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. 1. Introduction. Let g{k) denote the least integer such 
that every graph <5 (n, n+g(k)), with n ver t ices and n+g(k) 
edges, contains at least k edge-disjoint cycles; let h(k) be 
similarly defined for planar graphs. Loops and multiple edges 
(i. e. , cycles of length one and two) a re permitted in both cases . 

A t r ivial result is that g(l) =h(l) = 0. Erdos and Pô'sa [2] 
showed that g(2) =4; Dirac and Erdo's [ l ] showed that h{2) = 3. 
In the present paper their arguments will be extended to show 
that 

g(3) - 10 , 

h(3) = 7 , 

and 

h(4) = 11 . 

Further exact resul ts would appear to require a stronger method 
of attack or the examination of a considerable number of special 
cases . 

2. Proof that g(3) =10. We first show that every graph 
G (n, n+10) contains at least three edge-disjoint cycles. This 
assert ion is clearly true for n = 1; suppose that it has been 
established for ail n < m, where m is some integer greater 
than one. Consider any graph G = G{m, m+10). We may 
assume that G has no cycle of length less than seven, for if 
it did the graph obtained by removing ths edges of this cycle 
would still have at least m+4 edges and hence would contain 
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at least two edge-disjoint cycles since g(Z) = 4. So G would 
contain at least three edge-disjoint cycles and there would be 
nothing to prove. If x< is a vertex of degree less than two, 
then the induction hypothesis may be applied to the graph 
obtained from G by removing x; if x is of degree two then 
the induction hypothesis may be applied to the graph obtained 
from G hy removing x and adding an edge joining the two 
vertices originally joined to x. From this it follows that 
we may assume that the degree of each vertex of G is at 

least three. This implies that m+lO^—m, or m<:20. But 

it is easy to show (see the proof of Lemma 3 in [2]) that any 
graph each vertex of which has degree at least three and which 
contains no cycles of length less than seven must have at least 
22 vertices. This contradiction suffices to establish the above 
assertion by induction. Therefore g(3) < 10. 

The graph in Figure 1 has 18 vertices, is regular of 
degree three, and its shortest cycles are of length six. 
Hence, if it had three edge-disjoint cycles they each would be 
of length six and each vertex would belong to one and only one 
of them. 

Figure 1 

Consider the vertex a ; it is easily verified that there 
are no cycles of length six passing through a via the edges 
(b,a) and (a,d). Hence, by symmetry, we may assume that 
if this graph contains three edge-disjoint cycles then the cycle 
passing through a contains the edges (c,a) and (a,d). There 
are only two cycles of length six with this property. But when 
the vertices of either of these cycles are removed, along with 
their incident edges, the remaining graph consists of a hexagon 
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with its three diagonals joining opposite ver t ices , some edges 
of which have been subdivided by the insertion of additional 
ver t ices . It is clear that such a graph does not contain two 
edge-disjoint cycles. From this it follows that the graph in 
Figure 1 does not contain three edge-disjoint cycles. Since 
it has 27 edges it must be that g(3) > 9, and it is tr ivial to 
use this example to construct graphs G(m, m+9) not containing 
three edge-disjoint cycles for any m > 18. Combining this 
inequality with the ear l ier one, we have that g(3) = 10. 

3. A lemma. We sketch the proof of the following lemma, 
although it employs a rather familiar type of argument. (See 
Steinitz [4], pp. 7-8. ) 

JLEMMA. If G = <?(n,e) is a planar graph such that the 
length of each cycle is at least five and the degree of each ver tex 
is at least th ree , then 3e < 5n- 10. 

Proof. We may assume that G is a planar map to which 
Euler ' s polyhedral formula may be applied; for, if it was not it 
could be made into one by adding appropriate edges, and it is 
not difficult to see that this could be done without forming any 
cycles of length less than five. Suppose that G has a total of 
f faces of which f have i sides. Then 

l 

2e = 5fe + 6f, + . . . > 5 (f_ + f, + . . . ) = 5f , 
5 6 — 5 6 

appealing to the hypothesis on the lengths of the cycles. 
Substituting this inequality in Euler1 s formula, n-e+f = 2, 
yields the required resul t . 

^' Proof that h(3) =7 . We first show that every planar 
graph G(n, n+7) contains at least three edge-disjoint cycles. 
This asser t ion is certainly true for small values of n. Let 
m be the smallest integer for which there exists a planar graph 
G = G(m,m+7) for which it is not t rue . Using the fact that 
h(2) = 3, the argument in § 2 can be applied to show that the 
length of each cycle of Q is at least five and the degree of 

each ver tex is at least th ree . Hence, m+7 > —m or m < 14. 
= 2 i 

But by the lemma, 3 ( m + 7 ) | 5 m - 10 or m > 1 5 r \ This 

contradiction establishes the asser t ion and shows that h(3) < 7. 
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û 
Figure Z 

Consider the planar graph in Figure 2. If it contained 
three edge-disjoint cycles they would each have to be of length 
four. But it is clearly impossible to select three of the four 
cycles of length four without some edge being used more than 
once. This example, with 12 ver t ices and 18 edges, shows that 
h(3) > 6 and such examples with n ver t ices can be constructed 
for any n :> 12. Combining the two inequalities, we have that 
h ( 3 ) = 7 . 

5- Proof that h(4) =11. "It is easily verified that the 
graph of a regular dodecahedron, having 20 ver t ices and 30 
edges, does not contain four edge-disjoint cycles . The examples 
obtained from this by subdividing its edges by inserting more 
ver t ices ail show that h(4) > 10. 

We now show that every planar graph (2 (n, n+11) contains 
at least four edge-disjoint cycles. Let m be the smallest 
integer for which there exists a planar graph G = G(m, m-f 11) 
without four such cycles. The same argument as used before 
shows that the length of each cycle of CB is at least five and 

the degree of each ver tex is at least three . Hence, m-f 11 > - m 
1 ~ Z 

or m^c22 , and 3(m+ll) < 5m - 10 or m >, 21--, by the lemma. 
As m is an integer it must be that m = 22 and that the degree 
of each ver tex of G is exactly three . 

A more careful analysis of the argument used in proving 
the lemma shows that if the planar graph G has 22 ve r t i ce s , 
is regular of degree three , and has no cycles of length less than 
or equal to four, then G must be a planar map with 12 
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pentagonal faces and one hexagonal face. But, as pointed out by 
Grûnbaum and Motzkin [3] , no such map e x i s t s . 

This contradiction es tab l i shes the above as ser t ion which 
when combined with the ear l i er inequality comple tes the proof 
that h ( 4 ) = l i . 
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