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Abstract

The paper investigates the effect of a static magnetic field on the helical
flow of an incompressible cholesteric liquid crystal with director of unit
magnitude between two coaxial circular cylinders rotating with different
angular velocities about their common axis and moving with different axial
velocities. At low shear rates with a weak magnetic field in the axial
direction, the axial velocity, the angular velocity and the orientation of
molecules between the two cylinders have been obtained. It is found that the
magnetic field has influenced the orientation of molecules while the axial
velocity and the angular velocity remain uneffected by the magnetic field.

1. Introduction

Leslie [1] has derived the forms of conservation laws for incompressible
cholesteric liquid crystal with director of unit magnitude and their constitutive
equations in isothermal equilibrium conditions. Frank [2] has proposed a
Helmholtz free energy function for this type of liquid crystals. Using these
and the non-equilibrium parts of constitutive equations [3] in the absence of
temperature, Sharma [4] has recently analysed the helical flow of an incom-
pressible cholesteric liquid crystal between two coaxial circular cylinders
having rotational and axial velocities about their common axis. In this paper,
we shall discuss this flow in the presence of a static magnetic field acting along
the common axis of cylinders and then examine the effect of a weak static
magnetic field on the flow in some details.
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2. Basic equations

The equations governing the motion of an incompressible cholesteric
liquid crystal with director d of unit magnitude [1] are

v, =0 2.1)
Duy,
P = PE+ai, 2.2)
D?d,
p‘Bt_z =pGi + g t+ m, (2'3)

where 3, p, F, o, pi, G, g, m: and D /Dt respectively represent the velocity
vector, the uniform density, the body force per unit mass, the stress tensor, an
inertial constant, the extrinsic director body force per unit mass, the intrinsic
director body force per unit volume, the director stress tensor and the
material time derivative.

The stress tensor o, the director stress tensor =, and the intrinsic
director body force g, are given by the constitutive equations [1]

o, = —pé, — p——aF di, + aeu,(dyd.) s + G, (2.4)
(9de,~
m = Bd + pE + aeds, 2.5)
ad,,;
oF _
8 =vd.— Bd., — pyr— aeudi, + 8, (2.6)

where, p, F, a, ﬁ, v, G, and g respectively denote the pressure, Helmholtz
free energy per unit mass, a material coefficient, an arbitrary vector, the
director tension, the non-equilibrium parts of extra stress and the extra
intrinsic director body force. Also when the temperature T is zero, the
expressions [3] for &, and g, take the forms

G, = udid,Awpdd, + u;Nid, + u;Nd, + uA,

+ usAndid, + usApddd,, 2.7
g = A.N,.+ A Audy, (2.8)
where
A, =1i(v, +v.),
W, =3(v, — v.),
N=221 wa, @.9)
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and u;, A; are the material coeflicients related by
A1= U, — Us,, A;_: Us— Us. (210)

Helmbholtz free energy F for cholesteric liquid crystal proposed by Frank
[2] is

2pF = al(d._.)z + aZ(T + dneqkdk.] )2 + anid[dk.ldk.l
+ ((12 + a“)[dl.ldlvl - (d,_, )2] (21 1)

where «, and 7 are the material coefficients.
In the presence of a magnetic field H, the external body forces F, and G,
are given by [5]
pF.=(aH.d.d, + bH))H,,

p165 = ad,dek (212)

where a and b are the constant magnetic susceptibilities. .
The material coefficients appearing in all the above equations have been
treated as constants in the present problem.

3. Statement of problem

We consider the helical flow of an incompressible cholesteric liquid
crystal with director of unit magnitude between two infinite coaxial circular
cylinders in the presence of a static magnetic field acting along the common
axis of cylinders. The cylinders are moving with different axial velocities and
are rotating with different angular velocities about their common axis.

Now, we choose a system of cylindrical coordinates (r, 8, z) such that
z-axis coincides with the common axis of cylinders. The inner and outer
cylinders of radii r, and r, (r, <r;) have U, and U, as their axial velocities
respectively and ), and (), are their respective angular velocities. Also the
director d has the same orientation on the two cylinders. Since we have
considered the magnetic field H in the z-direction, hence,

H=H,=0, H,=H (3.1)

With the assumption that the all unknowns depend on the radius vector
only, we shall determine the solutions of differential equations (2.1)-(2.3) in
the following form

v, =0, U = ro(r), v: = u(r),
d, = sing(r), dy = cose (r)sinyg(r), d, = cosg(r)cosy(r). (3.2)

where u, w, ¢ and ¢ are to be determined.
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The boundary conditions for the velocity and the orientation of
molecules respectively at the two cylinders then are

w =10, u="U, at r=r,
w =, u=U,, at r=r, 3.3)
¢=0’ (I’zll/(), atr=r|
¢ =0 ¥ = i, at r=r, (3.4)

where iy, is a constant.

4. Formation of differential equations

The equation of continuity (2.1) is clearly satisfied by the velocity
components given by (3.2).
By using (2.12) and (3.2), equations (2.2), (2.3) take the forms

dlr(rov,) =00 t+priw’=0, (4.1)
d _ .
z(ro;o) + 0, =0, (‘}2)
d 4
5 (ro=) =0, (4.3)
1[ d 2
7 E(m,,)— Teo |+ & + prw’sing =0, 4.4)
1[ d 2 .
- [Z(m’”) + 7r,,,] + gs + prw’cosgsinyg =0, 4.5)
d 2
—E(rrr,,)+ 8. + aHcospcosy = 0. (4.6)

Now using (2.4) in (4.1) and then integrating, we get
p =po+f [prw +dl"+ r"“ ]dr 4.7

where p, is the pressure on the inner cylinder and
U",,=p+(r,,, &gg=p+a'oa.

Now, substituting the values of g., and o,, from (2.4), (2.7), (2.11) in (4.2),
we get

Gg, 4. &m)+ %d_dr [FPH(¢)singrcosy ¢

+ r{H(¢) + Hxg)sin’¢}n] = 0. (4.8)

https://doi.org/10.1017/50334270000001223 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000001223

[5] Effect of static magnetic field 375

Here,
tdy 1 do
£=24 "7 27ar
Hi(@) = us+ (us— uz)sin’e,
Hy(¢)= Quisin’e + us + us)cos’e,
Fi(¢) = a,cos’p + assin’p,
Fi(¢) = (a:cos’p + assin)cos’yp,
G‘(‘py ‘!’v §, n)

—smtl/[Fn(M i ;%F'(‘P)@?)z_iﬁﬂ(‘p)( w)
+%ﬁ(¢)%‘f—%simj/cosw£ Fz(ﬁo)j_(,p
—%sinq:cos;psimj/coswdw-%2%—1::(4’)

- #coszt//% Fi(o)— %simpcosqo cos’y
+2az'rsin<pcow%l]
2

d 1. d d
- tan<pc051//[ Fz(qp)d_r;k-f- ;smt{/coswd—qp- F2(<p)§(r£

2a; . - do 1 dy
+ . sm<pcos<psm(,[/cos¢dr+er(<p)dr

d dod . d
+%Fz(<p)jfd—lf— Zaz'rsmprOS(pjrB]
+ (A; + A} (&cosy + psing)cospsing
+ (A, — AZ)psin’e. 4.9

Also substituting the values of m,, e, w0, e, 8- go 8: from (2.5), (2.6),
(2.8), (2.11) in the equations (4.4) to (4.6) and then eliminating y between
them, we obtain

Gl(q’y (Ilv §7 "7) = Oa (410)
Gie, ¢, £ 1)+ prow’sinpcospcosy =0, (4.11)

where
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H = aH?,
G2(‘P’ d’r f, 1’)

= cosu| Fito) 52+ 12 Fio) (%) - 3ot Fio) (&)

1 do 1 . d d
+;F1(<p)g?—;sm¢cosw% Fle) 5

- 27 sing cose singcosy d¢+ Li F,((p)

1 ey, d @

2,250 djd(p Fxo) ;2 Singcose

~5, zsxmpcos<p51n 2 + 2asTsingpcose le]
2

d’y i do dy
+d F(e )drdr

+ tan<psim/1[ Fe)

Lt Fooyde, 20 S
+ rsmdzcosd;d(P Fz(gp)dr + ; sing cosg sinyrcosys dr

v

1 d .
+ . F2(<p)d—lrll—- 2a2'rsm(pCOS(p

+ (A + Ay) (Ecosyr + nsing)cos’ cosyr

+ (A, — A2)ésinp — Hsingcospcosy. 4.12)
Using (4.10) in (4.8) and then integrating, we get
l
Hx(g)singcosy & +{H\(¢) + Hae)sin*¢}n = 5, (4.13)

where [ is the constant of integration.
Integrating (4.3) and then substituting the value of o,, from (2.4), (2.7),
(2.11), we get

{Hi(g)+ Hi(@)cos' v} + Hip)sindrcosyy n =X, @.14)

where k is a constant of integration.
Now, solving the equations (4.13), (4.14) for £ and 7, we get

%[kr{H,(<p) + Hy(@)sin’¢} — IH (¢ )singcosi], 4.15)
%[I{H.(‘p)+ H,(¢)cos’¢} — krH (g )singcosy], (4.16)
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where
A=r’H\(¢){Hi(¢)+ HAop)}.

Some trigonometrical simplifications between (4.10) and (4.11) yields
2h(e) {42+ 18]+ L ro){(%) '+ 1)

_£E(¢){%+%sin¢cosdl}z

+sin2¢ [ (2azf - %sin2¢)3—‘r”+ % {aszinZdJ - %(1 + sin2¢)cos2¢} ]

+2(A; + Acos2¢ ) (Ecosy + nsing)

— 2Hsingcosgcos’y + 2p,wsing cose cos’y = 0, 4.17)
lll 1 dll/] de dy
Fe ){ rdr F(e )dr dr
1 de d
+ = smdzcosw +4—cot<pc052¢r> - Fx(¢) + 2assingcose

+ cosqo{% cosg sim/;(Zaz'rsimlf - af-cosw) - 2a2'rsin¢:%?}
+ (A1 — A,)(€sing — ncosy )sing cosg
~ Hcos’psinyrcosy + pyw’cos’psingcosy = 0. (4.18)

5. Solutions of differential equations for low shear
rates with a weak magnetic field

In this section, we shall examine the solutions of differential equations
(4.15) to (4.18) for low shear rates with a weak magnetic field in the axial
direction by omitting the inertial terms in (4.17) and (4.18).

In this case, the solutions of (4.15) to (4.18) are of the form

u(ry= U, + ku,(r) + lu(r) + O(k?, 1% k), 6.1
w(r)=Q, + ko (r)+ lo)(r)+ O(k? 1%, k), (5.2)
o (r)=ke(r) + loo(r) + Hos(r)+ O(k?, - - -, kl, - - ), (5.3)

W(r)= ot f(r)
= Yo+ g(r)+ kin(r) + Wa(r) + Hys(r) + O(K?,- -+ kl, -+ ), (5.4)
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where u, w, (i =1,2), ¢, ¥, (j =1,2,3), k, | and g are to be determined by
using the boundary conditions (3.3) and (3.4).
Thus, it can be shown that

e o (L) [aclmied (=)

AC- B® log(r/r) = r\r.—n

+ .- 00 (7805 k-2 (=0) | ©3)
o =0+ (U U) (585 (%) (20) (57)

A=) ()= ack () - 7], 66

¢ = D| (U= Up{ccospul(ra = rYiogr, + (- = r)logr:
—(ra- r,)logr]+—smdjolog( >log< )log( )}
(- Q.){Bcosd/o[(rz — r)logr + (r  r)logrs
= (2= n)logr] + 5 sinyelog (=) 10g (£ ) 10g (2 )}] 5.7)

U=+ E[ aH’cosyo{(r; — r)logr, + (r* — rilogr,
= (r3— r)logr} — 8a,7sinyo{(r. — r)logr,
+ (r = r)logr, — (r: — r))logr}

— 2a;c0slog ( )log ( ) log ( ) ] (5.8)

A= [2{u,,+ (us + ug)sin? (,lzo}] og <Q),

u4(U3 + us+ ué)
[(u3+ us)sin dl() ](r;—r.)
uust ustus) I\ riry J’

- [l it o) ] i ry,

Here,

n

B

ua(u3+ u4+ u5) r?’;
D= (A, + A2)
a,(u3+ u4+ uﬁ)(AC B )log(rllrz)
—_sinde__ 5.9
4a210g(r2/r1)
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6. Absence of magnetic field

The problem of helical low of incompressible cholesteric liquid crystal
between two coaxial circular cylinders having rotational and axial velocities
has been solved elsewhere [4] when there is no magnetic field. The results
obtained there are particular cases of the results obtained in this paper when
H = 0. We note that the expressions for u, @ and ¢ given by (5.5), (5.6) and
(5.7) do not contain H and hence they hold good irrespective of whether there
is magnetic field or not. However, ¢ given by (5.8) contains a term involving
H, and hence putting H =0, we get the expression for ¢ in the absence of
magnetic field as

U= o 2E[4a2-rsinq(:0{(r2— r)logr, + (r — r)logr,
- (72 - rl)logr}

+ ascosyolog (%) log <’_r2> log (:—T) ] . (6.1)

7. Conclusion

At low shear rates with a weak magnetic field in the axial direction, the
axial velocity u and the angular velocity w given by (5.5) and (5.6) remain
unaffected by the magnetic field. The angle ¢ in (5.7) determining the
orientation d, remains aiso unaffected by the magnetic field. But the angle ¢
given by (5.8) is affected by the magnetic field in having a term which varies as
the square of the magnetic field. The space variation of this term depends
upon the squares and logarithms of the radial distance.
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