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1. Historical introduction

Ising [1] proposed the problem which now bears his name and solved it for
the one-dimensional case only, leaving the higher dimensional cases as unsolved
problems. The first solution to the two dimensional Ising problem was obtained
by Onsager [6]. Onsager's method was subsequently explained more clearly by
Kaufman [3]. More recently, Kac and Ward [2] discovered a simpler procedure
involving determinants which is not logically complete.

Their purpose was to indicate the ideas involved in a combinatorial develop-
ment of a proof of the two-dimensional Ising problem, and they provided heuristic
arguments only. Feynman's unpublished simplification of their treatment contains
precisely the same logical gap, but clarifies the issue by means of an elegant
conjecture. We are grateful to R. P. Feynman for his permission to present his
work here and to M. Cohen for his kindness in communicating these details.

Our own interest in the Ising problem is enhanced by the fact that among its
many equivalent formulations, it can be regarded as an enumeration problem for
graphs, see [8]. An unpublished earlier draft of this article (1958) served as a
catalytic agent: Sherman [7] succeeded in proving Feynman's conjecture by
deriving an appropriate combinatorial theorem.

2. Statement of the two-dimensional Ising problem

Newell and Montroll [5] give a very clear exposition of the problem, but we
will restate it here for the sake of completeness. Consider as in Figure 1 a large
two-dimensional lattice L with N points. We may regard L as embedded on a torus
(by identifying both pairs of opposite sides as usual), so that each point of L is
incident with exactly 4 lines of L.

1 The preparation of this article was supported in part by a grant from the U.S. Air Force
of Scientific Research.

This paper in unpublished form played an important part in the construction of the proof
of the equivalence of the algebraic and combinatorial solution of the two-dimensional Ising model.
Although it is some years since it was written its publication will be welcomed by those interested
in this important subject. Ed.
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366 Frank Harary [2]

L: N points

Figure 1

We need a few definitions in order to state the formula for the partition
function Q belonging to L. Let k be Boltzmann's constant. The physical descrip-
tion of the problem is that we have a lattice graph in which each point has two
possible states. These states may be regarded as (a) orientation: up or down,
(b) two different kinds of atoms, (c) positive or negative charge, (d) a particle of
a gas being present or absent at each point (as in Lee and Yang [4]), etc.

Two points of L are called nearest neighbours or adjacent if they are joined
by a line of the lattice graph. If two points are not nearest neighbours then it is
assumed that there is no interaction energy between them. For definiteness, it is
stipulated that each point of the lattice is assigned an orientation which is called
either 'up' or 'down', and is symbolized by writing at the f th point the number
ff; which is either +1 or — 1 respectively. Sometimes af is called a point variable
below.

A configuration a or state of a lattice L is defined by the assignment of either
+ 1 or — 1 at each point. The energy of a configuration is given by:

(1) E = -E^ffjffy,

where the sum is taken over all nearest neighbours in the lattice. Thus each pair
of nearest neighbours has an interaction energy of —8 if their orientations are the
same, and +e if their orientations are opposed as in Figure 2.

or energy = — e

energy = +8
Figure 2

Let T be the absolute temperature of the system. The partition function Q of the
lattice is then defined as:

(2) Q = :

where the sum is taken over all possible configurations a of the lattice system.
Substituting (2) into (1) and letting a = e/kTwe get
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[3] A graphical exposition of the Ising problem 367

In equation (3), the first sum is taken over all configurations and the second sum
is taken over all pairs k of nearest neighbours. It is well known that all thermo-
dynamic properties of a system are computable from its partition function Q.
In particular, the specific heat C is obtained by successive differentiation of Q,
namely

C = ka2 a2 ing
da2 •

If we divide both sides of this last equation by N, then the left side becomes the
specific heat per particle and the right side depends on In Q/N.

An individual term of the right side of equation (3) is of the form e{"""J.
However, by a well known identity involving hyperbolic functions, we have,
since a^j = +1, the equation

(4) e""'"1 = cosh <x(l + ot <Tj tanh a).

It is convenient to make the substitution

(5) z = tanh a

On substituting equation (5) into (4) and then (4) into (3), we obtain:

(6) Q

where the product is taken over all nearest neighbours, i.e. over all lines X in the
lattice graph. The reason that the exponent IN occurs in equation (6) is that the
number of lines in L is 2N since each point of the lattice L drawn on a torus is on
4 lines and each line joins 2 points.

A typical term of this product has a certain power of z, say zb. The coefficient
of z6 is a product of the variables at of degree 2b, and is therefore based on a choice
of b lines. After summing, a term of this product is not zero if and only if each
point-variable ff; occurs an even number of times. Since there are two possible
values ffj = +1 for each of the N point-variables, each term of the product
contributes 2N to the sum. Let Ab be the number of labelled subgraphs of the
lattice in which each point has even degree and the number of lines is b, and
define Ao = 1. Then (6) may be written in the combinatorial form

(7) Q = (2Ncosh2Not)(ZAbz
b).

b

Thus the two-dimensional Ising problem of finding the partition function Q has
been reduced to the graphical enumeration problem of finding £ Abz

b.
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368 Frank Harary

3. A system of weights

Several admissible subgraphs are illustrated in Figure 3.

[4]

C« -3-

Figure 3

Each line in the graphs shown in Figure 3 is not directed. That is, each line of an
admissible subgraph does not have a prescribed direction indicated by an arrow.
However, it turns out to be convenient first to consider directed subgraphs on the
lattice, and then express the number of ordinary undirected subgraphs in terms of
the directed ones. A particular cyclic orientation of the first admissible subgraph
of Figure 3 is indicated in Figure 4.

1

1

1

Figure 4

In the process of traversing closed directed walks G on the lattice, there are
exactly four different possibilities for a directed line to take after the last directed
line, namely, it can turn left, turn right, go straight ahead, or about-face. Let Wj
be the weight assigned to the turn taken at they'th point of G. Then in Figure 5
the weights are shown for the four possible kinds of turns described above.

Left turn

Right turn

= eni/A-

, - * ' / *

Straight ahead

About-face

1

0

Figure 5

Thus in general the weight at a turn whose counterclockwise angle is 9 is given by
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[5] A graphical exposition of the Ising problem 369

(8) = eml\

except that we use weight 0 for the about-face in order to exclude this inadmissible
configuration. Let C be a directed cycle of G (not dependent on its starting point)
and let Wc be the weight of C, defined by

where the product is taken over all the turns in C. Consider

i
C = C C<=G

where C varies over all simple closed walks of an admissible subgraph G and b{C)
is the length (number of lines) of C. There are two possibilities. Either the closed
directed admissible subgraph C consists of a collection of exact retracings of some
closed walk or it does not. In any case let nc be the number of exact retracings in C.
For example in Figure 6, nc = 2.

C:

Figure 6

Consider the sum £c Wclnc. We nowmodify the right side of equation (10). Let
sb be the sum of all the weights of all closed walks of length b through a given point
ofL. There are b different possible starting points of the labelled admissible graph
C. Since Wc has a factor of z in it for each line of C, the power of z due to C is zb.
There are N different locations for the graph C. Since C winds around nc times,
there are only b/nc distinguishable starting points for the closed walk C. Collecting
these observations, we have

00 v

C<=L 6 = 4 b

Let /? denote the left side of equation (11).
It will be seen that sb is computable (it is related to the probability of eventual

return in b steps of a two-dimensional random walk). We illustrate in Figure 7
two closed directed walks of length 8.

b =
nc=

b = 8
nc = 2

1

Figure 7

https://doi.org/10.1017/S1446788700009836 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009836


370 ' Frank Harary [6]

Next consider an undirected subgraph C which is a simple closed curve with
no crossings, such as Q in Figure 3. As a closed directed walk this can occur
twice, once for each orientation of this cycle. For each of these closed directed
walks the weight is £. For the total angle through which turns occur while travers-
ing C in either direction is 2n. Then on adding — i( —1) = i twice, we get 1.
Therefore, on summing over both orientations of the cycle, we have £ Wc = z12,
in which the coefficient of z12 is 1.

We next consider an admissible graph C consisting of two simple closed curves
with no crossings or, in graphical language, of two disjoint cycles such as C5 in
Figure 3. Since by definition

P = E Wcjnc,
c

we have

(CC) nc na

Now it is clear that J?2/2! gives weight 1 for this situation; for on orienting two
disjoint cycles C and C" there are two choices of orientation for each cycle and
also a factor of two for the interchanging of the names of the cycles C and C".

Continuing in this way we get

(12) fi+ +
2! 3!

Kac and Ward tried to count oriented admissible graphs by making a 1 — 1
correspondence between terms of a determinant and oriented graphs. For this
purpose they require the following observation.

THEOREM. Let G be an admissible or inadmissible subgraph which is not oriented.
Then the sum of the terms in the determinant (see [2] for details) contributed by all
the corresponding oriented graphs is 1 or 0 respectively.

They do not prove this theorem but illustrate several special cases, as Feynman
does. However, the theorem is known to be true, since the final result agrees with
the formulation obtained by Onsager [6], and all the steps are reversible.

The insight of Kac and Ward [2] is that the sum £,, Abz
b is given by the value

of a certain complicated determinant. On the other hand Feynman's insight is
that this sum is given by ep. A rather different approach which effectively contains
Feynman's conjecture is presented in equation (31) of the paper by Hurst [10].

FEYNMAN'S CONJECTURE. It can be proved directly that the following equation
holds.
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[7] A graphical exposition of the Ising problem 371

(13) " - £ —
We have already seen from the consideration of admissible graphs, each

connected component of which consists of a simple closed curve, that e* is a
reasonable candidate for the function which counts all the admissible graphs
correctly. But now consider some important simple cases which are counted cor-
rectly even though they do not consist only of disjoint cycles.

Figure 8

We illustrate in Figure 9 the two ways of traversing the lines of Gl by closed
directed walks.

2 of this type 4 of this type

Figure 9

We now compute the contributions to the weight of the unoriented graph Gt

which arise from the two ways of traversing G1 (as shown in the first part of
Figure 9) and also from the four ways of traversing Gt (one of which is shown in
the second part of Figure 9). In this calculation we omit the powers of z from the
weights. If the formulation of Feynman is to be verified, we must have the sum
of these six weights add up to 0 since the unoriented graph Gl of Figure 8 is in-
admissible (due to the fact that it contains more than one line joining the same two
points).

The weight of each closed directed line sequence is given by —^e'e/2, where 9
is the total angle of turn. Since 6 = 0 in the orientation of the first part of Figure 9,
this gives a contribution of — \ to the weight. The opposite orientation contributes
another summand —\. Similarly the traversing of G by the two line-disjoint
directed cycles of the second part of Figure 9 has a weight of (— i)( — i) = i-
But there are four representations of Gt in this way: two for each of the two cycles.
Thus the sum of the weights in all the possible orientations of G1 is

2 ( - i ) + 4 ( + i ) = 0,

verifying that the inadmissible graph G± is not counted in ee.
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We now consider the graph G2 of Figure 8. We wish to verify that in the
expansion of ep, the sum of all terms corresponding to orientations of G2 is 0.
Here we must take into consideration that G2 winds around the same simple
cycle twice, so that nGl = 2. Thus we need to add the contribution from two terms
in the expansion of ep, namely /? and /?2/2. We have here an analogous situation
to that shown in Figure 9, for there are exactly two orientations of G2 as a single
closed directed line sequence (one is shown in the first part of Figure 10) and four
possible orientations of G2 regarded as two disjoint directed cycles (one is shown
in the second part of Figure 10).

?
Figure 10

From the first part of Figure 10 we obtain a weight of

nGl 2

for here 9/2 = 2n. Hence the contribution to the weight of the undirected graph
G2 from this orientation and its opposite is —•£.

For each of the directed cycles shown in the second part of Figure 10, the
weight is given by — ̂ ei2 l t / 2 = + -J. Call these two directed cycles A and B. Then
among other terms, /? contains wA + wB; on substituting wA = wB — \ into j82/2,
we obtain +\. This completes the verification that the total contribution to ep

provided by orientations of G2 is — i + % = 0.
Finally we consider three possible orientations of G3 in Figure 11.

t

Figure 11

Without going into details we see that contributions to the weight of the undirected
admissible graph G3 due to these three orientations and four variations are

2( i )= + l , 2 ( - i ) = - 1 , and4( i )= +1

respectively. Adding these, we get 1 — 1 +1 = +1, and G3 is counted.
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Accepting Equation (13) and substituting it into Equation (7), we get

(14) - I n g = In 2 + 2 In cosh <x+ - B.
N N

We require £ (sbfb)zb where sb is the total weight of all closed paths of length
b returning to the origin, that is, each sb is the product of factors ee'/2 where d is
the angle of turn. The following derivation will show that the numbers sb are
computable quantities.

Let (m, n) be the cartesian coordinates of a point of the lattice. As a directed
path proceeds along the lattice, at each point it can go up, down, right, or left.
We arbitrarily designate these four directions by / = 1, 2, 3, 4 as pictured in
Figure 12.

3

2 - - 1

4
Figure 12

The following definition is crucial. Let B^m, n; k) be the total weight of all
directed walks, starting from the origin, whose A:'th step terminates at the point
(m, n) and which leave this point in d'rection i, for i = 1, 2, 3, 4. It is sometimes
convenient to think of A; as a time coordinate and {m, n) as space coordinates.

This last definition does not serve to define Bt{m, «; 0). It is useful to define
this quantity as a product of Kronecker deltas:

(15) Bi{m,n\0) = dndm05tt0

As a special case of Equation (15) we have

Bi(0,0;0) = 5il

This is equivalent to saying that all paths start from the origin at time 0 and
direction 1. As an immediate consequence, we have

06) sb = 4^(0, 0; b)

The step leading to any point (m, n) can come from any of the four points
(m — 1,M), (m + \,n), (m,n—l), or (m,n+l). We wish to establish recurrence
relations for the quantities Bt(m, n; k). For these relations it is convenient to use
the abbreviations:
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(17) Pi =
p3 = p3(m,n-l;k)

In the following equations (18) the factors of the form eni/4, etc. are the weights
of the turns. There are just four ways of looking backward one step:

(18)

pi +0
P2(m,n; fc + 1) = 0 + p2

P3(m,n;k + l) = pie*
il4

ip4(m,n;k + l) = pie-"
+ 0

+ 0

We discuss the derivation of the first equation (18). The quantity Pi(m, n\k+\)
involves the departure of the directed path from the point (m, n) along direction 1.
The first term J5X is multiplied by weight 1 since it is a continuation of the path
along the same direction. The second term in the first equation of (18) is 0 since
direction 2 followed by direction 1 constitutes an about-face. The remaining two
terms of this first equation have weights obtained from a right turn and a left turn
respectively.

We note that in equations (18) there are only (&+l)'s on the left side and
there are only &'s on the right. Therefore this process is Markovian! In fact, all
these definitions have as their purpose the attainment of these Markovian quanti-
ties p{. The problem remains to solve this set of difference equations. Feynman's
solution is obtained by the ingenious use of Fourier analysis. Consider any
function/(n) defined only on integers n. Then its Fourier representation involves
only frequencies from 0 to 2n.

(19) = r L elh>{h)dh.

Let P (m, n; b) be the vector whose four components are the quantities Pj(m,n;b).
Let B(u, v; b) be the Fourier transform of the j? vector. Then we have

(20) = — { [ dudvei{mu+nv)B(u, v; b)
An Jo Jo

Here, displacement by one step amounts to multiplication of each of the four
components by e'u, e~w, e'v, e~w respectively. Therefore we obtain the following
matrix transformation for proceeding from length b to length b +1 in the B vector.

(21)

0

*i/4 -iu 0
0

B{u, v; b)
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This may be abbreviated:

(21') B(u,v;b+l) = MB(u,v;b),

by calling this matrix M. Then

(22) ~B{u,v;b) = MbB(u,v;0).

Now recall that since the initial direction is stipulated as 1,

375

(23)

Therefore,

(24) B{u,v;0) =

un0

This last equation can be verified by substituting this column vector into the
above integral expression (20). In view of equation (15) it is sufficient to find the
quantity ^ (0 , 0; b). To do this we first find ^ ( 0 , 0; b). Using both equations (20)
and (22) together with (24) and (16) we obtain

"1"
-2x

(25) sb = 4^(0, 0; b) = — f f "du dv(\, 0, 0, 0)Mb

4n Jo Jo

0

By symmetry considerations, there are three other equations which are entirely
analogous to equation (25) for the other three directions. Using all four of these
equations, we get the following very concise expression for sb:

(26) _j_t-r-
An Jo Jo

dudvTx(Mb)

in which Tr denotes the trace of a matrix. We note also that matrix M has u and v
in it. Let \M\ be the determinant of M. Using (26) and the well known result that
Tr(lnM) = In \M\, we obtain (since trace and summations are both linear):

(27) 4n2Jo

= — j | | du dvJr (In (I-Mz))

An
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Simplifying and recalling the various notations, we get

1 I f f
(28) — In Q = In 2 H In (cosh2 2a - sinh 2a(cos u + cos v))du dv.

N 2n Jo Jo
This is the partition function of the two-dimensional Ising problem and appears
in Newell-Montroll [4]. If equation (28) is rewritten in terms of 2, then it is of the
form

— inQ =
N

The quantity Ab may be found from this last equation in principle only.
We conclude with a discussion of some unsolved graph-counting problems

involving the Ising models. These are also listed in [9].

/. The Three-Dimensional Ising Problem

In graphical terms only, this celebrated unsolved problem may be stated in
the following terms. Consider a labelled graph which is a three-dimensional lattice.
A subgraph of this lattice is admissible if and only if each point is incident to an
even number of lines. In other words, a labelled subgraph is admissible if and only
if it can be written as the union of line-disjoint cycles. Let Ab be the number of
different labelled admissible subgraphs with b lines. Find a generating function
for the quantity Ab.

II. The Two-Dimensional Ising Problem with Magnetic Field

By the area of an admissible labelled subgraph of a two-dimensional lattice
we mean the minimum area enclosed by disjoint cycles constituting this subgraph.
Thus the area of an admissible subgraph is unique. Let AbtC be the number of ad-
missible labelled subgraphs with b lines and area c. Find a generating function for
the quantities AbiC.

III. The Two-Dimensional Ising Problem with Interactions Occurring Not Only
Between Nearest Neighbours

This problem involves the formulation of the partition function for the
situation in which we not only have energy interaction between nearest neighbours,
but also between pairs of points at distance 2 from each other in the lattice graph.

IV. The Paving Problem

Let us start with a two-dimensional lattice with N squares. Consider ny

squares and n2 double squares (like dominoes) such that nY+2n2 = N. In how
many ways can the lattice be 'paved' by the ny 'single titles' and he n2 'double
tiles'?

https://doi.org/10.1017/S1446788700009836 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009836


[13] A graphical exposition of the Ising problem 377

V. The Cell-Growth Problem

Consider a one celled animal which has a square shape and can grow in the

plane by adding a cell to any of its four sides. How many different connected

animals with area c are there?
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