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PROGRAMMING COMBINATIONS OF DEDUCTION AND
BDD-BASED SYMBOLIC CALCULATION

MICHAEL J. C. GORDON

Abstract

A generalisation of Milner’s ‘LCF approach’ is described. This al-
lows algorithms based on binary decision diagrams (BDDs) to be
programmed as derived proof rules in a calculus of representation
judgements. The derivation of representation judgements becomes
an LCF-style proof by defining an abstract type for judgements anal-
ogous to the LCF type of theorems. The primitive inference rules
for representation judgements correspond to the operations provided
by an efficient BDD package coded in C (BuDDy). Proof can com-
bine traditional inference with steps inferring representation judge-
ments. The resulting system provides a platform to support a tight
and principled integration of theorem proving and model checking.
The methods are illustrated by using them to solve all instances of a
generalised Missionaries and Cannibals problem.

1. Introduction

LCF-style theorem provers [8] use the ML programming language [17] to define a type
thm representing theorems of a deductive system. Milner’s key idea [8] was to makethm
an abstract type whose only theorem-creating operations correspond to rules of inference
of a logic. Users can program complex proof procedures in ML by calling the primitive
operations ofthm. The ML type discipline ensures that values of typethm can only be
created via sequences of primitive inferences. LCF-style theorem provers are sometimes
called ‘fully expansive’, as they expand out all deductions into sequences of primitive
inference steps. The notation ‘`t ’ means that termt is a theorem.

Many successful automatic verification algorithms are based on computing with boolean
terms represented asreduced ordered binary decision diagrams(ROBDDs, or just BDDs for
short) [3]. The LCF-approach is extended here to include proving judgementsa ρ t 7→ b

as well as conventional theorems` t . The components of a judgementa ρ t 7→ b are a
set of boolean termsa that are assumed true, a finite mapρ from logical variables to BDD
variables, a boolean termt (all of whose free variables are boolean) and a BDDb. Such
a judgement is true if and only if, under the assumptionsa, the BDD representingt with
respect toρ is b.

The derivation of ‘theorems’ likea ρ t 7→ b can be viewed as ‘proof’ in the style of LCF
by defining an abstract typeterm_bdd that models judgementsa ρ t 7→ b analogously to
the way the typethm models theorems̀ t .

In this paper, symbolic calculation is represented as LCF-style proofs of BDD represen-
tation judgements. It is still too early to say whether adequate efficiency can be obtained
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Deduction and symbolic calculation

(though preliminary experiments suggest optimism), but the methodology encourages inter-
esting synergies between theorem proving and model checking, and allows users to program
bespoke checkers with an LCF-like assurance of soundness.

The rest of this paper is structured as follows: first the combination of the HOL theo-
rem prover and the BuDDy BDD package using representation judgementsa ρ t 7→ b is
outlined, then some basic programming techniques using judgements are described. Next,
some elementary reachability concepts are reviewed, and their computation via judgements
is explained. Finally, a case study is presented: an analysis of a generalisation of the classical
Missionaries and Cannibals problem.

2. BDD representation judgements

A BDD representation judgement is a 4-tuple(a, ρ, t, b), wherea is a finite set of boolean
terms called the assumptions,ρ is a finite map from boolean variables (a subset of HOL
terms) to natural numbers (representing BDD variables),t is a boolean term andb is a BDD.
Such a judgement is true if and only if, under the assumption that all the terms ina are true,
the termt is represented by the BDDb, assuming that each variablev in t corresponds to
the BDD variableρ(v). The notationa ρ t 7→ b indicates that(a, ρ, t, b) follows from
the rules given in Sections2.1,2.2,2.3and2.4below. The mapρ is called a variable map.
A common case occurs when the seta of assumptions is the empty set{ }, and in this case
the notationρ t 7→ b is used, rather than{ } ρ t 7→ b.

The definition of truth just given is informal. It is intended that the rules for deducing
representation judgements should be sufficiently simple to be ‘obviously sound’; neverthe-
less, it is hoped eventually to formalise the truth conditions for judgements and prove their
soundness, but this is work for the future.

BDDs in HOL are provided by the BuDDy package due to Jørn Lind-Nielsen, which is
implemented in C. The HOL interface to BuDDy is via a Moscow ML API called MuDDy,
due to Ken Friis Larsen and Jakob Lichtenberg. Both BuDDy and MuDDy are supported
from the IT University, Copenhagen. MuDDy defines an ML typebdd of pointers into
BuDDy’s BDD space. It also defines ML functions corresponding to operations in the
BuDDy API. Some of these functions initialise and configure the BDD package, and others
are operations for combining BDDs. For example, MuDDy binds the ML variablesTRUE
andFALSE(both of ML typebdd) to the BDDs representing truth and falsity, respectively.
The ML functionithvar:int→bdd maps an ML integeri to a BDD node labelled with
i (in BuDDy, BDD variables are non-negative integers, and the arithmetical order is the
variable order). The functionsNOT:bdd→bdd and AND:bdd× bdd→bdd compute the
negation and conjunction of BDDs. Only a small subset of MuDDy is described here, and
some of the details are simplified to make the exposition cleaner. Details of the implemented
system are available online [7].

The rules for representation judgements can be classified into four categories: rules for
constants and variables, rules for combining or manipulating judgements, rules linking
judgements and theorems, and rules for changing variable maps.

2.1. Rules for constants and variables

The HOL logical constantsT andF are terms denoting truth and falsity, respectively, and
have ML typeterm. The ML valuesTRUEandFALSEof ML typebdd are the corresponding
BDDs.
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In the notation for rules used below, hypotheses and side conditions are written above a
horizontal line, with the conclusion below the line. For example, the ruleBddForall has
one judgement as a hypothesis, and a side-condition for each quantified variable.

The inference rulesBddT andBddF link the logical and BDD truth-values. They have
no hypotheses or side-conditions.

BddT
ρ T 7→ TRUE

BddF
ρ F 7→ FALSE

Logic variables in HOL’s higher-order logic are a subset of terms, but BDD variables in
BuDDy are represented by natural numbers (ML integers in MuDDy). Logic variables are
associated with BDD variables by a partial function from terms to integers called avariable
map(or ‘varmap’, for short). A varmapρ defines a variable ordering:x < y if ρ(x) < ρ(y).

The inference ruleBddVar for inferring judgementsρ v 7→ b, wherev is a variable,
has the side-condition thatv is bound in the supplied variable map:

BddVar
ρ(v) = n

ρ v 7→ ithvar n
.

EvaluatingBddVar ρ v in ML will return ρ v 7→ ithvar n if v is bound ton by ρ. An
ML exception is raised ifv is not in the domain ofρ.

The sets of assumptions generated byBddT, BddF andBddVar are empty.

2.2. Rules for combining or manipulating BDD representation judgements

Here are some example inference rules for proving judgementsa ρ t 7→ b, immediately
preceded by their ML names (the unary operationNOTnegates a BDD, and the binary
operatorsOR,IMP andBIIMP construct the disjunction, implication and equivalence of
BDDs).

BddNot
a ρ t 7→ b

a ρ ¬t 7→ NOTb

BddAnd
a1 ρ t1 7→ b1 a2 ρ t2 7→ b2

a1∪a2 ρ t1∧t2 7→ b1 ANDb2

BddOr
a1 ρ t1 7→ b1 a2 ρ t2 7→ b2

a1∪a2 ρ t1∨t2 7→ b1 ORb2

BddImp
a1 ρ t1 7→ b1 a2 ρ t2 7→ b2

a1∪a2 ρ t1⇒t2 7→ b1 IMP b2

BddEq
a1 ρ t1 7→ b1 a2 ρ t2 7→ b2

a1∪a2 ρ t1=t2 7→ b1 BIIMP b2

The functionsForall andExists of type(int list)→bdd→bdd quantify BDDs; thus

BddForall
a ρ t 7→ b ρ(v1) = n1 · · · ρ(vp) = np

a ρ ∀v1 · · · vp. t 7→ Forall[n 1, . . . ,n p]b
,

BddExists
a ρ t 7→ b ρ(v1) = n1 · · · ρ(vp) = np

a ρ ∃v1 · · · vp. t 7→ Exists[n 1, . . . ,n p]b
.
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The BDDs of quantifications of conjunctions can be built by callingANDfollowed by
Forall or Exists, but it is more efficient to use the optimised algorithmsForallAnd
andExistsAnd provided by BuDDy.

BddForallAnd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2 ρ(v1) = n1 · · · ρ(vp) = np

a1∪a2 ρ ∀v1 · · · vp. t1 ∧ t2 7→ ForallAnd [n 1, . . . ,n p] b1 b2

BddExistsAnd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2 ρ(v1) = n1 · · · ρ(vp) = np

a1∪a2 ρ ∃v1 · · · vp. t1 ∧ t2 7→ ExistsAnd [n 1, . . . ,n p] b1 b2

BuDDy/MuDDy provides other optimised combinations of quantification and boolean
operations, which provide the basis for other representation judgement rules.

The ruleBddSubst links substitution on logical formulae with substitution on BDDs.
Let t{v1←t1, . . . , vp←tp} denote the result of simultaneously replacing occurrences of
free variablesv1, . . . , vp in a termt with termst1, . . . , tp, respectively, renaming any
bound variables int to avoid capture. Letb{n1←b1, . . . , np←bp} denote the result of
simultaneously replacing BDD variablesn1, . . . , np in a BDD b with BDDs b1, . . . , bp,
respectively (such replacements are supported by MuDDy). The ruleBddSubst takes a
list of pairs representing a substitution and a judgementa ρ t 7→ b, and returns the result
of performing a term substitution ont and the corresponding BDD substitution onb. The
rule as an ML function has ML type(term_bdd× term_bdd)list→term_bdd→term_bdd.

BddSubst

[(ρ v1 7→ bv1, ρ t1 7→ bt1), . . . , (ρ vp 7→ bvp , ρ tp 7→ btp )] a ρ t 7→ b

a ρ t{v1←t1, . . . , vp←tp} 7→ b{ρ(v1)←bv1, . . . , ρ(vp)←bvp }

Two rules that illustrates the use of thea component of a judgement areBddSimplify
andBddFindModel. The first of these provides access to a classic algorithm of Coudert,
Berthet and Madre [5], provided by MuDDy as a functionsimplify : bdd→bdd→bdd
that simplifies its second argument under the assumption that the first argument is true;
that is,simplify b1b2 results in a BDD, sayb′2, such thatb1 ⇒ (b2 = b′2) and in the
intended applicationsb′2 is simpler thanb2.

BddSimplify
a1 ρ t1 7→ b1 a2 ρ t2 7→ b2

a1∪a2∪{t1} ρ t2 7→ simplify b1 b2

The ruleBddFindModel uses a BDD algorithm to find a set{v1 = c1, . . . , vp = cp}of
assumptions that makes a termt true (whereci is a boolean constantT or F for 1 6 i 6 p).

BddFindModel
a ρ t 7→ b

a∪{v1 = c1, . . . , vp = cp} ρ t 7→ TRUE

An exception is raised ift is unsatisfiable.
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2.3. Rules linking BDD representation judgements to HOL theorems

The ruleBddEqMpexpresses the fact that logically equivalent terms have the same BDD.

BddEqMp
a1 ` t1 = t2 a2 ρ t1 7→ b

a1∪a2 ρ t2 7→ b

The ruleTermBddOracle checks whether the BDD part of a judgement isTRUE, and if
so creates a theorem whose conclusion is the term part.

TermBddOracle
a ρ t 7→ TRUE

a ` t

If TermBddOracle is applied to a judgement whose BDD part is notTRUE, then an ML
exception is raised.

The ruleTermBddToEqThmbelow converts the BDD partb of a judgementa ρ t 7→ b

to a conditional termtρb built out of logic variables corresponding to the BDD variables in
b according toρ, and with the BDD structure represented by a nested conditional.

TermBddToEqThm
a ρ t 7→ b

a ` t = tρb

For example,TermBddToEqThm applied toρ x ∧ y ∧ ¬z 7→ b yields:

` x ∧ y ∨ ¬ z = if x then (if y then T else (if z then F else T))

else (if z then F else T).

Clearly, the right-hand sides of the equations generated byTermBddToEqThmmay be
huge, and the sharing in BDDs is lost. Thus this rule must be used with care.

The rulesTermBddOracle andTermBddToEqThm are the only way that theorems
of higher-order logic can be created via BDDs. Theorems ‘proved’ with these are tagged
so that users can see that BDD calculations have been used. The route from BDD represen-
tation judgements to HOL theorems could be limited to justTermBddOracle by having
TermBddToEqThm useTermBddOracle to validate its result.

2.4. Rules for extending or contracting variable maps

The rules given above all have the same variable mapρ in the hypotheses and conclusion.
To use one of the preceding rules to combine judgements with different varmaps, one needs
first to extend or contract the different varmaps so that they are the same. The following
rules enable varmaps to be extended and contracted.

Let ‘extends ρ1 ρ2’ mean thatρ2 agrees withρ1 on all the variables thatρ1 is defined
on, and let ‘remove v ρ’ denote the result of removing the variablev from the domain
of ρ.

BddExtendVarmap
extends ρ1 ρ2 a ρ1 t 7→ b

a ρ2 t 7→ b

BddFreevarsContractVarmap
a ρ t 7→ b v is not free int

a (remove v ρ) t 7→ b

BddSupportContractVarmap
a ρ t 7→ b ρ(v) does not occur inb

a (remove v ρ) t 7→ b
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To apply a rule likeBddAnd to two judgementsa1 ρ1 t1 7→ b1 anda2 ρ2 t2 7→ b2,
one usesBddFreevarsContractVarmap andBddSupportContractVarmap to
remove redundant bindings fromρ1 andρ2 to get judgements, saya1 ρ′1 t1 7→ b1 and
a2 ρ′2 t2 7→ b2. One then finds a varmapρ such thatextends ρ′1 ρ andextends ρ2 ρ,
and usesBddExtendVarmap to derivea1 ρ t1 7→ b1 anda2 ρ t2 7→ b2, which have
the same varmap,ρ, and so can be combined usingBddAnd. A generalised rule that
automatically performs the contractions and extensions is easily programmed; a common
case, however, is to have a fixed varmap, and the basic rules are optimised for this. Ifρ1
andρ2 are incompatible on a variable,v say, occurring int1 or t2 (that is,ρ1(v) 6= ρ2(v)),
then the desiredρ cannot be found.

It is intended to provide support for having incompatible variable orders, though the
management of such ‘local scopes’ is likely to be tricky, and the details have not been
worked out in relation to representation judgements. Additional rules may be needed.

3. Derived BDD representation rules

The rules in the preceding section (and some others not presented here) form a fixed set
defining the primitive operations on the abstract typeterm_bdd. The primitives correspond
to the BuDDy operations provided by the MuDDy API, together with rules for manipulating
varmaps and rules linking representation judgements to logical formulae. The claim that this
system provides LCF-like assurance assumes that the fixed set of primitive rules is correctly
implemented (which requires BuDDy and MuDDy be correct). Starting from these rules,
derived rules can then be programmed in ML in the LCF style.

Suppose thatt is a quantified boolean formula (QBF) built out of boolean variables and
constants using¬,∧,∨,⇒,=,∀and∃. One can program an ML functiontermToTermBdd
with ML type term→term_bdd that, when applied tot , computes aρ and judgement
ρ t 7→ b (with empty assumptions). The variable map is computed by using term-processing
functions to get the set of variables int , then repeatedly usingithvar to construct a BDD
variable for each variable int , and finally packaging up the correspondence between logic
variables and BDD variables into a variable mapρ. A recursive descent algorithm can then
use the primitive rules in Sections2.1and2.2 to deduce a BDD representation judgement
for t , and thus implement the following rule.

termToTermBdd
t is a quantified boolean formula

ρ t 7→ b

A more general version oftermToTermBdd can be easily implemented; this enables the
variable order to be explicitly specified.

3.1. Computing the set of reachable states

In higher-order logic, sets are conveniently represented by their characteristic predicates.
Suppose thatB is a predicate representing a set of initial states; then a states is in the set
represented byB if and only if B s (the application ofB to s is true). Suppose thatR is a
predicate on pairs of states representing the transition relation of a system, so thatR(s, s′)
is true if and only if the system can make a transition from states to states′.

A transition systemis defined by a pair(R, B) consisting of a transition relation and a set
of initial states. A states is reachable inm stepsin such a transition system if and only if
there exists a sequence of statess0, s1, . . . , sm such thatB s0 is true (that is,s0 is an initial
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state),sm = s and andR(si, si+1) is true fori = 0, . . . , m−1. Such a sequence is atrace
from B to s. The predicateReachBy R B i representing the set of states reachable ini or
fewer steps is defined recursively by:

` (ReachBy R B 0 s = B s)

∧
∀i. ReachBy R B (i+1) s = ReachBy R B i s ∨ ∃u. ReachBy R B i u ∧ R(u, s).

A states is reachableif and only if it is reachable in a finite number of steps; that is, if and
only if ∃i. ReachBy R B i s. The predicateReachable characterising the set of reachable
states is thus defined by:

` Reachable R B s = ∃i. ReachBy R B i s.

The following fixed-point theorem is straightforward to prove:

` ∀i. (∀s. ReachBy R B i s = ReachBy R B (i+1) s)

⇒
∀s. Reachable R B s = ReachBy R B i s.

Thus, to compute the set of reachable states, it is sufficient to find a number of iterations
i such that∀s. ReachBy R B i s = ReachBy R B (i+1) s.

To use BDDs, states are encoded as vectors of booleans (see Section3.4). Suppose that
the constantsB andR have been defined by theorems:

` B(v1, . . . , vn) = QBF1,

` R((v1, . . . , vn), (v′1, . . . , v′n)) = QBF2,

where QBF1 and QBF2 are quantified boolean formulae that can be directly represented
as BDDs. WithtermToTermBdd followed byBddEqMp, one can create representation
judgements:

ρ (B(v1, . . . , vn)) 7→ bB

ρ (R((v1, . . . , vn), (v
′
1, . . . , v′n))) 7→ bR

A simple iteration [6] then implements a derived rule that can take these as hypotheses:

computeReachable

ρ (B(v1, . . . , vn)) 7→ bB ρ (R((v1, . . . , vn), (v
′
1, . . . , v′n))) 7→ bR

ρ (Reachable R B (v1, ..., vn)) 7→ bReachRB
.

The iteration consists in computing

ρ (ReachBy R B 0 (v1, ..., vn)) 7→ b0

ρ (ReachBy R B 1 (v1, ..., vn)) 7→ b1

ρ (ReachBy R B 2 (v1, ..., vn)) 7→ b2
...

ρ (ReachBy R B i (v1, ..., vn)) 7→ bi

ρ (ReachBy R B (i+1) (v1, ..., vn)) 7→ bi+1

until

` ReachBy R B i (v1, ..., vn) = ReachBy R B (i+1) (v1, ..., vn).
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This is tested for by usingBddEq followed byTermBddOracle. When such an i is
reached, the conclusion ofcomputeReachable is deduced by applyingBddEqMpand
the preceding fixed-point theorem.

Applying TermBddToEqThm to the result ofcomputeReachable results in a the-
orem:

` Reachable R B (v1, ..., vn) = tReachRB,

which gives an explicit characterisation of the set of reachable states.
A simple ML program can be used to compose together the inferences just described, to

implement a derived rule:

computeReachableThm

` B(v1, . . . , vn) = QBF1 ` R((v1, . . . , vn), (v
′
1, . . . , v′n)) = QBF2

` Reachable R B (v1, ..., vn) = tReachRB

This is a derived rule that infers a HOL conclusion from HOL hypotheses using internal
BDD calculations. For an application, see Section4.

3.2. Computing traces

Suppose that one wants to check that all reachable states have propertyP; then one can
compute the BDD ofReachable R B (v1, . . . , vn)⇒ P(v1, . . . , vn) and see whether it is
true (usingTermBddOracle). If it turns out that P does not hold for all reachable states,
then it is useful to find a trace to a counterexample. Such a trace can be computed in three
steps as follows.

1. Find the firsti such thatReachBy R B i (v1, . . . , vn) ∧ ¬P(v1, . . . , vn) is satisfiable.

2. Find a particular state,si say, such thatReachBy R B i si ∧ ¬(P si).

3. Work backwards fromsi to get a traces0, . . . , si .

In more detail, this involves the following actions.

1. Iteratively compute the BDD, saybi , ofReachBy R B i (v1, . . . , vn) for i = 0, 1,2 . . . ,
and on each iteration check if the conjunction ofbi and the BDD of¬P(v1, . . . , vn)

is notFALSE (using the rulesBddNot andBddAnd). Stop at the firsti for which
the check succeeds.

2. Compute the BDD ofReachBy R B i (v1, . . . , vn) ∧ ¬(P(v1, . . . , vn)) (wherei is
the fixed point found in 1), and then useBddFindModel to deduce a judgement:

{v1 = c1, · · · , vn = cn} ρ (ReachBy R B i (v1, . . . , vn) ∧ ¬(P (v1, . . . , vn)))

7→ TRUE.

From this it follows that ifsi = (c1, . . . , cn), thenReachBy R B i si ∧ ¬(P si).

3. Generate a sequence of vectors representing states starting from an initial state and
ending insi by tracing backwards, as follows. First, define two auxiliary HOL con-
stantsPrev andEq by:

` Prev R P s = ∃s′. R(s, s′) ∧ P s′,
` Eq s1 s2 = (s1 = s2),
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and then iteratively construct a sequencesi, . . . , s0, where, if a vector of boolean
constantssp has been constructed, thenBddFindModel is used to obtainsp−1
satisfying ReachBy R B (p−1) sp−1 ∧ Prev R (Eq sp) sp−1. Note that the BDDbp

of ReachBy R B p (v1, . . . , vn) (for p = 0, 1, . . . , i) was computed during step 1, so
is available without further work. The BDD ofPrev R (Eq sp) (v1, ..., vn) is computed
from the BDDs ofR((v1, ..., vn), (v

′
1, ..., v

′
n)) andEq(sp, (v1, ..., vn)).

The sequences0, . . . , si is a trace from an initial state to a counter-example state. The
following properties can be deduced:

` B s0

` ReachBy R B p sp ∧ R(sp, sp+1) (0 6 p < i)

` ReachBy R B n si ∧ ¬(P si)

For debugging, it seems an overkill to prove theorems verifying that the computed se-
quence of states to a counter-example is correct, since the purpose of the counter-example
is just to point at bugs. However, something similar to the procedure just described could
possibly be used to synthesise program code to achieve a specification, and with this kind
of application it may be useful to generate a proof that it is correct, especially if the final
code is obtained by transforming the output of the raw BDD calculation into some different
format. The Missionaries and Cannibals example in Section4 is suggestive: a schedule of
boat trips is a kind of program.

3.3. Disjunctive partitioning by proof

Disjunctive partitioning is a well-known method of transforming the formulae for the next
state (forward image) or previous state (backward image, that is,Prev R P s) so that it is not
necessary to compute the BDD of the whole transition relationR((v1, . . . , vn), (v

′
1, . . . , v′n))

[4, p. 80]. It is suitable for large asynchronous circuits. The technique is also calledearly
quantification[14, p. 45].

Consider, for example, the state transition relationR defined by:

R((x, y, z), (x′, y′, z′)) = (x′ = Ex(x, y, z) ∧ y′ = y ∧ z′ = z)

∨ (x′ = x ∧ y′ = Ey(x, y, z) ∧ z′ = z)

∨ (x′ = x ∧ y′ = y ∧ z′ = Ez(x, y, z)),

whereEx(x, y, z), Ey(x, y, z) and Ez(x, y, z) are boolean formulae. Such a transition
relation represents the asynchronous composition ofEx , Ey andEz.

Logical simplification gives:

∃x′ y′ z′. ReachBy R B n (x′, y′, z′) ∧ R((x′, y′, z′), (x, y, z))

= (∃x′. ReachBy R B n (x′, y, z) ∧ x = Ex(x
′, y, z))

∨ (∃y′. ReachBy R B n (x, y′, z) ∧ y = Ey(x, y′, z))
∨ (∃z′. ReachBy R B n (x, y, z′) ∧ z = Ez(x, y, z′)).

The BDD of∃x′ y′ z′. ReachBy R B n (x′, y′, z′) ∧R((x′, y′, z′), (x, y, z)) can thus be
computed without ever computing the BDD ofR((x′, y′, z′), (x, y, z)). This simplification
is done automatically by the HOL simplifier.
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The usual implementation of disjunctive partitioning is achieved by writing programs
that directly construct the BDD of the simplified term. The logical transformations are thus
encoded in BDD building code. The approach here is to deductively simplify the next-state
relation prior to creating the BDD. The advantages are that the implementation is very
straightforward, and the simplification is guaranteed sound.

3.4. Encoding values as boolean vectors

BDD representation judgementsa ρ t 7→ b only represent termst whose free variables
are boolean. To use BDDs to calculate with terms containing free variables of other types,
one must encode these types in terms of booleans. Such an encoding of a typeσ inside
higher-order logic consists of a predicateD : σ→bool (wherebool is the higher-order
logic type of booleans) defining the subset ofσ that will be encoded, a functionrep : σ→τ

that maps elements of typeσ to a typeτ consisting of vectors of booleans (soτ has the form
bool × · · · × bool) and a functionabs : τ→σ that abstracts vectors of booleans (that is,
elements of the typeτ ) to values of typeσ . An example, which will be used in Section4, is
the encoding of a subset of numbers, which are values of the higher-order logic typenum,
in binary. The subset of numbers that are less than 16 will be encoded.

Let Rep4 : num→bool × bool × bool × bool map a number to the 4-bit binary repre-
sentation of its value mod 16, letAbs4 : bool× bool× bool× bool→num be the number
denoted by a 4-bit word, and letDom4 : num→bool be defined byDom4 n = (n < 16).
Note that:

` (∀n. Dom4 n = (Abs4(Rep4 n) = n)) ∧ (∀w. Rep4(Abs4 w) = w).

A transition system(R, B) is encoded by(D, abs, rep) if and only if it is the case that
Encode(R, B, D, abs, rep), where:

` Encode(R, B, D, abs, rep) = (∀u. D u = (abs(rep u) = u))

∧ (∀v. rep(abs v) = v)

∧ (∀u. B u⇒D u)

∧ (∀u. D u⇒ ∀u′. R(u, u′)⇒ D u′).

Here, and in the theorem below,u is of typeσ (abstract state) andv is of typeτ (vector
of booleans). Let the function composition (◦) and product (#) operators be defined by:

(f ◦ g) x = f (g x)

(f # g) (x, y) = (f x, g y).

The following theorem, which we nameReachByAbs, is proved by a simple induction:

` Encode(R, B, D, abs, rep)

⇒
∀n v. ReachBy R B n (abs v) = ReachBy (R ◦ (abs # abs)) (B ◦ abs) n v,

hence the following theorem, which we nameReachableAbs:

` Encode(R, B, D, abs, rep)

⇒
∀v. Reachable R B (abs v) = Reachable (R ◦ (abs # abs)) (B ◦ abs) v.
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To calculate Reachable (R ◦ (abs # abs)) (B ◦ abs) (v1, . . . , vn), one first derives
theorems of the form:

` (R ◦ (abs # abs))((v1, . . . , vn), (v′1, . . . , v′n)) = QBF1,

` (B ◦ abs)(v1, . . . , vn) = QBF2,

wherev1, . . . , vn are boolean variables,n depends on the typeτ and QBF1 and QBF2 are
quantified boolean formulae that can be directly represented as BDDs. These theorems can
be derived from the definitions ofR, B andabs. The rulecomputeReachableThm can
then be applied to them.

To see if some property,P say, holds for all reachable states, use proof to derive an
equation:

` P(abs(v1, . . . , vn))) = QBF3,

and then usetermToTermBdd to get the BDD ofP(abs(v1, . . . , vn)). Then useBddImp
followed byTermBddOracle, and replace quantification overn boolean variables by a
single quantification over a variable of typebool× · · · × bool to derive:

` Reachable (R ◦ (abs # abs)) (B ◦ abs) (v1, . . . , vn)⇒ P(abs(v1, . . . , vn))

and hence:

` ∀v. Reachable (R ◦ (abs # abs)) (B ◦ abs) v⇒ P(abs v).

UsingReachableAbs gives:

` ∀v. Reachable R B (abs v)⇒ P(abs v).

Specialisingv to rep u:

` Reachable R B (abs(rep u))⇒ P(abs(rep u)).

Now, if ` Encode(R, B, D, abs, rep), then∀u. Reachable R B u⇒ D u (the proof
is easy) and soabs(rep u) = u. Hence:

` ∀u. Reachable R B u⇒ P u.

Suppose, as in Section3.2, that we have calculated a tracev0, . . . , vi :

` (B ◦ abs) v0,

` ReachBy (R ◦ (abs # abs)) (B ◦ abs) p vp ∧ (R ◦ (abs # abs))(vp, vp+1),

` ReachBy (R ◦ (abs # abs)) B n vi ∧ ¬((P ◦ abs) vi),

and hence byReachByAbs and the definitions of◦ and#:

` B(abs v0),

` ReachBy R B p (abs vp) ∧ R(abs vp, abs vp+1),

` ReachBy R B n (abs vi) ∧ ¬(P (abs vi)).

Then the sequence(abs v0), . . . , (abs vi) is a trace from an initial state to a reachable state
refutingP .

4. Example: Missionaries and Cannibals problem

The Missionaries and Cannibals Problem is a classic of Artificial Intelligence [2]. We
show how to combine theorem proving and BDD calculation to solve all cases of a gener-
alised version.
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The original Missionaries and Cannibals Problem (MCP) is [13]:

Three missionaries and three cannibals come to a river and find a boat that
holds two. If the cannibals ever outnumber the missionaries on either bank, the
missionaries will be eaten.
How shall they cross?

This problem can be generalised to haven missionaries andn cannibals and a boat of
capacityk. Call this problemMCP(n, k). The problem stated above is thenMCP(3,2). If
k > 2, then in the generalised problem it is assumed that cannibals must not outnumber
missionaries in the boat. Assume, without loss of generality, that in the initial state, the
missionaries, the cannibals and the boat are on the left bank. Let a state(m, c, b) represented
the numberm of missionaries on the left bank, the numberc of cannibals on the left bank
and the positionb of the boat (whereb being true means ‘boat at left bank’).

The initial state is represented by(n, n, T) and the goal state by(0, 0, F). A predicate
BMCP characterising the initial state is thus defined by

` BMCP n (m, c, b) = m=n ∧ c=n ∧ b.

The possible state transitions are

MoveRight: moveu missionaries andv cannibals to right bank;
MoveLeft: moveu missionaries andv cannibals to left bank.

ConsiderMoveRight. The boat must be on the left bank, sob. The people embarking on
the boat must be a subset of those who were on the left bank, sou 6 m∧ v 6 c. Cannibals
must not eat missionaries in the boat, so¬(0 < u < v). There must be at least one person
to operate the boat, so 0< u + v. The capacity of the boat must not be exceeded, so
u+v 6 k. If all these pre-conditions are met, then a trip can take place, and in the resulting
statem′ = m−u ∧ c′ = c−v ∧ ¬b′. ThusMoveRight is defined by:

` MoveRight n k (u, v) ((m, c, b), (m′, c′, b′))
= b ∧ u 6 m ∧ v 6 c ∧ ¬(0 < u ∧ u < v) ∧ 0 < u+v ∧ u+v 6 k

∧ m′ = m−u ∧ c′ = c−v ∧ ¬b′.

Similarly, MoveLeft is defined by:

` MoveLeft n k (u, v) ((m, c, b), (m′, c′, b′))
= ¬b ∧ u 6 n−m ∧ v 6 n−c ∧ ¬(0 < u ∧ u < v) ∧ 0 < u+v ∧ u+v 6 k

∧ m′ = m+u ∧ c′ = c+v ∧ b′.

Cannibals can eat missionaries if there are more of them on the left bank (0<m<c) or
the right bank (0<(n−m)<(n−c)). DefineEat n (m, c) to be true if this can happen.

` Eat n (m, c, b) = (0 < m ∧ m < c) ∨ (0 < (n−m) ∧ (n−m) < (n−c))

Thus the transition relation is

` RMCP n k (s, s′)
= ¬Eat n s′ ∧ (∃u v. u 6 n ∧ v 6 n ∧ MoveRight n k (u, v) (s, s′))
∧ (∃u v. u 6 n ∧ v 6 n ∧ MoveLeft n k (u, v) (s, s′)).

The generalised missionaries and cannibals problemMCP(n, k) is solvable if the goal
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state(0, 0, F) is reachable from the initial state, thus:

` MCP(n, k) = Reachable (RMCP n k) (BMCP n) (0, 0, F).

We want to determine the truth ofMCP(n, k) for all n andk, and in the cases where it
is true, compute explicit solutions (that is, traces from the initial state to the goal state).

As a first step, we consider the finite subset of the problem whenn andk are less than
16, that is, when they can be encoded using four bits.

A suitable encoding is defined by:

` Abs = Abs4#Abs4#I,

` Rep = Rep4#Rep4#I,

` Dom(m, c, b) = m < 16 ∧ c < 16,

whereAbs4 andRep4 are as defined in Section3.4, andI is the identity function.
It follows easily that:

` n < 16 ∧ k < 16⇒ Encode(RMCP n k, BMCP n, Dom, Abs, Rep);
hence by Modus Ponens andReachableAbs,

` n < 16 ∧ k < 16
⇒
∀v. Reachable (RMCP n k) (BMCP n) (Abs v)

= Reachable (RMCP n k ◦ (Abs # Abs)) (BMCP n ◦ Abs) v.

Now
Reachable

(RMCP (Abs4(n3, n2, n1, n0)) (Abs4(k3, k2, k1, k0)) ◦ (Abs # Abs))

(BMCP (Abs4(n3, n2, n1, n0)) ◦ Abs)

((F, F, F, F), (F, F, F, F), F)

can be computed usingcomputeReachableThm.
The theorems thatcomputeReachableThm takes as parameters are derived by sym-

bolically executing the terms:

(RMCP (Abs4(n3, n2, n1, n0)) (Abs4(k3, k2, k1, k0)) ◦ (Abs # Abs))

(((m3, m2, m1, m0), (c3, c2, c1, c0), b), ((m′3, m′2, m′1, m′0), (c′3, c′2, c′1, c′0), b′)),
(BMCP (Abs4(n3, n2, n1, n0)) ◦ Abs) ((m3, m2, m1, m0), (c3, c2, c1, c0), b).

The process of symbolic execution needs to use the definitions ofMoveRight, MoveLeft
andEat. It also needs to use properties that relate arithmetic on words to arithmetic on
numbers, that is, properties like:

` Abs4(m3, m2, m1, m0)+ Abs4(n3, n2, n1, n0) =
Abs4((m3, m2, m1, m0)⊕ (n3, n2, n1, n0)),

where⊕ is a suitable operation implementing addition (for example, a binary adder imple-
mentation).

Using such properties giving binary implementations of the arithmetical operations+,
−, < and6, it is straightforward to program a derived rule that automatically performs the
symbolic execution needed to derive the theorems needed bycomputeReachableThm
(we omit the details here).
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InvokingcomputeReachableThm results in an inscrutable theorem:

` Reachable

(RMCP (Abs4(n3, n2, n1, n0)) (Abs4(k3, k2, k1, k0)) ◦ (Abs # Abs))

(BMCP (Abs4(n3, n2, n1, n0)) ◦ Abs)

((F, F, F, F), (F, F, F, F), F)

= k0 ∧ k1 ∧ k2 ∧ n0

∨ k0 ∧ k1 ∧ k2 ∧ n1

∨ k0 ∧ k1 ∧ k2 ∧ n2

∨ k0 ∧ k1 ∧ k2 ∧ n3

∨ k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n0

∨ k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n1

∨ k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n2

∨ k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n3

∨ k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ n0 ∧ n1 ∧ ¬n2 ∧ ¬n3

∨ k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ n0 ∧ ¬n1 ∧ ¬n3

∨ k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬n0 ∧ n1 ∧ ¬n2 ∧ ¬n3

∨ k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬n0 ∧ ¬n1 ∧ n2 ∧ ¬n3

∨ k0 ∧ ¬k1 ∧ k2 ∧ n0

∨ k0 ∧ ¬k1 ∧ k2 ∧ n1

∨ k0 ∧ ¬k1 ∧ k2 ∧ n2

∨ k0 ∧ ¬k1 ∧ k2 ∧ n3

∨ k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n0

∨ k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n1

∨ k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n2

∨ k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n3

∨ ¬k0 ∧ k1 ∧ k2 ∧ n0

∨ ¬k0 ∧ k1 ∧ k2 ∧ n1

∨ ¬k0 ∧ k1 ∧ k2 ∧ n2

∨ ¬k0 ∧ k1 ∧ k2 ∧ n3

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n0

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n1

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n2

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ k3 ∧ n3

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ n0 ∧ ¬n2 ∧ ¬n3

∨ ¬k0 ∧ k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬n0 ∧ n1 ∧ ¬n2 ∧ ¬n3

∨ ¬k0 ∧ ¬k1 ∧ k2 ∧ n0

∨ ¬k0 ∧ ¬k1 ∧ k2 ∧ n1

∨ ¬k0 ∧ ¬k1 ∧ k2 ∧ n2

∨ ¬k0 ∧ ¬k1 ∧ k2 ∧ n3

∨ ¬k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n0

∨ ¬k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n1

∨ ¬k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n2

∨ ¬k0 ∧ ¬k1 ∧ ¬k2 ∧ k3 ∧ n3.
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From this, using the result derived fromReachableAbs above, and some rewriting
with equations abouts sets, we obtain an explicit characterisation ofMCP(n, k) for n andk

less than 16:

` n < 16 ∧ k < 16
⇒
(Reachable (RMCP n k) (BMCP n) (0, 0, F)

= (n, k) ∈ {(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10),
(1,11), (1,12), (1,13), (1,14), (1,15),

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10),
(2, 11), (2, 12), (2, 13), (2, 14), (2, 15),

(3,2), (3,3), (3,4), (3,5), (3,6), (3,7), (3,8), (3,9), (3,10),
(3,11), (3,12), (3,13), (3,14), (3,15),

(4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10),
(4, 11), (4, 12), (4, 13), (4, 14), (4, 15),

(5,3), (5,4), (5,5), (5,6), (5,7), (5,8), (5,9), (5,10),
(5,11), (5,12), (5,13), (5,14), (5,15),

(6,4), (6,5), (6,6), (6,7), (6,8), (6,9), (6,10),
(6,11), (6,12), (6,13), (6,14), (6,15),

(7,4), (7,5), (7,6), (7,7), (7,8), (7,9), (7,10),
(7,11), (7,12), (7,13), (7,14), (7,15),

(8,4), (8,5), (8,6), (8,7), (8,8), (8,9), (8,10),
(8,11), (8,12), (8,13), (8,14), (8,15),

(9,4), (9,5), (9,6), (9,7), (9,8), (9,9), (9,10),
(9,11), (9,12), (9,13), (9,14), (9,15),

(10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10, 9), (10, 10),
(10, 11), (10, 12), (10, 13), (10, 14), (10, 15),

(11,4), (11,5), (11,6), (11,7), (11,8), (11,9), (11,10),
(11,11), (11,12), (11,13), (11,14), (11,15),

(12, 4), (12, 5), (12, 6), (12, 7), (12, 8), (12, 9), (12, 10),
(12, 11), (12, 12), (12, 13), (12, 14), (12, 15),

(13,4), (13,5), (13,6), (13,7), (13,8), (13,9), (13,10),
(13,11), (13,12), (13,13), (13,14), (13,15),

(14, 4), (14, 5), (14, 6), (14, 7), (14, 8), (14, 9), (14, 10),
(14, 11), (14, 12), (14, 13), (14, 14), (14, 15), (15,4),

(15,5), (15,6), (15,7), (15,8), (15,9), (15,10),
(15,11), (15,12), (15,13), (15,14), (15,15)}).

A few things here are immediately obvious:MCP(n, k) is solvable ifk > 2 andn = 1,
as the single missionary and the single cannibal can take the boat together to the right bank.
If k > 4, thenMCP(n, k) is solvable, since one missionary and one cannibal can act as
boatmen and ferry pairs of missionaries and cannibals from left to right. Thus interactive
proof can be used to show that

` ((k > 2 ∧ (n = 1)) ∨ (k > 4 ∧ n > 0))⇒ MCP(n, k).

70https://doi.org/10.1112/S1461157000000693 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000693


Deduction and symbolic calculation

Also,MCP(n, 0) is not solvable, because there is no one to operate the boat, and ifk < 2
thenMCP(n, k) is also not solvable because one can never get more than one person to the
right bank (since the first person to go to the right bank will have to return, as the boat needs
at least one occupant). Thus

` (n < 1 ∨ k < 2)⇒¬MCP(n, k).

Inspecting the members of the set of pairs, we see that whenk < 4 there are no solutions
if n > 2k. The following argument that this is the case for alln andk (that is, not just those
less than 16) is due to Anuj Dawar, as outlined in a private communication to the author.
Suppose thatML andCL are the numbers of missionaries and cannibals, respectively, on the
left bank, andMR andCR are the numbers of missionaries and cannibals, respectively, on
the right bank. Consider the last time thatMR changes from being 0. In the resulting state,
all the missionaries cannot have arrived at the right bank, since there are more missionaries
than the capacityk of the boat (n > 2k). In fact, at mostk missionaries can have arrived,
soMR 6 k. Thus there must be some missionaries remaining on the left bank, and hence
fewer cannibals on the left bank. All the cannibals cannot be on the right bank, because if
they were they would eat the missionaries that have just arrived. Thus there are missionaries
and cannibals on both banks, and henceML = CL andMR = CR.

Now, on the return trip of the boat, not allMR missionaries may travel, as this would
contradict the assumption thatMR is henceforth non-zero. If any missionaries travel, at least
that number of cannibals must also travel, so that the remaining ones are not outnumbered,
and if any cannibals travel, at least that number of missionaries must also travel, so that
missionaries on the left bank are not outnumbered. This means that exactly one missionary
and one cannibal can travel (sincek < 4).

This leavesMR < k, and thereforeML > n−k; that is,ML > k (sincen > 2k). Thus,
all the remainingML missionaries cannot travel on the next trip. But then, an equal number
of missionaries and cannibals must travel, which means that exactly one missionary and
one cannibal travel, but this just reverses the last move.

Thus: ` (1 < k ∧ k < 4 ∧ n > 2k)⇒¬MCP(n, k).

These arguments aboutMCP can be formalised and the theorems proved interactively.
The proofs are quite messy as there are many cases, but are routine. The arguments above
established the value ofMCP(n, k) for the cases:

(k > 2 ∧ (n = 1))∨ (k > 4 ∧ n > 0)

∨ (n < 1 ∨ k < 2)

∨ (k < 4 ∧ n > 2k).

The following theorem is easily proved automatically with a decision procedure:

` (k > 2 ∧ (n = 1))∨ (k > 4 ∧ n > 0)

∨ (n < 1 ∨ k < 2)

∨ (k < 4 ∧ n > 2k)

∨ ((k = 2) ∧ ((n = 2) ∨ (n = 3)))

∨ ((k = 3) ∧ ((n = 2) ∨ (n = 3) ∨ (n = 4) ∨ (n = 5))).

Thus, to determine the truth ofMCP(n, k) for all n and k, we need only to solve
MCP(2, 2), MCP(3,2), MCP(2, 3), MCP(3,3), MCP(4, 3) andMCP(5,3), but the explicit
set of pairs derived above shows that these are all true.
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Putting everything together, one can derive a complete characterisation ofMCP(n, k) in
the form of a theorem:

` MCP(n, k) = k > 1 ∧ n > 0 ∧ (k < 4⇒ n < 2k).

One can also use the trace-finding method of Section3.2 to compute explicit solutions
to the solvable finite cases, by finding counterexamples, for specific values ofn andk, to

Reachable (RMCP n k) (BMCP n) (m, c, b)⇒¬((m, c, b) = (0, 0, F))

For example, for the casen = 2 andk = 3 the following theorems representing a solution
can be automatically generated:

` RMCP 2 3 ((2, 2, T), (0, 1,F)),

` RMCP 2 3 ((0, 1,F), (0, 2, T)),

` RMCP 2 3 ((0, 2, T), (0, 0, F)).

These three theorems can be compactly abbreviated by:

MCP(2, 3) : 22T→01F→02T→00F,

where the notationmcb abbreviates(m, c, b). The other solutions are easily computed:

MCP(2, 2) : 22T→20F→21T→01F→02T→00F,

MCP(3,2) : 33T→22F→32T→30F→31T→11F→22T→02F→03T→01F→02T→00F,

MCP(3,3) : 33T→30F→31T→01F→02T→00F,

MCP(4, 3) : 44T→42F→43T→22F→33T→03F→04T→01F→02T→00F,

MCP(5,3) : 55T→44F→54T→51F→52T→22F→33T→03F→04T→01F→02T→00F.

5. Related work

In the paper ‘An integration of model-checking with automated proof checking’ by
Rajan, Shankar and Srivas [19], PVS [21] is extended to support symbolic model checking
of properties stated in theµ-calculus via a link to an external ROBDD-basedµ-calculus
checker due to G. L. J. M. Janssen of the Department of Electrical Engineering at the
Eindhoven University of Technology. Model checking is invoked from PVS via a command
that translates higher-order logic goals into boolean formulae that can be printed into a format
suitable for input to the external tool. The goal is solved if its translation model checks
successfully. Recent developments have improved on the original file-based connection
between PVS and the checker, and support for counter-examples is to be provided. PVS is
not an LCF-style fully expansive prover, so the model checking command is implemented
as a new atomic facility. This differs from the approach here, in which there is a much
finer-grained connection, mediated by a calculus of representation judgements. In PVS,
the checking of a property against a model is atomic; whereas in our approach this is user-
programmed as a fixed-point iteration to compute a sequence of judgements resulting in one
that relates the HOL term expressing the goal to its BDD representation. The PVS approach
delivers a powerful shrink-wrapped checker; our approach is complementary: it provides a
scripting framework for the user to implement his own bespoke tools.

PVS adds model checking to a theorem-proving platform. The dual is to add theorem
proving to a model checker. This has been done by McMillan in Cadence SMV [16], which
provides problem decomposition commands that split verification goals into components
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small enough for model checking. The decomposition is based on deductive rules, for
example compositional refinement [15], and implemented by light-weight theorem proving.
SMV does not provide a user-programmable scripting facility; rather, each new deduction
method is hard-wired into the system. It may be possible for users of HOL to program
the kind of algorithm that SMV builds-in as derived rules for calculating representation
judgements, but more work is needed to investigate this.

Carl Seger’s Voss system [20] and its descendants have been particularly influential
on the work described here. Voss consists of a lazy ML-like functional language, called
FL, with BDDs as a built-in data-type. Quantified boolean formulae can be input, and are
parsed to BDDs. The normal boolean operations¬, ∧, ∨, ≡, ∀ and∃ are interpreted as
BDD operations. Algorithms for model checking are easily programmed.

Joyce and Seger interfaced an early HOL system (HOL88) to Voss, and in a pioneering
paper showed how to verify complex systems by a combination of theorem-proving deduc-
tion and symbolic trajectory evaluation (STE) [11]. The HOL-Voss system integrates HOL
deduction with BDD computations. BDD tools are programmed in FL, and can then be
invoked by HOL-Voss tactics, which can make external calls into the Voss system, passing
subgoals via a translation between the HOL and Voss term representations. In later work
Lee, Seger and Greenstreet [12] showed how various optimised BDD algorithms could be
programmed in FL.

The early experiments with HOL-Voss suggested that a lighter theorem-proving compo-
nent was sufficient, since all that was really needed was a way of combining results obtained
from STE. A system based on this idea, called VossProver, was developed Carl Seger and his
student Scott Hazelhurst. It provides operations in FL for combining assertions generated by
Voss using proof rules corresponding to the laws of composition of the temporal logic asser-
tions verified by STE [10]. After Seger and Aagaard moved to Intel, the development of Voss
and VossProver evolved into a system called Forte that ‘is an LCF-style implementation of
a higher-order classical logic’ and ‘seamlessly integrates several types of model-checking
engines with lightweight theorem proving and extensive debugging capabilities, creating
a productive high-capacity formal verification environment’. Only partial details of this
are in the public domain [18, 1], but a key idea is that FL is used both as a specification
language and as an LCF-style meta-language. The connection between symbolic trajectory
evaluation and proof is obtained via a tactic, calledEval_tac, that converts the result of
executing an FL program performing STE into a theorem in the logic. Theorem proving in
Forte is used both to split goals into smaller subgoals that are tractable for model checking,
and to transform formulae so that they can be checked more efficiently. Research with Forte
has resulted in major hardware-verification case studies.

The combination of HOL with representation judgements provides a somewhat similar
programming environment to Voss’s FL (though rather more low-level, and with eager rather
than lazy evaluation). MuDDy provides BDD operations corresponding to¬,∧,∨,≡,∀ and
∃, andtermToBdd provides a way of using these to create BDDs from logical terms. Voss
enables efficient computations on BDDs using functional programming. So does HOL, and
in addition it allows FL-like BDD programming in ML to be intimately mixed with theorem
proving, so that, for example, simplifiers can be directly applied to terms to optimise them
for BDD purposes (see the description of ‘disjunctive partitioning’ in Section3.3). This
is in line with future developments discussed by Joyce and Seger [11], and it appears that
the Forte system has similar capabilities. The approach described here, of adding Voss-like
facilities into HOL, is dual to adding deductive theorem proving into Voss.

An approach of Harrison [9] that is in some ways similar to the one here, in that it is
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fully expansive, is to implement BDDs inside the HOL system without making use of an
external oracle. Harrison has shown that the BDD algorithms provide a way of implementing
tautology-checking that is significantly better than the methods previously used in HOL.
He found, however, that performance was about a thousand times slower than with a BDD
engine implemented in C. By reimplementing some of HOL’s primitive rules, performance
could be improved by around ten times. Harrison only provided data for boolean equivalence
checking. The approach in this paper aims to get near the performance of C-based model
checking (by using a BDD package implemented in C), whilst remaining fully expansive,
though with a radically extended set of inference rules (namely the rules for deducing
BDD representation judgements given in Section2). Harrison’s work is ‘logically purer’
than ours, but less efficient. The trade-off between purity and efficiency depends on the
application (that is, requirements for logical security, ease of maintenance, and so forth), but
Harrison’s experiments on an internal implementation of BDDs provides a very interesting
point between standard theorem proving and the use of an external oracle.

6. Conclusions

Our goal has been to extend the scope of LCF-style theorem proving to include the
ability to program derived rules and tactics that make use of external algorithms. Here, we
have concentrated on BDD-based symbolic state exploration. The results seem promising,
but more case studies are needed. Because the main verification calculations are done in
an external BDD engine (BuDDy), the efficiency is good. The relatively slow HOL code
(compared with C) only controls the invocation of BuDDy operations, and so is outside the
critical performance loops.

The approach in this paper provides a secure platform for experimenting with intimate
mixtures of deduction and BDD-based symbolic calculation. It could be especially appro-
priate for experimenting with tricky or complicated algorithms, since the fully expansive
approach helps to ensure soundness.
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