London Mathematical Society ISSN 1461-1570

PROGRAMMING COMBINATIONS OF DEDUCTION AND
BDD-BASED SYMBOLIC CALCULATION

MICHAEL J. C. GORDON

Abstract

A generalisation of Milner’s ‘LCF approach’ is described. This al-
lows algorithms based on binary decision diagrams (BDDs) to be
programmed as derived proof rules in a calculus of representation
judgements. The derivation of representation judgements becomes
an LCF-style proof by defining an abstract type for judgements anal-
ogous to the LCF type of theorems. The primitive inference rules
for representation judgements correspond to the operations provided
by an efficient BDD package coded in C (BuDDy). Proof can com-
bine traditional inference with steps inferring representation judge-
ments. The resulting system provides a platform to support a tight
and principled integration of theorem proving and model checking.
The methods are illustrated by using them to solve all instances of a
generalised Missionaries and Cannibals problem.

1. Introduction

LCF-style theorem provers [8] use the ML programming langudgé fo define a type
thm representing theorems of a deductive system. Milner’s key i@eads to makehm

an abstract type whose only theorem-creating operations correspond to rules of inferel
of a logic. Users can program complex proof procedures in ML by calling the primitive
operations ofthm. The ML type discipline ensures that values of tyjppe can only be
created via sequences of primitive inferences. LCF-style theorem provers are sometin
called ‘fully expansive’, as they expand out all deductions into sequences of primitiv
inference steps. The notation #-means that term is a theorem.

Many successful automatic verification algorithms are based on computing with boole:
terms represented esxduced ordered binary decision diagra(ROBDDSs, or just BDDs for
short) [3]. The LCF-approach is extended here to include proving judgemenis— b
as well as conventional theorems. The components of a judgemenp ¢ +— b are a
set of boolean terms that are assumed true, a finite mafrom logical variables to BDD
variables, a boolean term(all of whose free variables are boolean) and a BR[3uch
a judgement is true if and only if, under the assumptionthe BDD representing with
respect tq is b.

The derivation of ‘theorems’like p t+ +— b canbe viewed as ‘proof’ in the style of LCF
by defining an abstract typerm_bdd that models judgementsp ¢t +— b analogously to
the way the typehm models theoremis t.

In this paper, symbolic calculation is represented as LCF-style proofs of BDD represe
tation judgements. It is still too early to say whether adequate efficiency can be obtain

Received 6 January 2000, revised 11 April 200@hlished30 August 2002.
2000 Mathematics Subject Classification 68Q60, 68T15, 03B15.
© 2002, Michael J. C. Gordon

https://doi.org/10.1112/51461157000000693 PUbNéBed oBlmeipuCaiviaitig SURGOTHBREES

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/5
https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

(though preliminary experiments suggest optimism), but the methodology encourages int
esting synergies between theorem proving and model checking, and allows users to progt
bespoke checkers with an LCF-like assurance of soundness.

The rest of this paper is structured as follows: first the combination of the HOL theo
rem prover and the BuDDy BDD package using representation judgememts— b is
outlined, then some basic programming techniques using judgements are described. N
some elementary reachability concepts are reviewed, and their computation via judgeme
is explained. Finally, a case study is presented: an analysis of a generalisation of the class
Missionaries and Cannibals problem.

2. BDD representation judgements

A BDD representation judgementis a4-tuple o, ¢, b), wherez is afinite set of boolean
terms called the assumptions,s a finite map from boolean variables (a subset of HOL
terms) to natural numbers (representing BDD variablds)a boolean term anfgis a BDD.
Such a judgement is true if and only if, under the assumption that all the teenas@true,
the termr is represented by the BDB, assuming that each variahlén ¢ corresponds to
the BDD variableo(v). The notatioru p t — b indicates thata, p, t, b) follows from
the rules given in Sectiors1,2.2,2.3and2.4 below. The mapp is called a variable map.

A common case occurs when the gaif assumptions is the empty gt and in this case
the notationo r +— b is used, ratherthany p ¢ +— b.

The definition of truth just given is informal. It is intended that the rules for deducing
representation judgements should be sufficiently simple to be ‘obviously sound’; neverth
less, it is hoped eventually to formalise the truth conditions for judgements and prove the
soundness, but this is work for the future.

BDDs in HOL are provided by the BuDDy package due to Jgrn Lind-Nielsen, which i
implemented in C. The HOL interface to BuDDy is via a Moscow ML API called MuDDy,
due to Ken Friis Larsen and Jakob Lichtenberg. Both BuDDy and MuDDy are supporte
from the IT University, Copenhagen. MuDDy defines an ML tyipkl of pointers into
BuDDy’s BDD space. It also defines ML functions corresponding to operations in the
BuDDy API. Some of these functions initialise and configure the BDD package, and othe
are operations for combining BDDs. For example, MuDDy binds the ML varialdRiSE
andFALSE (both of ML typebdd) to the BDDs representing truth and falsity, respectively.
The ML functionithvar:int—bdd ~ maps an ML integei to a BDD node labelled with
i (in BuDDy, BDD variables are non-negative integers, and the arithmetical order is th
variable order). The functionNOT:bdd— bdd and AND:bdd x bdd— bdd compute the
negation and conjunction of BDDs. Only a small subset of MuDDy is described here, ar
some of the details are simplified to make the exposition cleaner. Details of the implement
system are available online [7].

The rules for representation judgements can be classified into four categories: rules
constants and variables, rules for combining or manipulating judgements, rules linkir
judgements and theorems, and rules for changing variable maps.

2.1. Rules for constants and variables

The HOL logical constanfE andF are terms denoting truth and falsity, respectively, and
have ML typeterm. The ML valuesSTRUEandFALSEof ML type bdd are the corresponding
BDDs.

https://doi.org/10.1112/51461157000000693 Published online by Cafridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

In the notation for rules used below, hypotheses and side conditions are written abov
horizontal line, with the conclusion below the line. For example, theBd@~orall has
one judgement as a hypothesis, and a side-condition for each quantified variable.

The inference ruleBddT andBddF link the logical and BDD truth-values. They have
no hypotheses or side-conditions.

BddT—— BddF
pT — TRUE o F > FALSE

Logic variables in HOL'’s higher-order logic are a subset of terms, but BDD variables it
BuDDy are represented by natural numbers (ML integers in MuDDy). Logic variables ar
associated with BDD variables by a partial function from terms to integers caliadedble
map(or ‘varmap’, for short). A varmap defines a variable ordering:< yif p(x) < p(y).

The inference rul®ddVar for inferring judgement® v +— b, wherev is a variable,
has the side-condition thatis bound in the supplied variable map:

p(v) =n
pv > ithvar n°

BddVar

EvaluatingBddVar p vin ML will return p v +— ithvar nif vis bound ta: by p. An
ML exception is raised i is not in the domain op.
The sets of assumptions generatedllg T, BddF andBddVar are empty.

2.2. Rules for combining or manipulating BDD representation judgements

Here are some example inference rules for proving judgenents — b, immediately
preceded by their ML names (the unary operatd@Tnegates a BDD, and the binary
operatordOR,IMP andBIIMP construct the disjunction, implication and equivalence of
BDDs).
apt — b

a p—-t — NOTbH

BddNot

aiptyr — by axpty — br
aiUaz p tintp — b1 ANDbo

BddAnd

aiptyr — b1 axpty — by
aiUaz p t1Vvir +— b1 ORby

BddOr

aipty — b1 az ptp — by
aiUaz p t1=t2 — b1 IMP by

Bddimp

aiptyr — b1 axpty — by
BAAEQ ™04y p r1=12 +> b1 BIIMP by

The functiond~orall andExists of type (int list)— bdd— bdd quantify BDDs; thus

BddForall apt = b plo=m - plp) =np)
apVvy - vp.t = Forallln 1, ...,n,]b

BddEXxists apt > b pvy) = ’.11 P =1y
apvy - vyt > EXistsS[n 1,nplb

https://doi.org/10.1112/51461157000000693 Published online by Calp8ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation
The BDDs of quantifications of conjunctions can be built by calixigDfollowed by
Forall orExists, but it is more efficient to use the optimised algorithmBorallAnd
andExistsAnd provided by BuDDy.

BddForallAnd

arpti = b1 axptz = by pv))=n1 --- pp) =n,

allaz pVvy -+ vp. ti Aty = ForallAnd [n 1, ...,n p] b1 b2
BddExistsAnd

apth = b1 axptz = by pv))=n1 - pp) =np

aiUaz p vy -+ vp. 1A > ExistsAnd [n 1, ...,n p] b1 b2

BuDDy/MuDDy provides other optimised combinations of quantification and boolear
operations, which provide the basis for other representation judgement rules.

The ruleBddSubst links substitution on logical formulae with substitution on BDDs.

Let t{vi<t1,...,v,<t,} denote the result of simultaneously replacing occurrences o
free variablesvy, ... , v, in a terms with termszy, ... , 1,, respectively, renaming any
bound variables in to avoid capture. Leb{ni<b1, ... ,n,<b,} denote the result of

simultaneously replacing BDD variables, ... , n, in a BDD b with BDDs by, . .. , b,
respectively (such replacements are supported by MuDDy). TheBddSubst takes a
list of pairs representing a substitution and a judgement +— b, and returns the result
of performing a term substitution anand the corresponding BDD substitution &nThe
rule as an ML function has ML typ&erm_bdd x term_bdd) list— term_bdd— term_bdd.

BddSubst

[(ovi = by, pt1 = by),...,(pvy, = bvp,,otp — b,p)] apt — b

aptfviety, ..., vp<ip} > blp(w1)<byy, ..., p(vp)<by,}

Two rules that illustrates the use of theomponent of a judgement aBeldSimplify
andBddFindModel. The first of these provides access to a classic algorithm of Coudert,
Berthet and Madreq], provided by MuDDy as a functiosimplify ~ : bdd— bdd— bdd
that simplifies its second argument under the assumption that the first argument is tri
that is,simplify ~ b1b> results in a BDD, sayy, such thaty = (b2 = b5) and in the
intended applications, is simpler tharb,.

aipty — b apty — by
aiUaU{t1} p t2 +— simplify b1 bo

BddSimplify
The ruleBddFindModel usesaBDD algorithmtofindasgt = c1,...,v, =¢,} of
assumptions that makes a tertnue (where; is a boolean constaiitor F for 1 < i < p).

BddFindModel apt—>b

aU{vyy =c1,...,vp =cp} pt — TRUE
An exception is raised if is unsatisfiable.

https://doi.org/10.1112/51461157000000693 Published online by Calp®ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

2.3. Rules linking BDD representation judgements to HOL theorems
The ruleBddEgMpexpresses the fact that logically equivalent terms have the same BDLC

aabn=t aph—b

BddEgM
avp aiUaz p to — b

The ruleTermBddOracle checks whether the BDD part of a judgement RUE, and if
so creates a theorem whose conclusion is the term part.

apt — TRUE
a bt

TermBddOracle

If TermBddOracle is applied to a judgement whose BDD part is i®UE, then an ML
exception is raised.

The ruleTermBddToEgThmbelow converts the BDD pabtof ajudgement p t +— b
to a conditional term,;, built out of logic variables corresponding to the BDD variables in
b according too, and with the BDD structure represented by a nested conditional.
apt — b

TermBddToEqThm ————
ab t=ty

For exampleTermBddToEqThmapplied top x A y A =z +— b yields:

Fx Ayv -z =if xthen (f ythenTelse (if zthenFelseT))
else (if zthenFelseT).

Clearly, the right-hand sides of the equations generatéicebpyBddToEgqThm may be
huge, and the sharing in BDDs is lost. Thus this rule must be used with care.

The rulesTermBddOracle andTermBddToEqThm are the only way that theorems
of higher-order logic can be created via BDDs. Theorems ‘proved’ with these are tagge
so that users can see that BDD calculations have been used. The route from BDD repres
tation judgements to HOL theorems could be limited to jumtmBddOracle by having
TermBddToEgThmuseTermBddOracle to validate its result.

2.4. Rules for extending or contracting variable maps

The rules given above all have the same variable piapghe hypotheses and conclusion.
To use one of the preceding rules to combine judgements with different varmaps, one ne
first to extend or contract the different varmaps so that they are the same. The followir
rules enable varmaps to be extended and contracted.

Let ‘extends p1 p2’ mean thatop agrees withp, on all the variables that; is defined
on, and letfemove v p’ denote the result of removing the variahldrom the domain

of p.
P extends p1 o2 apit — b

BddExtendVarmap ; :
apxt —

apt — b v is not free inz

BddFreevarsContractVarmap
a (remove vp)t — b

apt — b o (v) does not occur i
a (remove vp)t — b

BddSupportContractVarmap

https://doi.org/10.1112/51461157000000693 Published online by Ca@@¥idge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

To apply a rule likeBddAnd to two judgements; p1 11 — by andaz p2 t2 +— b,
one use8ddFreevarsContractVarmap andBddSupportContractVarmap to
remove redundant bindings from and p> to get judgements, say, p; 11 +— b1 and
az p, 12— bz. One then finds a varmapsuch thaextends p; p andextends p2 p,
and useBddExtendVarmap to derivea; p 11 + by andaz p t2 +— b2, which have
the same varmaypp, and so can be combined usiBgldAnd. A generalised rule that
automatically performs the contractions and extensions is easily programmed; a commn
case, however, is to have a fixed varmap, and the basic rules are optimised for ghis. If
andp; are incompatible on a variable say, occurring iy or #2 (that is, p1(v) # p2(v)),
then the desired cannot be found.

It is intended to provide support for having incompatible variable orders, though th
management of such ‘local scopes’ is likely to be tricky, and the details have not bee
worked out in relation to representation judgements. Additional rules may be needed.

3. Derived BDD representation rules

The rules in the preceding section (and some others not presented here) form a fixed
defining the primitive operations on the abstract typer_bdd. The primitives correspond
to the BuDDy operations provided by the MuDDy API, together with rules for manipulating
varmaps and rules linking representation judgements to logical formulae. The claim that tt
system provides LCF-like assurance assumes that the fixed set of primitive rules is correc
implemented (which requires BuDDy and MuDDy be correct). Starting from these rules
derived rules can then be programmed in ML in the LCF style.

Suppose thatis a quantified boolean formula (QBF) built out of boolean variables and
constants using, A, vV, =, =,Vand3. One can program an ML functisermToTermBdd
with ML type term— term_bdd that, when applied te, computes g and judgement
pt — b(withempty assumptions). The variable map is computed by using term-processi
functions to get the set of variablesrirthen repeatedly usirithvar to construct a BDD
variable for each variable in and finally packaging up the correspondence between logic
variables and BDD variables into a variable map recursive descent algorithm can then
use the primitive rules in Sectior?zsl and2.2to deduce a BDD representation judgement
for ¢, and thus implement the following rule.

t is a quantified boolean formula
pt — b

termToTermBdd

A more general version aérmToTermBdd can be easily implemented; this enables the
variable order to be explicitly specified.

3.1. Computing the set of reachable states

In higher-order logic, sets are conveniently represented by their characteristic predicat
Suppose thaB is a predicate representing a set of initial states; then asstati the set
represented b if and only if B s (the application oB to s is true). Suppose th&t is a
predicate on pairs of states representing the transition relation of a system, R¢sthat
is true if and only if the system can make a transition from stdtestates’.

A transition systens defined by a paifR, B) consisting of a transition relation and a set
of initial states. A state is reachable ir stepsin such a transition system if and only if
there exists a sequence of stalgs, ... , s, such thaB sq is true (that issg is an initial

https://doi.org/10.1112/51461157000000693 Published online by Ca@fridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

state),s,, = s and andR(s;, s;+1) is true fori = 0, ..., m—1. Such a sequence igrace
from B to 5. The predicaté&ReachBy R B i representing the set of states reachablean
fewer steps is defined recursively by:
F (ReachByRBOs = Bys)
A

Vi.ReachBy RB (i+1) s = ReachByRBis Vv Ju.ReachByRBiu A R(u,s).
A states isreachabldf and only if it is reachable in a finite number of steps; that is, if and

only if 3i. ReachBy R B i s. The predicat&Reachable characterising the set of reachable
states is thus defined by:

F Reachable RBs = 3i. ReachBy RBi s.

The following fixed-point theorem is straightforward to prove:

F Vi. (Vs. ReachBy RBi s = ReachBy RB (i+1) s)
=
Vs. Reachable RBs = ReachBy RBi s.
Thus, to compute the set of reachable states, it is sufficient to find a number of iteratio
i such thatvs. ReachBy RBi s = ReachBy RB (i+1) s.

To use BDDs, states are encoded as vectors of booleans (see Setfi@uppose that
the constant8 andR have been defined by theorems:

F B(vi,...,v) = QBF,
l_ R((U17 MR vﬂ)v (U:/I_f M U;L)) = QBF25

where QBR and QBF, are quantified boolean formulae that can be directly represente
as BDDs. WithtermToTermBdd followed by BAdEqMp, one can create representation

judgements:
e p Bi....v) > by

o (R((v1, ..., v0), (v}, ... vp))) = br
A simple iteration [6] then implements a derived rule that can take these as hypothes
computeReachable

p (B(vi,...,v)) — bg p (R((v1, ... ,vp), (V3. ...,) = br
p (Reachable R B (v1, ..., v;)) — bRreachre '

The iteration consists in computing

p (ReachBy RB O (v1, ..., v;)) — bo
p (ReachBy RB 1 (v1, ..., v,)) — b1
p (ReachBy RB 2 (v1, ..., vy)) — b2

p (ReachBy RBi (v1, ..., v,)) +— b;
p (ReachBy R B (i+1) (v1, ..., vn)) +— bit1
until

F ReachBy RBi (v1,...,v,) = ReachBy RB (i+1) (v1, ..., v,).

https://doi.org/10.1112/51461157000000693 Published online by Ca@Bridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

This is tested for by usinBddEq followed by TermBddOracle. When such an i is
reached, the conclusion obmputeReachable is deduced by applyinBddEqMpand
the preceding fixed-point theorem.

Applying TermBddToEgThmto the result otomputeReachable results in a the-
orem:

= Reachable R B (v1, ..., V;) = !ReachRB,

which gives an explicit characterisation of the set of reachable states.
A simple ML program can be used to compose together the inferences just described
implement a derived rule:

computeReachableThm

F B(vi,...,v,) = QBF F R((v1, ..., v0), (V],...,v,)) = QBF,
F Reachable R B (v1, ..., V) = fReachRB

This is a derived rule that infers a HOL conclusion from HOL hypotheses using interne
BDD calculations. For an application, see Section

3.2. Computing traces

Suppose that one wants to check that all reachable states have prRyjgbeg one can
compute the BDD oReachable R B (v1, ..., v,) = P(vs, ..., v,) and see whether it is
true (usingTermBddOracle). If it turns out that P does not hold for all reachable states,
then it is useful to find a trace to a counterexample. Such a trace can be computed in th
steps as follows.

1. Findthe first suchthaReachByRBi (v1,...,v,) A =P(vy, ..., v,) is satisfiable.
2. Find a particular state; say, such thaReachBy RBis; A —(P s;).
3. Work backwards from; to get a traceo, ... , s;.

In more detail, this involves the following actions.

1. Iteratively compute the BDD, s&y, ofReachByRBi (v1, ... ,v,)fori =0,1,2...,
and on each iteration check if the conjunctiorbpfind the BDD of-P(vy, ... , v,)
is not FALSE (using the ruleBddNot andBddAnd). Stop at the firsi for which
the check succeeds.

2. Compute the BDD oReachBy RBi (v1,...,v,) A —(P(v1,...,v,)) (Wherei is
the fixed point found in 1), and then uBddFindModel to deduce a judgement:

{vi=c1, -+, vy =cn} p (ReachByRBi (v1,...,vs) A =(P (v1,...,vp)))
—~ TRUE.
From this it follows that ifs;, = (c1, ..., ¢,), thenReachBy RB i s; A —(P s;).

3. Generate a sequence of vectors representing states starting from an initial state
ending ins; by tracing backwards, as follows. First, define two auxiliary HOL con-
stantsPrev andEq by:

F PrevRPs = 3s'.R(s,s) A P/,
F Eqs1s2 = (s1=152),

https://doi.org/10.1112/51461157000000693 Published online by Ca@Bridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

and then iteratively construct a sequenge .. , sg, where, if a vector of boolean
constantss, has been constructed, th&udFindModel is used to obtairy,_;
satisfying ReachBy RB (p—1) s,_1 A Prev R (Eqs,) s,_1. Note that the BDDb,

of ReachByRB p (v1,...,v,) (for p =0, 1, ... ,i)was computed during step 1, so
is available without further work. The BDD &fev R (Eq s;,) (v1, ..., v,) iS computed
from the BDDs ofR((vy, ..., vn), (v1, ..., v;)) @ndEq(s,, (v1, ..., v,)).

The sequencsy, ... , s; is a trace from an initial state to a counter-example state. The
following properties can be deduced:

F B so
F ReachBy RB p s, A R(sp, Spy1) O p<i)
F ReachBy RBns; A —(Ps;)

For debugging, it seems an overkill to prove theorems verifying that the computed s
quence of states to a counter-example is correct, since the purpose of the counter-exan
is just to point at bugs. However, something similar to the procedure just described col
possibly be used to synthesise program code to achieve a specification, and with this k
of application it may be useful to generate a proof that it is correct, especially if the fing
code is obtained by transforming the output of the raw BDD calculation into some differer
format. The Missionaries and Cannibals example in Sectisrsuggestive: a schedule of
boat trips is a kind of program.

3.3. Disjunctive partitioning by proof

Disjunctive partitioning is a well-known method of transforming the formulae for the nex
state (forward image) or previous state (backward image, thHaiegR P s) so that it is not
necessary to compute the BDD of the whole transition rel&i@ny., . . . , v,), (vy, ..., vy))

[4, p. 80]. It is suitable for large asynchronous circuits. The technique is also ealigd
guantification[14, p. 45].
Consider, for example, the state transition relatefined by:

R((x’yvz)»(xl’y/az/))Z(X/ZEx(xvy’Z) A ylzy A Z/ZZ)
V'=x A Y =E®lxy) A =2
vV @'=x A Y=y A Z=Exy2),

where E, (x, y, 2), Ey(x,y,z) and E;(x, y, z) are boolean formulae. Such a transition
relation represents the asynchronous compositidii.ofE, andE.

Logical simplification gives:
3x' y' 7. ReachBy R B n (x',y',2) A R((x',y,7), (x,,2)
= (3x'.ReachBy R Bn (x',y,2) A x =E(x',y,2)
Vv (3y’.ReachBy R Bn (x,y',2) A y=Eyx,y, 2))
VvV (37.ReachBy R Bn (x,y,7) A z=E,(x,y,7)).
The BDD ofdx’ y' z/. ReachBy R B n (x', y', z/) A R((x', ¥, 7)), (x, v, z)) canthus be

computed without ever computing the BDD&f((x’, ¥, z'), (x, v, z)). This simplification
is done automatically by the HOL simplifier.

https://doi.org/10.1112/51461157000000693 Published online by Ca@ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

The usual implementation of disjunctive partitioning is achieved by writing programs
that directly construct the BDD of the simplified term. The logical transformations are thu
encoded in BDD building code. The approach here is to deductively simplify the next-sta
relation prior to creating the BDD. The advantages are that the implementation is ve
straightforward, and the simplification is guaranteed sound.

3.4. Encoding values as boolean vectors

BDD representation judgements ¢ — b only represent termswhose free variables
are boolean. To use BDDs to calculate with terms containing free variables of other type
one must encode these types in terms of booleans. Such an encoding ofcaitgige
higher-order logic consists of a predicate: o— bool (Wwhere bool is the higher-order
logic type of booleans) defining the subset-ahat will be encoded, a functiotep : 0 —1
that maps elements of typeto a typer consisting of vectors of booleans (sbas the form
bool x --- x bool) and a functiorubs : t—o that abstracts vectors of booleans (that is,
elements of the type) to values of typer. An example, which will be used in Sectidnis
the encoding of a subset of numbers, which are values of the higher-order logiatype
in binary. The subset of numbers that are less than 16 will be encoded.

Let Rep4 : num—> bool x bool x bool x bool map a number to the 4-bit binary repre-
sentation of its value mod 16, |&bs4 : bool x bool x bool x bool— num be the number
denoted by a 4-bit word, and IBbom4 : num— bool be defined bypbom4 n = (n < 16).
Note that:

F (Yn. Dom4 n = (Abs4(Repd n) =n)) A (Yw. Rep4(Absd w) = w).

A transition systeniR, B) is encoded by D, abs, rep) if and only if it is the case that
Encode(R, B, D, abs, rep), where:
F Encode(R, B, D, abs,rep) = (Yu. D u = (abs(rep u) = u))
A (Yv. rep(abs v) = v)
A (Yu. Bu =D u)
ANu.Du=Vu'.Ru,u’)= Du).
Here, and in the theorem belowjs of typeo (abstract state) andis of typet (vector
of booleans). Let the function composition (o) and product (#) operators be defined by:
(fog)x= f(gx)
(f#8 (x,y)=(fx,8).

The following theorem, which we nanieachByAbs, is proved by a simple induction:

F Encode(R, B, D, abs, rep)
=
Vn v. ReachBy R B n (abs v) = ReachBy (R o (abs # abs)) (B oabs) n v,

hence the following theorem, which we nafReachableAbs:

F Encode(R, B, D, abs, rep)
=
Yv. Reachable R B (abs v) = Reachable (R o (abs # abs)) (B o abs) v.

https://doi.org/10.1112/51461157000000693 Published online by Ca@bridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

To calculate Reachable (R o (abs # abs)) (B o abs) (v, ..., v,), one first derives
theorems of the form:
(R o (abs # abs))((v1, ... ,va), (V},...,v)) = QBFy,
F (Boabs)(v, ..., un) = QBR,
whereuy, ... , v, are boolean variables,depends on the typeand QBR and QBF, are

quantified boolean formulae that can be directly represented as BDDs. These theorems
be derived from the definitions &, B andabs. The rulecomputeReachableThm can
then be applied to them.

To see if some property? say, holds for all reachable states, use proof to derive an

equation:
F P(abs(vy, ..., vy))) = QBF3,

and thenustermToTermBdd to getthe BDD ofP (abs(v1, ... , v,)). Then us&ddimp
followed by TermBddOracle, and replace quantification ovem boolean variables by a
single quantification over a variable of typeol x - - - x bool to derive:

F Reachable (R o (abs # abs)) (B o abs) (v1,...,v,) = P(abs(vy, ..., v,))
and hence:
F Yv. Reachable (R o (abs # abs)) (B o abs) v = P(abs v).
UsingReachableAbs gives:
F Vv. Reachable R B (abs v) = P(abs v).
Specialisingy torep u:
F Reachable R B (abs(rep u)) = P(abs(rep u)).

Now, if + Encode(R, B, D, abs, rep), thenvVu. Reachable R B u = D u (the proof
is easy) and sobs (rep u) = u. Hence:

F Yu.Reachable R Bu = P u.
Suppose, as in Sectidh2, that we have calculated a tragg. .. , v;:

F (B o abs) vo,
- ReachBy (R o (abs # abs)) (B o abs) p v, A (R o (abs # abs))(vp, vp11),
F ReachBy (R o (abs # abs)) Bn v; A —((P oabs) v;),

and hence bjReachByAbs and the definitions of and#:

F B(abs vp),
F ReachBy R B p (abs v,) A R(abs vy, abs vpi1),
F ReachBy R B n (abs v;) A —(P(abs v;)).

Then the sequencebs vg), ... , (abs v;) is atrace from an initial state to a reachable state
refuting P.

4. Example: Missionaries and Cannibals problem

The Missionaries and Cannibals Problem is a classic of Artificial IntelligeRcéNe
show how to combine theorem proving and BDD calculation to solve all cases of a gene
alised version.

https://doi.org/10.1112/51461157000000693 Published online by Ca@@ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

The original Missionaries and Cannibals Probleacp) is [13]:

Three missionaries and three cannibals come to a river and find a boat that
holds two. If the cannibals ever outnumber the missionaries on either bank, the
missionaries will be eaten.

How shall they cross?

This problem can be generalised to haveissionaries and cannibals and a boat of
capacityk. Call this problemMCP(n, k). The problem stated above is thRICP(3, 2). If
k > 2, then in the generalised problem it is assumed that cannibals must not outnumt
missionaries in the boat. Assume, without loss of generality, that in the initial state, tt
missionaries, the cannibals and the boat are on the left bank. Let astaté) represented
the numbern of missionaries on the left bank, the numbeaf cannibals on the left bank
and the positiob of the boat (wheré being true means ‘boat at left bank’).

The initial state is represented loy, n, T) and the goal state b§0, 0, F). A predicate
Bmcp Characterising the initial state is thus defined by

FBucpnn (m,c,b) = m=n A c=n A b.
The possible state transitions are

MoveRight: movex missionaries and cannibals to right bank
MoveLeft: moveu missionaries ana cannibals to left bank

ConsidemMoveRight. The boat must be on the left bank,/sdrhe people embarking on
the boat must be a subset of those who were on the left bamk<sa A v < ¢. Cannibals
must not eat missionaries in the boat,s® < u < v). There must be at least one person
to operate the boat, so & u + v. The capacity of the boat must not be exceeded, so
u+v < k. If all these pre-conditions are met, then a trip can take place, and in the resultir
statem’ = m—u A ¢’ =c—v A —b’. ThusMoveRight is defined by:

- MoveRight n k (1, v) ((m, ¢, b), (m’, c’, b))
=bAru<mAv<cA " O<uAAnu<v) AO<utv A utv <k
A m=m—uAc =c—v A -b.

Similarly, MoveLeft is defined by:

 MovelLeftn k (1, v) ((m,c, b), (m’,c’, b))
=-bAru<n—-mAv<n—cA-"O<uAu<v) AO<utv A utv <k
A m =mtu AN =ctv AD.

Cannibals can eat missionaries if there are more of them on the left bamk<0) or
the right bank (&:(n—m)<(n—c)). DefineEat n (m, ¢) to be true if this can happen.

FEatn (m,c,b) = O<m Am<c) VvV (0<(m—m) A (n—m) < (n—c))
Thus the transition relation is

FRmcp 1 k (s, 5)
= —Eatns' A Quv.u<n A v<n A MoveRightn k (u, v) (s,s"))
A @Quv.u<n A v<n A MovelLeftn k (u, v) (s,s)).

The generalised missionaries and cannibals probl&mn(n, k) is solvable if the goal

https://doi.org/10.1112/51461157000000693 Published online by Ca@iridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

state(0, O, F) is reachable from the initial state, thus:
F MCP(n, k) = Reachable (Rycp n k) (Bmcp 1) (0, 0, F).

We want to determine the truth diCP(n, k) for all n andk, and in the cases where it
is true, compute explicit solutions (that is, traces from the initial state to the goal state).
As a first step, we consider the finite subset of the problem whemdk are less than
16, that is, when they can be encoded using four bits.

A suitable encoding is defined by:

F Abs = Abs4#Abs4#|,
F Rep = Rep4#Rep4#l,
F Dom(m,c,b) = m <16 A ¢ < 16,

whereAbs4 andRep4 are as defined in Sectidh4, and is the identity function.
It follows easily that:

F n <16 A k < 16= Encode(Rycp n k, Bycp 1, Dom, Abs, Rep);
hence by Modus Ponens aRéachableAbs,

F n<16 A k<16
=
Yv. Reachable (RMCP n k) (BMCP I’l) (AbS v)

= Reachable (Rycp 7 k o (Abs # Abs)) (Bycp 1 o Abs) v.
Now
Reachable

(Rmcp (Abs4(ng, n2, n1, ng)) (Absa(ks, k2, k1, ko)) o (Abs # Abs))
(Bmcp (Abséd(ng, n2, ni, no)) o Abs)
(F,F,F,F),(F,F,F,F),F)

can be computed usir@gpmputeReachableThm.

The theorems thatomputeReachableThm takes as parameters are derived by sym-
bolically executing the terms:

(Rmcp (Abs4(ng, na, n1, no)) (Absé(ks, k2, k1, ko)) o (Abs # Abs))
(((mg’ m27 ml? mo)’ (C3? 027 Cl? CO)’ b)’ ((m/3’ m/z’ m/]_’ m/0)7 (C/3’ C/Z’ Ca_’ 66)’ bl))’
(Bmcp (Abséd(nz, n2, n1, no)) o Abs) ((ms, mz, m1, mo), (c3, c2, c1, co), b).

The process of symbolic execution needs to use the definitioMswRight, MoveL eft
andEat. It also needs to use properties that relate arithmetic on words to arithmetic c
numbers, that is, properties like:

= Abs4(msz, mp, m1, mo) + Abs4(nz, na, ny, ng) =
Abs4((m3, m2, m1, mo) ® (n3, n2, n1, no)),

where@ is a suitable operation implementing addition (for example, a binary adder imple
mentation).

Using such properties giving binary implementations of the arithmetical operations
—, < andg, it is straightforward to program a derived rule that automatically performs the
symbolic execution needed to derive the theorems neededrputeReachableThm
(we omit the details here).

https://doi.org/10.1112/51461157000000693 Published online by Ca@8ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

Invoking computeReachableThm results in an inscrutable theorem:

F Reachable
(Rmcp (Abs4(ns, no, n1, ng)) (Abs4(ks, ko, k1, ko)) o (Abs # Abs))
(Bmcp (Abs4(ngz, np, n1, ng)) o Abs)
((F,F,F,F),(F,F,F,F),F)
= koAkiANkxAng
VkoANki ANko Any
VkoANkiANka Anp
VkoAkiAko Ang
V ko Ak1 A —ko ANk3 Ang
VkoAky A—ko ANk3 Ang
V ko Aky A=k Ak3 Ano
V ko A ki A—ko A k3 An3z
V ko A k1 A =k A —k3z Ang An1 A —ng A —ng
V ko A k1 A —kp A —k3z Ang A —ng A —ng
V ko A ki A—ky A—=k3z A—ng Ani A —n A—ng
V ko Aky A—ky A —k3z A—ng A —ny Anp A —ng
V ko A —k1 A ko A ng
V ko A —k1 Ak Anq
V ko A —ki1 Ak Ano
V ko A —k1 Ak Ang
V ko A —k1 A =k A k3 A ng
V ko A —k1 A —ko A k3 Anq
V ko A —k1 A —ko A k3 Ano
V ko A —k1 A —ko A k3 A ng
VvV —=kog A k1A ko Ang
V —ko ANk1 A ko Anq
V —kg Ak1 Aka Ano
VvV —kog Ak1 Ak Ang
V =ko A k1 A —ky A k3 Ang
V —kog A k1 A —ko Ak3z Ang
V —=kog A k1 A —ko A k3 Ano
V =ko A k1 A —ko A k3 A n3
V —ko A k1 A =k A —k3 Ang A —Dnz A —n3
V =ko A k1 A —ko A —k3 A —ng Any A —no A —ng
V —=kg A =k A ko A ng
V —=ko A —k1 ANk Ang
V —ko A —k1 A ko A no
V —kg A —k1 A ko A ng
V —=kg A —=k1 A —ko A k3 A ng
V —kg A —k1 A —ko A k3 Ang
V —ko A —k1 A —ko A k3 A no
V —=ko A —=k1 A =k A k3 A ns.

https://doi.org/10.1112/51461157000000693 Published online by Ca@®ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

From this, using the result derived froReachableAbs above, and some rewriting
with equations abouts sets, we obtain an explicit characterisatideptn, k) for n andk
less than 16:

F n<l1l6 A k<16
=
(Reachable (RMCP n k) (BMCP n) (0, 0, F)

= (n,k) €{(1,2),(1,3),(1,4),(1,5),(1,6), (1,7, (1,8), (1,9), (1,10),
(1,11), (1,12, (1, 13), (1,14, (1, 15),
(2,2),(2,3),(24),(2,5),(2,6),(2,7),(2,8),(2,9), (2 10),
(2,11), (2 12), (2,13), (2 14), (2,15),
3,2),(3,3), (3,4, (3,5),(3,6), (3,7),(3,8), (3,9), (3,10,
(3,11), (3,12), (3,13), (3,14, (3,15),
(4,3),(4,4),(4,5),(4,6),(4,7),(4,8),(4,9), (4 10),
(4,11), (4 12), (4,13), (4 14, (4, 15),
(5,3), (5,4), (5,5), (5,6), (5,7), (5,8), (5,9), (5,10,
(5,11), (5,12), (5,13), (5,14), (5, 15),
(6,4), (6,5), (6,6), (6,7), (6,8), (6,9), (6,10,
(6,11), (6,12), (6, 13), (6,14, (6, 15),
(7,9, (7,5), (7,6), (7,7),(7,8), (7,9), (7,10),
(7,11), (7,12, (7,13), (7,14, (7,15),
(8,4, (8,5), (8,6), (8,7), (8,8), (8,9), (8,10,
(8,11), (8,12), (8,13), (8,14, (8,15),
(9,4, (9,5), (9,6),(9,7), (9,8), (9,9), (9,10),
(9,11), (9,12, (9, 13), (9,14, (9, 15),
(10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10,9), (10, 10),
(10, 11), (10 12), (10, 13), (1Q 14), (10, 15),
(11,4, (11,5), (11,6), (11,7), (11,8), (11,9), (11,10,
(11,11), (11,12), (11,13), (11,14, (11,15),
(12, 4), (12,5), (12 6), (12 7), (12 8), (12 9), (12 10),
(12,11), (12 12), (12,13), (12 14), (12, 15),
(13,4), (13,5), (13,6), (13,7), (13,8), (13,9), (13,10,
(13,11), (13,12), (13,13), (13,14, (13,15),
(14, 4), (14,5), (14 6), (14 7), (14 8), (14 9), (14 10),
(14,11), (14 12), (14,13), (14 14), (14, 15), (15,4),
(15,5), (15,6), (15,7), (15,8), (15,9), (15,10),
(15,11), (15,12, (15,13), (15,14), (15,15)}).

A few things here are immediately obvioWdCP(n, k) is solvable ifk > 2 andn = 1,
as the single missionary and the single cannibal can take the boat together to the right be
If K > 4, thenMCP(n, k) is solvable, since one missionary and one cannibal can act a
boatmen and ferry pairs of missionaries and cannibals from left to right. Thus interacti
proof can be used to show that

F((k>=22A n=1)V (k=24 A n>0) = MCP(n, k).

https://doi.org/10.1112/51461157000000693 Published online by Cag@ridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

Also,MCP(n, 0) is not solvable, because there is no one to operate the boat kardaf
thenMCP(n, k) is also not solvable because one can never get more than one person to
right bank (since the first person to go to the right bank will have to return, as the boat nee
at least one occupant). Thus

F (n<1vV k<2) = —MCP@, k).

Inspecting the members of the set of pairs, we see that whed there are no solutions
if n > 2k. The following argument that this is the case fora#indk (that is, not just those
less than 16) is due to Anuj Dawar, as outlined in a private communication to the authc
Suppose thay; andC, are the numbers of missionaries and cannibals, respectively, on th
left bank, andMr andCg are the numbers of missionaries and cannibals, respectively, o
the right bank. Consider the last time thidg changes from being 0. In the resulting state,
all the missionaries cannot have arrived at the right bank, since there are more missiona
than the capacity of the boat & > 2k). In fact, at mosk missionaries can have arrived,
SOMp < k. Thus there must be some missionaries remaining on the left bank, and hen
fewer cannibals on the left bank. All the cannibals cannot be on the right bank, because
they were they would eat the missionaries that have just arrived. Thus there are missional
and cannibals on both banks, and hede= C; andMg = Cg.

Now, on the return trip of the boat, not alf missionaries may travel, as this would
contradict the assumption thifly is henceforth non-zero. If any missionaries travel, at least
that number of cannibals must also travel, so that the remaining ones are not outnumber
and if any cannibals travel, at least that number of missionaries must also travel, so tt
missionaries on the left bank are not outnumbered. This means that exactly one mission
and one cannibal can travel (sincex 4).

This leavesMy < k, and thereforé/; > n—k; thatis,M; > k (sincen > 2k). Thus,
all the remainingV/;, missionaries cannot travel on the next trip. But then, an equal numbe
of missionaries and cannibals must travel, which means that exactly one missionary a
one cannibal travel, but this just reverses the last move.

Thus: F (L<k A k<4 A n =2k = —MCP(n, k).

These arguments aboMiCP can be formalised and the theorems proved interactively.
The proofs are quite messy as there are many cases, but are routine. The arguments a
established the value &fCP(n, k) for the cases:

k=22ANm=L)vk=4An>0
vin<lvVvk<?2
Vik <4 AN n>2k).
The following theorem is easily proved automatically with a decision procedure:
F&=22Am=1)vk>=>4An>0)
vin<l1lvk<?2
Vk<4An>2k)
V(k=2) A((n=2) v (n=23)))
V(k=3) A(n=2)v m=3) v n=4) v (n=05))).
Thus, to determine the truth ®iCP(n, k) for all » and k, we need only to solve

MCP(2, 2), MCP(3, 2), MCP(2, 3), MCP(3, 3), MCP(4, 3) andMCP(5, 3), but the explicit
set of pairs derived above shows that these are all true.

https://doi.org/10.1112/51461157000000693 Published online by Caghfbridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

Putting everything together, one can derive a complete characterisatitaTrafz, k) in
the form of a theorem:

F MCP(n,k) = k>1An>0A (k<4d4=n < 2k).

One can also use the trace-finding method of Se@&iémo compute explicit solutions
to the solvable finite cases, by finding counterexamples, for specific valuesnafk, to

Reachable (RMCP n k) (BMcp n) (m, C, b) = —'((m, C, b) = (0, 0, F))

For example, for the cage= 2 andk = 3 the following theorems representing a solution
can be automatically generated:

F Rmep 23((2,2,7),(0,1,F)),
F Rucp 23((0,1,F), (0,2, T)),
- RMCP 23 ((Oa 27 T)v (0’ Oa F))

These three theorems can be compactly abbreviated by:
MCP(2, 3) : 22T—01F—02T— 00F,
where the notatiomcb abbreviatesm, ¢, b). The other solutions are easily computed:

MCP(2, 2) : 22T— 20F— 21T— 01F— 02T — 0OOF,

MCP(3,2) : 33T—22F— 32T— 30F— 31T— 11F—22T— 02F— 03T— 01F— 02T— OOF,
MCP(3, 3) : 33T—30F— 31T— 01F— 02T — 00F,

MCP(4, 3) : 44T—42F—43T— 22F— 33T— 03F— 04T— 01F— 02T — OOF,

MCP(5, 3) : 55T —44F— 54T —51F— 52T — 22F— 33T— 03F— 04T — 01F— 02T — 00F.

5. Related work

In the paper ‘An integration of model-checking with automated proof checking’ by
Rajan, Shankar and Srivak]], PVS [21] is extended to support symbolic model checking
of properties stated in the-calculus via a link to an external ROBDD-baseetalculus
checker due to G. L. J. M. Janssen of the Department of Electrical Engineering at tl
Eindhoven University of Technology. Model checking is invoked from PVS via a commanc
thattranslates higher-order logic goals into boolean formulae that can be printed into a forn
suitable for input to the external tool. The goal is solved if its translation model check
successfully. Recent developments have improved on the original file-based connecti
between PVS and the checker, and support for counter-examples is to be provided. PV:
not an LCF-style fully expansive prover, so the model checking command is implemente
as a new atomic facility. This differs from the approach here, in which there is a muc
finer-grained connection, mediated by a calculus of representation judgements. In P\
the checking of a property against a model is atomic; whereas in our approach this is us
programmed as a fixed-point iteration to compute a sequence of judgements resulting in ¢
that relates the HOL term expressing the goal to its BDD representation. The PVS approc
delivers a powerful shrink-wrapped checker; our approach is complementary: it provides
scripting framework for the user to implement his own bespoke tools.

PVS adds model checking to a theorem-proving platform. The dual is to add theore
proving to a model checker. This has been done by McMillan in Cadence $BWjhich
provides problem decomposition commands that split verification goals into componer

https://doi.org/10.1112/51461157000000693 Published online by CaghBridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

small enough for model checking. The decomposition is based on deductive rules, f
example compositional refinemeff]], and implemented by light-weight theorem proving.
SMV does not provide a user-programmable scripting facility; rather, each new deductic
method is hard-wired into the system. It may be possible for users of HOL to prograt
the kind of algorithm that SMV builds-in as derived rules for calculating representatiol
judgements, but more work is needed to investigate this.

Carl Seger's Voss systen2(] and its descendants have been particularly influential
on the work described here. Voss consists of a lazy ML-like functional language, calle
FL, with BDDs as a built-in data-type. Quantified boolean formulae can be input, and al
parsed to BDDs. The normal boolean operatiens\, v, =, V and3 are interpreted as
BDD operations. Algorithms for model checking are easily programmed.

Joyce and Seger interfaced an early HOL system (HOL88) to Voss, and in a pioneeri
paper showed how to verify complex systems by a combination of theorem-proving dedu
tion and symbolic trajectory evaluation (STH)L]. The HOL-Voss system integrates HOL
deduction with BDD computations. BDD tools are programmed in FL, and can then b
invoked by HOL-Voss tactics, which can make external calls into the Voss system, passi
subgoals via a translation between the HOL and Voss term representations. In later we
Lee, Seger and Greenstre&P] showed how various optimised BDD algorithms could be
programmed in FL.

The early experiments with HOL-Voss suggested that a lighter theorem-proving comp
nentwas sufficient, since all that was really needed was a way of combining results obtain
from STE. A system based on this idea, called VossProver, was developed Carl Seger anc
student Scott Hazelhurst. It provides operations in FL for combining assertions generated
Voss using proof rules corresponding to the laws of composition of the temporal logic asse
tions verified by STE [10]. After Seger and Aagaard moved to Intel, the development of Vos
and VossProver evolved into a system called Forte that ‘is an LCF-style implementation
a higher-order classical logic’ and ‘seamlessly integrates several types of model-checki
engines with lightweight theorem proving and extensive debugging capabilities, creatir
a productive high-capacity formal verification environment’. Only partial details of this
are in the public domainiB, 1], but a key idea is that FL is used both as a specification
language and as an LCF-style meta-language. The connection between symbolic traject
evaluation and proof is obtained via a tactic, cal®al_tac, that converts the result of
executing an FL program performing STE into a theorem in the logic. Theorem proving i
Forte is used both to split goals into smaller subgoals that are tractable for model checkit
and to transform formulae so that they can be checked more efficiently. Research with Fo
has resulted in major hardware-verification case studies.

The combination of HOL with representation judgements provides a somewhat simil:
programming environmentto Voss’s FL (though rather more low-level, and with eager rath
than lazy evaluation). MuDDy provides BDD operations correspondirg tq Vv, =, ¥ and
3, andtermToBdd provides a way of using these to create BDDs from logical terms. Vos:¢
enables efficient computations on BDDs using functional programming. So does HOL, al
in addition it allows FL-like BDD programming in ML to be intimately mixed with theorem
proving, so that, for example, simplifiers can be directly applied to terms to optimise ther
for BDD purposes (see the description of ‘disjunctive partitioning’ in Secl@®). This
is in line with future developments discussed by Joyce and Sédgrdnd it appears that
the Forte system has similar capabilities. The approach described here, of adding Voss-|
facilities into HOL, is dual to adding deductive theorem proving into Voss.

An approach of Harrison9] that is in some ways similar to the one here, in that it is

https://doi.org/10.1112/51461157000000693 Published online by CaghBridge University Press

https://doi.org/10.1112/S1461157000000693

Deduction and symbolic calculation

fully expansive, is to implement BDDs inside the HOL system without making use of at
external oracle. Harrison has shown that the BDD algorithms provide a way of implementir
tautology-checking that is significantly better than the methods previously used in HOI
He found, however, that performance was about a thousand times slower than with a BL
engine implemented in C. By reimplementing some of HOL's primitive rules, performanc
could be improved by around ten times. Harrison only provided data for boolean equivalen
checking. The approach in this paper aims to get near the performance of C-based mc
checking (by using a BDD package implemented in C), whilst remaining fully expansive
though with a radically extended set of inference rules (namely the rules for deducir
BDD representation judgements given in Sect®nHarrison’s work is ‘logically purer’
than ours, but less efficient. The trade-off between purity and efficiency depends on t
application (that s, requirements for logical security, ease of maintenance, and so forth),
Harrison’s experiments on an internal implementation of BDDs provides a very interestin
point between standard theorem proving and the use of an external oracle.

6. Conclusions

Our goal has been to extend the scope of LCF-style theorem proving to include tt
ability to program derived rules and tactics that make use of external algorithms. Here, v
have concentrated on BDD-based symbolic state exploration. The results seem promisi
but more case studies are needed. Because the main verification calculations are don
an external BDD engine (BuDDy), the efficiency is good. The relatively slow HOL code
(compared with C) only controls the invocation of BuDDy operations, and so is outside th
critical performance loops.

The approach in this paper provides a secure platform for experimenting with intimai
mixtures of deduction and BDD-based symbolic calculation. It could be especially appr
priate for experimenting with tricky or complicated algorithms, since the fully expansive
approach helps to ensure soundness.

Acknowledgements. The initial implementation of MuDDy, the interface between
Moscow ML and BuDDy, is due to Ken Larsen and was supported by EPSRC grat
GR/K57343, entitled ‘Checking equivalence between synthesised logic and nol
synthesisable behavioural prototypes’. He also implemented a prototype HOL oracle tf
was the starting point for the work reported here. MuDDy is how jointly maintained by Ker
Larsen and Jakob Lichtenberg at The IT University, Copenhagen. Special thanks go to J;
Lind-Nielsen for making his BuDDy code freely available to us.

Further support has been provided by EPSRC grant GR/L35973, entitled ‘A hardwa
compilation workbench’, EPSRC grant GR/L74262, entitled ‘A uniform semantics for Ver-
ilog and VHDL suitable for both simulation and formal verification’, ESPRIT Framework
IV LTR 26241 project Prosper (‘Proof and specification assisted design environments’) al
EPSRC grant GR/R27105/01, entitled ‘Fully expansive proof and algorithmic verification’

Mark Aagaard provided some of the information on Voss and its successors describ
in Section5.

In addition to the above, the author would like to thank Hasan Amjad, Anuj Dawar
David Greaves, Mark Greenstreet, Joe Hurd, Paul Jackson, John Matthews, Tom Melhe
Jesper Mgller, Michael Norrish, Atanas Parashkevov, Larry Paulson, Bill Roscoe, Konre
Slind, Mark Staples and Daryl Stewart for various kinds of input to this work, including
comments on drafts of this and related papers.

https://doi.org/10.1112/51461157000000693 Published online by Cagdridge University Press

https://doi.org/10.1112/S1461157000000693

10.

11.

12.

13.

14.

15.

16.

Deduction and symbolic calculation

References

MARK D. AAGAARD, ROBERT B. JoNEs and CARL-JoHAN H. SEGER, ‘Lifted-FL: a
pragmatic implementation of combined model checking and theorem provihgg-
rem proving in higher order logic6TPHOLs99) | ecture Notes in Comput. Sci. 1690
(Springer, 1999) 323-34073

SAUL AMAREL, ‘On representation of problems of reasoning about actibtachine
intelligence3 (ed. Donald Michie, Edinburgh University Press, 1971) 131-164.

RanpaLL E. BryanT, Symbolic boolean manipulation with ordered binary-decision
diagrams, ACM Computing Surveys 24 (1992) 293-35%

EpmMUND M. CLARKE, ORNA GRUMBERG andDoroN A. PELED, Model checkindThe
MIT Press, 1999).64

OLIVIER COUDERT, CHRISTIAN BERTHET andJEAN CHRISTOPHE MADRE, ‘Verifica-
tion of synchronous sequential machines based on symbolic execuiatomatic
verification methods for finite state systeiinscture Notes in Comput. Sci. 407 (ed.
J. Sifakis, Springer, 1989) 365-3739

Mike GorpoN, ‘Reachability programming in HOL98 using BDDs'Proc. 13th
International Conference on Theorem Proving and Higher Order Loffigginger,
2000) 179-196.62

MikE GorpON, ‘HolBddLib’,
http://www.cl.cam.ac.uk/~mjcg/HolBddLib/. 57

M. J. C. GorpoN, R. MILNER andC. P. WabpsworTH, Edinburgh LCF: a mechanised
logic of computation, Lecture Notes in Comput. Sci. 78 (Springer, 1938)56

JoHN HARRISON, ‘Binary decision diagrams as a HOL derived rul@he Computer
Journal 38 (1995) 162—-170.73

ScotT HAZELHURST and CARL-JoHAN H. SEGER, ‘Symbolic trajectory evaluation’,
Formal hardware verificatiorfed. Thomas Kropf, Springer, 1997) 3-783

J. Joyce andC. SEGER, ‘The HOL-Voss System: model-checking inside a general-
purpose theorem-provertligher order logic theorem proving and its applicatigns
6th International Workshop, HUG'93, Vancouver, B.C., August 11-13 1993, Lecture
Notes in Comput. Sci. 780 (ed. J. J. Joyce and C.-J. H. Seger, Springer, 1994), 185-1
73,73

TREVOR W. S. LEE, MARK R. GREENSTREET and CARL-JOHAN SEGER, ‘Automatic
verification of asynchronous circuits’, Tech. Rep. UBC TR 93-40, The University of
British Columbia (November, 1993)73

JouN McCaARTHY, ‘Elaboration tolerance’,

http://www-formal.stanford.edu/jmc/elaboration/node2.html.
67

KeNNETH L. McMILLAN, Symbolic model checkinglluwer Academic Publishers,
1993). 64

K. L. McMILLAN, ‘A compositional rule for hardware design refineme@ymputer-
aided verification, CAV '97, Lecture Notes in Comput. Sci. (ed. Orna Grumberg
Springer, Haifa, Israel, 1997) 24-35.3

KEN MCMILLAN, ‘SMV’,

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/. 72

https://doi.org/10.1112/51461157000000693 Published online by Cagbridge University Press

http://www.cl.cam.ac.uk/~mjcg/HolBddLib/
http://www-formal.stanford.edu/jmc/elaboration/node2.html
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/
https://doi.org/10.1112/S1461157000000693

17.

18.

19.

20.

21.

Deduction and symbolic calculation

R. MILNER, ‘A theory of type polymorphism in programmingJ. Comput. System
Sci.17 (1978) 348-37556

JoHN O’LEARY, XUDONG ZHAO, ROBERT GERTH and CARL-JOHAN H. SEGER, ‘For-
mally verifying IEEE compliance of floating-point hardwardntel Technology J.,
http://developer.intel.com/technology/itj/. 73

S. Rasan, N. SHankar and M.K. Srivas, ‘An integration of model-checking with

automated proof checkingComputer-aided verification, CAV '95, Lecture Notes in
Comput. Sci. 939 (ed. Pierre Wolper, Springer, Liege, Belgium, 1995) 84+97.

CARrL-JOHAN H. SEGER, ‘Voss - a formal hardware verification system: User’s guide’,
Tech. Rep. UBC TR 93-45, The University of British Columbia, (December, 1993)
73

SRI INTERNATIONAL, ‘PVS’, http://www.csl.sri.com/pvs.html. 72

Michael J. C. Gordon mjcg@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~mijcg

University of Cambridge Computer Laboratory
New Museums Site

William Gates Building

J. J. Thomson Avenue

Cambridge CB3 OFD

https://doi.org/10.1112/51461157000000693 Published online by CagBridge University Press

http://developer.intel.com/technology/itj/
http://www.csl.sri.com/pvs.html
mailto:mjcg@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~mjcg
https://doi.org/10.1112/S1461157000000693

	Introduction
	BDD representation judgements
	Rules for constants and variables
	Rules for combining or manipulating BDD representation judgements
	Rules linking BDD representation judgements to HOL theorems
	Rules for extending or contracting variable maps

	Derived BDD representation rules
	Computing the set of reachable states
	Computing traces
	Disjunctive partitioning by proof
	Encoding values as boolean vectors

	Example: Missionaries and Cannibals problem
	Related work
	Conclusions

