HEAT FLUX DISTRIBUTION NEAR A CREVASSE

By C. J. Pines
(California Institute of Technology, Pasadena, Calif.)

ApsTrACT. Previously reported experimental temperature data were used to compute the two com-
ponents of the heat flux vector in the ice body adjacent to a crevasse in a glacier of the ice sheet of northern
Greenland. Graphical differentiation techniques were employed. The computed components were used to
synthesize values of the heat flux vector, including magnitude and direction. Improved accuracy was
achieved over the previously reported technique of sketching heat flow lines orthogonal to the isotherms.

ReésumE. Les données expérimentales de température, précédemment obtenues, ont été utilisées pour
calculer les deux composantes du vecteur flux thermique dans la masse de glace située au voisinage d’une
crevasse dans un glacier de la calotte glaciaire du Groenland Nord. Les techniques de différentiation
graphique ont été employées. Les composantes calculées ont servi a4 effectuer la synthése des valeurs du
vecteur de flux thermique, en grandeur et direction. On a obtenu une meilleure précision qu’en utilisant la
technique, dont on a parlé précédemment, du tracé des lignes de conduction thermique, orthogonales aux
isothermes.

ZusaMMENFASSUNG, Frither veroffentlichte Temperaturmessungen wurden zur Berechnung der beiden
Komponenten des Wiirmeflussvektors im Eiskérper nahe einer Spalte in einem Gletscher des Inlandeises
von Nord-Grénland herangezogen. Dabei wurden graphische Differenzierungsmethoden angewandt. Die
berechneten Komponenten dienten zur Bestimmung des Wirmeflussvektors nach Grésse und Richtung.
Dieses Verfahren fithrte zu genaueren Ergebnissen als die frither beschriebene Methode der graphischen
Konstruktion von Wiarmellusskurven als Orthogonaltrajektorien der Isothermen.

INTRODUCTION

It has become quite common to accumulate data on temperature distributions in glaciers.
There is occasional interest in analyzing such data to obtain a portrayal of a heat flux
distribution. This latter information may be of particular interest near discontinuities, either
natural such as crevasses or man-made such as slits, trenches, or excavations.

The experimentally observed temperature data near a glacier crevasse in the ice sheet of
northern Greenland have been reported in a previous paper (Pings, 1961). General glacio-
logical characteristics of the area were discussed by M. F. Meier and co-workers (Meier and
others, 1957; Meier, 1958). The isotherms previously reported were obtained by repeated
smoothing of experimental data to obtain temperature distributions that were continuous
with respect to both time and spatial variation. As a final exercise with those previous data
we reported a net of heat flux lines constructed orthogonal to one of the sets of isotherms.
Although this latter technique is elegant mathematically, it is subject to substantial error as a
graphical tool. The drawing of a given heat flux line is subject to cumulative error and, at
best, is no better than visual judgment of orthogonality.

Such constructions are also limited by assumptions of constant, isotropic values of the
thermal conductivity. It is not apparent how one might easily modify the method to account
for anisotropic behavior of the thermal conductivity or the variation of thermal conductivity
with either temperature or position. We suggest in this paper a technique which is quite
general and which is reasonably easily applied to the analysis of experimental temperature
data.

ComroneNTs 0F THE HEAT Frux Vecrtor

In the present discussion only two independent spatial variables are included. The data
were all collected in a plane normal to the length of the crevasse, and our entire analysis is
idealized to temperature distribution and heat flow in a plane. The generalization to three
dimensions should be obvious. In the following, » is the vertical coordinate measured down-
ward from the surface, and x is the horizontal coordinate with positive direction pointing
away from the crevasse.
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In a single crystal the components of the heat flux vector are related to the temperature
gradient (Nye, 1957, ch. 11) by the following:

. oT NI
.ff == _kij (a_xj)s L] = %04 ([)

where repeated suffixes indicate summation. The k;;’s are the coefficients of thermal con-
ductivity, constituting a second-rank tensor. It may be shown (Nye, 1957; Miller, 1g60) that
the £y tensor is not only symmetric, but that the off-diagonal terms are all identically zero if
the (x, y, z) coordinate system is chosen to coincide with the principal axes of the crystal.
If there exists systematic variation in the orientation of the crystals in a gross body such as a
glacier, it would obviously be impossible to select a fixed coordinate system such that its axes
were everywhere parallel to the principal axes of the crystals. Nevertheless, if all the terms in
the conductivity tensor were known at each point, it would be possible to compute the
components of the heat flux vector from a knowledge of the temperature gradient using
equation (1).

If a macroscopic body is comprised of randomly orientated crystals, the averaged con-
ductivity tensor contains off-diagonal terms of zero and identical diagonal terms comprised
of appropriately weighted averages of the components of the single crystal tensor. For the
ice body which we consider here, Hoerni (Meier and others, 1957) found some indications of
regions of preferred crystal orientation. However, he regarded the evidence as inconclusive.
In subsequent discussion we therefore treat the glacier as isotropic. For the two-dimensional
problem it will be convenient to represent the heat flux vector in terms of its components.

f=if.+i/, (2)
With the stated assumption of isotropy, each of these components can be identified with a
single temperature gradient:
dT

fo=—k—, (3)
- dT
jy = —k @' (4‘)

The above expressions may be combined to yield the following description for the heat flux
vector, its magnitude, and its orientation in space:

| —k{ig+jg}, (5)
= 4{(5) (7))
o — ran-o2L /4T 2

Our present computational scheme involves simply the evaluation of the two derivatives,
dT[dx and dT|dy in the two-dimensional region of interest. We report these results for only
one of the sets of temperature measurements reported in the previous publication, namely the
temperature data collected on 16 August 1955 (Pings, 1961). Those two-dimensional temper-
ature data were replotted in a series of graphs, one set giving 7 versus x along lines of constant
7, and a second set giving T versus y along lines of constant x. Incidentally, these graphs, or
their substantial equivalents were actually by-products of the smoothing operations that went
into the original preparation of the two-dimensional isotherm maps. Since those smoothing
operations would usually be a necessary step in the treatment of temperature data obtained
experimentally in the field, it should not normally be necessary to prepare them separately
for purposes of heat flux computations suggested in this paper.
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Fig. 1. Computed values of dT[dx
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Fig. 2. Computed values of dT|dy
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Once the above graphs had been prepared, it was a simple matter to obtain the derivatives
required at all points in space by graphical techniques. We made these computations by
establishing the slope of the line tangent to the temperature curves at each point of interest.
Since the data used for this computation were already smoothed with respect to spatial
variations, the values obtained for the derivatives were reasonably smooth and consistent.
Results of the differentiation are shown in Iigures 1 and 2. Dashed lines indicate regions
where we felt the original temperature data were either in doubt or rather sparsely distributed.

It might be recalled that the vertical and horizontal components of the heat flux vector
are proportional to d T [dx and dT/dy. It is interesting to note several qualitative characteristics
of the heat flux distribution apparent from inspection of these two graphs: (1) the horizontal
component of a heat flux vector becomes smaller and presumably approaches zero at
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Fig. 3. Computed values of the heat flux vectors, f'fk

distances progressively farther from the crevasse; (2) there exists a line of zero value for the
vertical component of the heat flux, with that component being directed downward above
that locus and upward below it; (3) there is a substantial component of the heat flux vector
directed into the ice body from the crevasse wall, whereas the vertical component of the heat
flux vector appears to he relatively small immediately adjacent to the crevasse; (4) although
the original temperature data within the crevasse were somewhat less reliable than those
obtained from the ice body, the information available seems to indicate a smooth continu-
ation of the d7T/dx values from the ice mass into the crevasse air space.

SyntHEsIs oF HEaT FrLux VEcTORs

Figure 3 shows the heat flux vectors which were synthesized from the computed com-
ponents using equations (5), (6) and (7). Actually, the values reported are f/k, and it was,
therefore, not necessary to make any assumption as to the numerical magnitude of the
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thermal conductivity. As an example of actual flux magnitude, using the value of thermal
conductivity reported by Van Dusen (1929) of k=50 % 10-* cal. cm.~* ° C.~* sec.” ", then, at
the point (v—=2 m., y =44 m.), the magnitude of the heat flux vector is 3- 15 cal. m.~* sec.~".

We are certainly not suggesting that the above detailed conclusions are generally indi-
cative of heat transfer adjacent to the crevasse. Rather the comments are offered as examples
of the type of information that can be obtained from analysis of the computed components of
the heat flux vector.
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