; to e; of length at
1<i,
Jj<p+q—1

most nM that do not contain a} U {a”, 1 <k <m —1};
BSOC(A) = {5:,”7 1 < 1 < n};

q
Bz ={liof, 1<k <msy, 1<0<t— 156, 2<j<q}, wherey=> 4
j=1
By ={0" =65 2<j<q 1 <L<MPU{beBa; ob) # t(b)};
Br, 1y = Boay U{a, dm <k <m;dt, 1M <0< M; o™? 4 6M/2Y,

Br, ()~ :BSOC(A)U{ak, %m< E<m—1; %M<£<M71; am/2+yM/2}.

So the Jacobson radical v/ of A" := Z(A)/Ti(A)* has a basis {a*, 1 <k < %m;yg, 1<
/< %M} and tfl, has basis {a*, 2 <k < %m;yf, 2<Ul< %M} so that
2 if M > 4,

dimg vy /vy, =
K e [T {1 if M =2 (and therefore m = 2).

Since we assumed that A and I' are derived equivalent, the algebras A’ and I are
isomorphic and hence we have dim g tp//t%, = dimg tA//ti,, which implies that m = 2 =
M, that is, s = 2 = t. Therefore, r = s+t —1 = 3. We now use the Cartan determinants:
0=detCr—detCyp=4r—(s+t+(p+q—2)st) =12—(4+(p+q—2)4) =4(4—(p+q))
so that p+q = 4. Since 1 < p < ¢, we must have p = 2 = ¢. Therefore, I’ = I'(2,2; 3) and
A is derived equivalent to A(2,2;2,2). However, it was shown in [12, § 3] that I'(2,2;3) =
D(3A)% and A(2,2;2,2) = D(3A4)%? are not derived equivalent. Therefore, A and I" are
not derived equivalent.

(3) If the algebras I'(p,q;r) and I'(p',q¢’;r") (with p < g and p’ < ¢') are derived
equivalent, then from the Cartan determinant and number of simples (see Proposition 4.1)
we know that » =/ and p 4+ ¢ = p’ + ¢’. Assume for contradiction that (p,q) # (v, ¢).
We may suppose that p < p’. It follows that p < ¢ (for otherwise p = ¢ and hence
d=0W+¢)—p =@+q —p =2p—p <2 —p = p, a contradiction). Using
Theorem 3.10 and Proposition 3.4, we then have

HH* (I (p, ;7)) # HE*P (D0, ¢51")),

/

which contradicts the fact that the algebras are derived equivalent. Thus, (p,q) = (¢/,¢’).

|
5. Stable equivalence of Morita type classes

Finally, we give a classification up to stable equivalence of Morita type of all algebras
of the form I'(p,q;r) and A(p,q;s,t), and hence of all basic indecomposable finite-
dimensional K-algebras A that are symmetric special biserial algebras with at most
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one non-uniserial indecomposable projective module. This is based on the classification
up to derived equivalence of Theorem 4.3.

Theorem 5.1.

(1) An algebra of the form A(p,q;s,t) (with 1 < p < q) is stably equivalent of Morita
type to exactly one algebra in the following list:

(a) A(L,p+q—1;s,t) with2 < s < t;
(b) NPFI=1 with p 4 ¢ > 2 and min(s, t) = 1, max(s,t) = M.

(2) An algebra of the form I'(p,q;r) (with 1 < p < q) is stably equivalent of Morita
type to an algebra of the form A(p,q; s,t) if and only if they are isomorphic. This
is only the case for I'(1,1;1) = A(1,1;2,2) and char K # 2.

(3) The algebras I'(p,q;r) and I'(p’,¢';7") (with1 < p < ¢ and 1 < p’ < ¢') are stably
equivalent of Morita type if and only if (p,q,7) = (p', ¢, 7).

Proof. It was proved by Rickard [22] and Keller and Vossieck [15] that if two self-
injective K-algebras are derived equivalent, then they are stably equivalent of Morita
type. Therefore, to prove the result, we need only prove that the algebras listed in The-
orem 4.3 are not stably equivalent of Morita type since they are all self-injective.

We shall use the following invariants of stable equivalences of Morita type repeatedly:

e the dimension of HH"(A) for n > 1 for Artin K-algebras (see [28, Theorem 4.2));

e the number of simple A-modules, where A is an indecomposable self-injective special
biserial algebra (see [21]);

e the dimension of the centre Z(A) = HH"(A), where A is an indecomposable sym-
metric special biserial algebra (using a result of Liu et al. [19, Corollary 1.2]);

e the absolute value of the Cartan determinant of A (see [28, Proposition 5.1]).

All of our algebras are indecomposable symmetric special biserial algebras. We now prove
the theorem.

(1) Assume first that A(1,a;s,t) and A(1,b;8',t'), witha > 1,5 > 1,2 < s < t and
2 < ¢/ <1/, are stably equivalent of Morita type. Then a = b since the numbers of simples
are equal and, using the dimensions of the centres, we have s +t = s’ + t'. Moreover,
their Cartan determinants are equal (they are positive) so that st = s't’. Finally, we have
(s,t) = (s',t') so that A(1,a;s,t) = A(1,b; ¢, ).

Now assume that N§, and N%,, witha > 1, b > 1, M > 1 and M’ > 1, are stably
equivalent of Morita type. Then a = b since the numbers of simples are equal and, using
the Cartan determinant, we have 14+ M+ (a—1)M = 1+ M’ +(a—1)M’ so that M = M’.
Therefore, N§, = N§,,.

Finally, if A(1,a;s,t) and N}, with a > 1, b > 1,2 < s < t and M > 1, are
stably equivalent of Morita type, then, since N]l\’/[ is a symmetric Nakayama algebra,
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o
\J

Figure 3. Brauer graph for I'(p, ¢; )

A(1,a; s,t) must be a Brauer tree algebra by [8] and hence derived equivalent to a sym-
metric Nakayama algebra by [20], which we know is not the case. Therefore, A(1,a;s,t)
and N}Q are not stably equivalent of Morita type.

This concludes the proof of (1).

(2) The proof is essentially the same as in Theorem 4.3 since almost all the derived
invariants used there are invariants of stable equivalence of Morita type between inde-
composable symmetric special biserial algebras, the exception being the Kiilshammer
ideal Ti-(A) of an algebra A. However, for symmetric algebras, the algebra Z(A)/Tj-(A)
is a stable invariant of Morita type. Indeed, let Z5(A) = End,.(A) be the sta-
ble centre of A (the endomorphisms of A in the stable A°-module category) and let
ZP*(A) = Ker(End g (A) — End 4. (A)) be the projective centre of A. Then Z%*(A) and
Ti-(A)/ZP*(A) are invariants of stable equivalences of Morita type for symmetric algebras
(see [16,19]) and moreover, Z(A)/Ti-(A) = Z5%(A) /(T (A)/ZP*(A)).

Therefore, the proof of Theorem 4.3 (2) still holds for stable equivalences of Morita
type.

(3) The proof is the same as in Theorem 4.3 since the dimensions of the Hochschild
cohomology groups in positive degrees are invariants of stable equivalences of Morita
type. O

Remark 5.2. Recall from [8] that the Nakayama algebras are the distinct repre-
sentatives of the stable equivalence classes of Brauer tree algebras. It follows from [21]
and [18] that any algebra that is stably equivalent of Morita type to one of the I'(p, ¢; )
or A(p,q;s,t) is a symmetric Brauer graph algebra. Moreover, the list of algebras given
in Theorem 5.1 are ‘normal forms’ for derived equivalences of Brauer graph algebras
(a specific type of generalized star as in [14] and [24, Theorem 5.7]), and hence, since
Brauer graph algebras are self-injective, for stable equivalences of Morita type. Indeed,
the algebra I'(p, ¢;r) is the Brauer graph algebra associated with the graph of Figure 3,
which has p — 1 edges inside the loop, ¢ — 1 edges outside the loop and with multiplicity
r at the central vertex. However, it is still an open question in general as to whether two
such normal forms are derived equivalent or not.
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