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Abstract

We consider algebras for which the operation PC of pure closure of subsets satisfies the exchange property.
Subsets that are independent with respect to PC are directly independent. We investigate algebras in which
PC satisfies the exchange property and which are relatively free on a directly independent generating
subset. Examples of such algebras include independence algebras and finitely generated free modules
over principal ideal domains.
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Introduction

Following [3] and [12], we say that an algebra A (in the sense of universal algebra) is
relatively free on a subset X if X generates A and if every function from X to A can
be extended to an endomorphism of A. Such a set X is said to be a free generating
set or free basis or simply a basis for A. More generally, a subset X of A is said to be
A-free if every function from X to A can be extended to a morphism from (X} to A,
where (X) is the subalgebra generated by X.

Our main purpose is to study certain relatively free algebras satisfying some axioms
inspired by properties of free modules over Bezout domains. Recall that a Bezout
domain is an integral domain (not necessarily commutative) in which all finitely
generated left and right ideals are principal.

We call such algebras basis algebras. Other examples of basis algebras are provided
by independence algebras, and by free S-acts where S is a cancellative principal left
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ideal monoid. Recall that for a monoid S, an S-act is a set A on which § acts unitarily
on the left, that is, for all s € S and a € A, there is a uniquely defined element sa of
A such that la = aforalla € A and (st)a = s(ta) foralla € Aand s, 1t € S. A free
S-act is one on which S acts freely.

The notion of independence algebra was introduced by Narkiewicz {13] under the
name of v*-algebra. It was rediscovered in the nineties by Gould [7] who introduced
the term ‘independence algebra’ and initiated a study of the endomorphism monoids of
these algebras. In a recent study {2], Cameron and Szabo classify finite independence
algebras. In the present paper we describe the fundamental properties of basis algebras.
In two subsequent papers, we describe the endomorphism monoid of a basis algebra,
and, for the case of an algebra of finite rank, we use the description to investigate the
semigroup generated by the idempotent endomorphisms.

Underlying our investigations is the behaviour of two closure operators on an
algebra A. One is the standard operator which, to each subset X of A, associates the
subalgebra (X) generated by X, and which we call the subalgebra operator.

The other, which we denote by PC, maps X to the smallest ‘pure’ subalgebra of
A containing X, when A is an appropriate type of algebra. If A is an independence
algebra, then (X) = PC(X) for all subsets X of A and the exchange property is
satisfied. The latter is a powerful property which ensures, for instance, that a notion of
rank may be defined. Strictly speaking, PC is not always a closure operator; however,
in Section 1 we introduce ‘weak exchange’ algebras, defining them to be algebras for
which PC is a closure operator such that the exchange property holds for PC.

Of particular importance in the algebras under consideration is the idea of an
‘independent’ set of elements. Many concepts of independence have been used in
universal algebra (see, for example, [6]). One approach is to use independence
relative to a closure operator on an algebra. We use the term ‘independence’ for
independence relative to the subalgebra operator. For a weak exchange algebra, we
have independence relative to PC, and we call this ‘direct independence’ (see [14]).
A consequence of the exchange property for PC is that, in a weak exchange algebra
A, all maximal directly independent sets have the same cardinality, known as the rank
of A. .

Another approach to independence is based on A-freeness, and we investigate
the connections between this concept and our other two notions of independence in
Section 2. In particular, we show that for certain algebras, A-free subsets are directly
independent. These ideas are illustrated by a number of examples in Section 3.

Imposing the condition that the A-free subsets of a weak exchange algebra A are
precisely the directly independent subsets leads, in Section 4, to the notion of a ‘weak
independence’ algebra. We introduce torsion-free weak independence algebras in
Section 5. We can then characterise free generating sets, or bases, in such an algebra,
and note that a subalgebra generated by a subset of a basis is pure; this is an important

https://doi.org/10.1017/51446788700008156 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008156

[3] Relatively free algebras with weak exchange properties 357

tool in the description of the endomorphism monoid. We continue by investigating
the monoid of unary term operations of a torsion-free weak independence algebra.

We adopt the convention that a unary algebra is an algebra which has some basic
operations all of which are unary. Using our description of the monoid of unary term
operations, we classify those relatively free, torsion-free weak independence algebras
which are term equivalent to unary algebras in Section 6. This allows us to show that
such an algebra can be embedded in an independence algebra.

In the final section, we introduce basis algebras; these algebras have the property
that a basis of a pure subalgebra may be extended to a basis of the whole algebra. We
illustrate the ideas by characterising those basis algebras which are term equivalent to
unary algebras, and in which all 2-generated subalgebras are relatively free.

1. Closure operators, the exchange property and purity

For the basic ideas of universal algebra we refer the reader to [3, 8] or [12]. However,
there are substantial differences in terminology and notation in these books, and, in the
interest of clarity, we begin by describing those adopted in this paper. By an algebra
A we mean an algebra in the sense of universal algebra. Thus A comes equipped
with a set (which may be empty) of basic operations all of which we assume to have
finite arity. The operations on A derived from the basic operations and projections by
composition are called term operations. We say that an element a of A is a constant
if there is a unary (not necessarily basic) term operation with value a. It is convenient
to allow @ to be a subalgebra in the case where A has no constants. Thus (@) is the
least subalgebra of A, consisting of the constants of A. We say that an algebra A
is nonconstant if A # (#). Throughout the paper we will use the notation «, for
the constant function from A to itself with value a € A. Clearly, k, is a unary term
operation on A if and only if a is a constant.

The key to many properties of the algebras we consider in this paper is the inter-
related behaviour of two closure operators. We will see that if A is an independence
algebra, these closure operators coincide, but in general they are distinct.

Recall that a closure operator C on a set A is a function C : P2(A) - H(A),
where 22 (A) is the set of all subsets of A, such that forall X, Y € 22(A),

(1) X < CX);

(2) if X C Y, then C(X) C C(Y);

(3) C(C(X)) = C(X).

A subset of A of the form C(X) is said to be closed. The following is standard.

LEMMA 1.1. Let C be a closure operator on a set A, and X be a subset of A. Then
A is closed, the intersection of any non-empty set of closed sets is closed, and C(X)
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is the smallest closed subset of A containing X.

A closure operator C is algebraic if for all X € F(A),
C(X) = U{C(Y) : Y is a finite subset of X }.

The canonical example of an algebraic closure operator is the subalgebra operator on
an algebra A.

Let C be an algebraic closure operator on a set A. A subset X of A is said to be
C-independent, or independent with respect to C, if x ¢ C(X\ {x}) forallx € X it
is C-dependent if it is not C-independent, that is, if there is an element x of X such
that x € C(X\ {x}).

The exchange property (EP) for a closure operator C on a set A is defined as
follows:

(EP) forallx,ye Aand X C A,ifx € C(X U{y}) and x ¢ C(X),
theny € C(X U {x}).

Algebraic closure operators which satisfy the exchange property are intimately
connected with abstract dependence relations, and we now restate several fundamental
results from [3, Section VII.2] in terms of algebraic closure operators. The first comes
from the proof of Proposition VIL.2.1 in [3] (see also [12, page 50, Exercise 6 (a)]).

LEMMA 1.2. Let C be an algebraic closure operator on a set A. Then the following
conditions are equivalent:

(1) C satisfies the exchange property,
(2) ifX isa C-independent subsetof A andy ¢ C(X), then XU{y} is C-independent.

LEMMA 1.3 ([3, Lemma VIL.2.2]). Let C be an algebraic closure operator satis-
fying (EP) on a set A and let Y C X C A. Then the following conditions are
equivalent:

(1) Y is a maximal C-independent subset of X,
(2) Y is C-independent and C(Y) = C(X),
(3) Y is minimal with respect to C(Y) = C(X).

If C is an algebraic closure operator on a set A, then it is easy to see that the union
of a chain of C-independent sets is C-independent. Since @ is clearly C-independent,
a Zorn’s lemma argument gives that, for any subset X of A, there is a maximal
C-independent subset of X.

Writing a slightly generalised version of Theorem VII.2.4 of [3] in terms of closure
operators (see also [12, page 50, Exercise 6(b)]) we have the following result.
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THEOREM 1.4. Let C be an algebraic closure operator satisfying (EP) on a set A,
and let X € Y C A. If X is C-independent, then there is a C-independent subset
ZwithX € Z C Yand C(Z) = C(Y). Moreover, if Z and Z’' are C-independent
subsets of Y with C(Z) = C(Z') = C(Y), then they have the same cardinality.

In view of Lemma 1.3, a C-independent subset Z with Z C Y and C(Z) = C(Y)
is a maximal C-independent subset of Y. Such a maximal C-independent subset is
often called a C-basis of Y, but we reserve the term ‘basis’ for a free basis. In view of
Lemma 1.3 and Theorem 1.4, we can define the C-rank of Y to be the cardinality of
any maximal C-independent subset of Y. The following corollary is a straightforward
consequence of Lemma 1.3 and Theorem 1.4.

COROLLARY 1.5. Let C be an algebraic closure operator satisfying (EP) on a set
A. If X and Y are subsets of A with X C Y, then
(1) C-rank(X) < C-rank(Y),
(2) C-rank(X) = C-rank(C(X)).

Given an algebra A, we now introduce a relation on A which leads to the operator
PC, and we then determine for which algebras PC is an algebraic closure operator.

For an element a of an algebra A and a subset X of A we say that a depends on X
and write a < X if a € (@) or {a) N (X) # (#). We remark thatifa € X, thena < X,
and a < X if and only if a < (X). Note also that if ¢ is a constant, then ¢ < X;
moreover for any a € A, a < @ if and only if a € (#).

For subsets X, Y of A we say that Y depends on X, and write ¥ < X, ify < X
for every y € Y. We say that an algebra A satisfies condition (T) if for alla € A and
X,YCA,

¢y) if a<X and X <Y then a< Y.
For any subset X of an algebra A, we put
PCX)={aeA:a~< X}
Notice that PC(9) = (@).
THEOREM 1.6. The operator PC is an algebraic closure operator on an algebra A
if and only if A satisfies condition (T).

Further, if X is a subset of A and A satisfies (T), then PC(X) is a subalgebra of A.

PROOF. Suppose that PC is an algebraic closure operator on A; let a be an element
of A, and X, Y be subsets of A suchthata < X and X < Y. By definition, a € PC(X)
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and X C PC(Y). Hence PC(X) C PC(PC(Y)) = PC(Y), and so a € PC(Y), that is,
a < Y. Thus (T) holds as required.

Conversely, suppose that A satisfies condition (T). For a subset X of A and an
element a of A, it is clear, from the definition of < and the remarks above, that
X € PC(X), and that a € PC(X) if and only if a € PC(F) for some finite subset F
of X.

IfX CYCAanda € PC(X),thena < X and X < Y, sothat by (T),a < Y, that
is, a € PC(Y).

For any subset X of A, we have PC(X) C PC(PC(X)). If a € PC(PC(X)), then
a < PC(X). By definition, PC(X) < X so that, again by (T), a < X, that is,
a € PC(X).

To see that PC(X) is a subalgebra, notice first that (#) € PC(X). If ¢ is an n-ary
term operation forsome n 2 1 and xy, ..., x, € PC(X), then x; < X for each i. Now
Hxy, ..., x,) € ({x1,...,xn}) so that t(xq,...,x,) < {x1,...,x,} < X and by (T),
we have t(xy, ..., x,) < X, thatis, 7(x,, ..., x,) € PC(X) as required. O

Let X be a subset of an algebra A which satisfies condition (T); an immediate
consequence of the theorem is that (X) € PC(X) and PC(X) = PC({X}).

If A is an algebra for which the subalgebra operator satisfies (EP), we say that A
satisfies the exchange property; if PC satisfies (EP), we say that A satisfies the weak
exchange property (WEP). Note that the latter is equivalent to

(WEP) forallx,y €e Aand X € P (A),if (x) N (X U {y}) # (@)
and (x) N (X) = (@), then (y) N (X U {x}) # (@).
DEFINITION 1. An algebra is a weak exchange algebra if it satisfies (T) and (WEP).

The next lemma elucidates the relationship between the exchange property for an
algebra and the weak exchange property.

LEMMA 1.7. Let A be an algebra which satisfies (EP). Then for any a € A and
X CA a< Xifandonly ifa € (X). Consequently, PC(X) = (X) forany X C A.

PROOF. If a < X, then either a € (@) and so a € (X}, or {a) N (X) # (#). In the
latter case, let b € {a) N (X) where b ¢ (@). Then b € (WU {a}) but b ¢ () so that
by (EP), a € (8 U {b}) = (b). As b € (X), we must have a € (X} as required.

The converse is obvious. O

COROLLARY 1.8. Ifan algebra A satisfies (EP), then it is a weak exchange algebra.

PROOF. From Lemma 1.7, the subalgebra operator coincides with the operator PC.
Thus A has (WEP), and Theorem 1.6 gives that (T) holds. O
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In Section 3, we give examples of weak exchange algebras which do not satisfy
(EP), and note, in particular, that the conclusion of Lemma 1.7 does not hold in
general.

If X is a subset of any algebra A, we say that X is directly independent if for all
x € X, x # X\ {x}. Thus if A satisfies (T), so that PC is a closure operator, X is
directly independent if and only if it is independent with respect to PC. Following
[7]1 we say that X is independent if X is independent with respect to the subalgebra
operator, that is, if forallx € X, x ¢ (X \ {x)}).

Clearly, a subset of an independent subset of an algebra is independent, and a
similar statement holds for directly independent subsets. Indeed, a subset X of an
algebra is (directly) independent if and only if every finite subset of X is (directly)
independent.

The next result follows from the fact that, for a subset X and element a of an algebra
A,ifa € (X),thena < X.

LEMMA 1.9. Every directly independent subset of an algebra is independent.

The converse of Lemma 1.9 is not true as shown by the simple examples below.
Here and throughout the paper we use (left) R-modules over a ring R and (left) S-acts
over a monoid S to illustrate the concepts we introduce.

In an R-module M, the zero is the unique constant. A finite subset X of M is
directly independent if and only if X = @ or 0 ¢ X and for all families {r,},cx of
slements of the ring R, ) _, r.x = O implies that r,.x = 0 for all x € X. Thus if R
is an integral domain and M is torsion-free (that is, if € R and m € M\ {0} and
rm = (, then r = 0), then an arbitrary subset of M is directly independent if and only
if it is R-linearly independent.

Note that, regarding Z as a Z-module, {2, 3} is independent but not directly inde-
pendent.

A constant in an S-act A is an element ¢ such that for some s € Sandalla € A
we have sa = ¢, that is, A has constants if and only if s induces a constant map on A.
Note that if A is a disjoint union of non-trivial subacts, then A has no constants.

In an S-act A without constants, a subset X is directly independent if and only if
forallelements x,y € X and s, ¢t € S, sx = ry implies that x = y.

Regarding the set N of positive integers as an act over the multiplicative monoid
N, we again have that {2, 3} is independent, but not directly independent.

Specialising Lemma 1.3 to the operator PC on a weak exchange algebra gives the
following for directly independent subsets of such an algebra.

COROLLARY 1.10. A directly independent subset X of a weak exchange algebra A
is a maximal directly independent subset if and only ifa < X for all a € A.
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If A is a weak exchange algebra, then by Theorem 1.4, we can define the rank
of a subset X of A with respect to PC; it is the cardinality of any maximal directly
independent subset of X. If A also satisfies (EP), we can also define the rank of X
with respect to the subalgebra operator as the cardinality of any maximal independent
subset of X. However, it follows from Lemma 1.7 that these two ranks are equal, and
so there is no ambiguity when we refer to the rank of X with respect to PC as simply
the rank of X.

COROLLARY 1.11. Let X be a subset of a weak exchange algebra A. Then
(1) rank({X)) = rank(X) < |X|,
(2) if X is finite and rank({X)) = | X |, then X is directly independent,
(3) if B is a subalgebra of A, thenrank B < rank A.

PROOF. We have X C (X) € PC(X) so that, by Corollary 1.5,
rank(X) < rank({X)) < rank(PC(X)) = rank(X).

Thus rank({X)) = rank(X), and (1) and (2) follow by Lemma 1.3.
Finally, (3) is immediate by Corollary 1.5. O

We conclude this section by introducing the notion of purity. We say that a subset
X of an algebra A is pure, or pure in A, if X = PC(X), that is, if for each element a
of A, a < X implies that a € X. Note that (@} is always pure, and that for an algebra
A satisfying (T), the pure subsets are precisely the closed sets of the closure operator
PC. We refer to PC(X) as the pure closure of X. In view of Theorem 1.6, if a subset
is pure then it must be a subalgebra. The converse is not true in general, as examples
in Section 3 illustrate. It follows from Lemma 1.7 that all subalgebras of any algebra
satisfying (EP) are pure. In later sections we show that for certain weak exchange
algebras, the pure subalgebras play a role analogous to that of arbitrary subalgebras
of an independence algebra.

REMARK 1. Let B be a subgroup of a torsion-free abelian group A. Recall that B
is a pure subgroup of A if for every b € B and positive integer n, the equation nx = b
has a solution in B whenever it has a solution in A. Since A is torsion-free, such an
equation can have at most one solution, and hence B is a pure subgroup if and only if
it is pure in the sense of the above definition.

COROLLARY 1.12. Let A be an algebra satisfying (T). Then

(1) the intersection of pure subalgebras is pure,
(2) the pure closure of a subset X of A is the smallest pure subalgebra containing X,
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(3) for any subalgebras B, C of A with B C C, if B is pure in C and C is pure in
A, then B is pure in A.

PROOF. (1) and (2) are immediate consequences of Lemma 1.1.

Suppose that B € C, B is purein C and Cis pure in A. Forany a € A, ifa < B,
then a < C by (T), so that a € C as C is pure in A. Hence a € B, since a < B and
Bispurein C. O

It is worth mentioning that families of algebraic closure operators with the exchange
property (called matroidal structures) have recently been used by Bergman [1] in a
construction (from a given ring R) of a division ring D and homomorphism from R
into D with specified kernel and such that D is generated by the image of R. The final
section of [1] discusses the construction of matroidal structures on objects of varieties
of algebras other than modules.

2. Independence, direct independence and freeness

In the previous section, we introduced the ideas of independence and direct indepen-
dence, and noted that every directly independent subset of an algebra is independent,
but that the converse is not true. As a consequence of Lemma 1.7, in an algebra
satisfying the exchange property, the two notions coincide.

In this section we compare these concepts of independence with A-freeness. Recall
from the introduction that a subset X of A is A-free if every function from X to A can
be extended to a morphism from (X) to A.

First, we point out that @ is independent, directly independent and A-free in any
algebra A. For an element a of A, the subset {a} is independent if and only if it is
directly independent, and this is the case if and only if a ¢ (). If A = {a}, then
{a} is clearly A-free, but is neither independent nor directly independent since a is a

constant.
From the corollary on page 197 of [8] and remarks on page 49 of the same book,
we have the following.

LEMMA 2.1. If A is an algebra with |A| > 1, then every A-free subset is indepen-
dent.

In fact, we have the following stronger result.

LEMMA 2.2. If A is an algebra with |A| > 1, then every A-free subset is directly
independent.
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PROOF. Let X be an A-free subset of A. There is nothing to prove if X = @, and
so we may assume that X # @. If x € X N (@), then x is constant so that xa = x for
every morphism a : (X) — A. But A has at least two elements so that we can define
a function 8 on X with x # x8. Now 8 cannot be extended to a morphism from (X)
to A contradicting the fact that X is A-free. Hence X N (@) = @.

Now suppose that z € (x) N (X \ {x}). Thenz = f;(x) = K(xy, ..., x,) for some
terms #; and & and elements x;, ..., x, of X\ {x}.

Suppose first that (@) # @ and let ¢ € (#). Define a morphism § from (X) to A as
follows. Put x8 = x and v8 = cfor all v € X\ {x}. Then

z2=0(x)=86EB) =t6(x)B = tlxi,..., x)B =618, ..., x,B) =t:(c, ..., O).

Thus z is a constant and (x) N (X \ {x}) = (@), so that X is directly independent.

Now suppose that () = 0. Let a € A and define morphisms « and 8 from (X) to
A as follows. Put yo = aforall y € X; put xB = x and v8 = a forall v € X\ {x}.
Then

ta) = Hixa) = Hh1(x)a = L(x, ..., x)a = Lxa, ..., xa) = ha,...,a)

=nx1B, ..., xB) = tr(x1, ..., x)B = 0(x)B =1(xp) = h(x) =z
Thus z is a constant, contradicting the assumption that (#) = #. Hence
(x) N (X\[x})) =9,
and X is directly independent. a

DEFINITION 2. An algebra A is an independence algebra if it satisfies (EP) and
every maximal independent subset of A is A-free.

Clearly, every independent subset of an independence algebra A is A-free. Also,
by Corollary 1.8, an independence algebra is a weak exchange algebra. We shall be
concerned with those weak exchange algebras in which every directly independent
subset is A-free. :

3. Examples

We give some examples of algebras in which (T) holds (so that PC is a closure
operator) and examples of weak exchange algebras. Most are inspired by the known
examples of independence algebras listed in [2], although we shall see that not all the
obvious generalisations of the examples of [2] give weak exchange algebras.

As noted in the Section 2, every independence algebra is a weak exchange algebra.
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EXAMPLE 1. We begin by remarking that, for an algebra A with subalgebra B, the
relation < is unambiguous in the sense that, for any subset X of B and element b € B,
we have b < X in B if and only if b < X in A. Clearly then, if A satisfies (T), then so
does B. Since the closed sets of the closure operator PC on B are the intersection of
the closed sets of the closure operator PC on A with B, it is clear that if A has (WEP),
then so does B. Thus if A is a weak exchange algebra, then so is B.

Recall that an integral domain or a monoid S is left Ore or right reversible if for
any elements a, b of S (non-zero elements in the ring case), there are elements ¢, d of
S such that ca = db (and ca # 0 in the ring case).

EXAMPLE 2. Let M be a torsion-free (left) module M over a left Ore domain R.
We show that (T) holds; since (WEP) clearly holds for any module over any ring, it
will follow that M is a weak exchange algebra.

Letx € M and Y, Z be subsets of M such that x < Y and Y < Z. Then either

x = 0, so that certainly x < Z, or x # 0 and there are non-zeroelements r, ay, .. ., a;
in R and y;,...,y: in Y such that rx = a;y; + --- + ary,. Now y; < Z for each
i = 1,...,k, and so there are elements b, ..., b, of R such that b;y; is a non-zero

element of RZ. By the left Ore condition, we have elements ¢, d; in R such that
aa; = d b # 0. Now ¢rx # 0 since R is an integral domain and M is torsion-free,
and we have

arx = caayy + a@my: + - + aayy = diby, + ciapy, + - - + cay.
Similarly, there are elements ¢,, d; in R such that c;c1a; = dpb, # 0; czrx # 0; and

acarx = adibiy + camy, + - + oy

= qdibiyy + by, + ciazys + - - + 1Ak

Continuing in this way, we obtain an expression for a non-zero multiple of x as a
linear combination of by, ..., byy; which is an element of RZ. Hence x < Z and
M satisfies condition (T).

Since M is a weak exchange algebra, every submodule (indeed, every subset) has
a well-defined rank (the cardinality of a maximal directly independent subset of the
submodule). Since direct independence is the same as R-linear independence in M,
this rank coincides with the usual notion of rank for a module over a left Ore domain.

A submodule N of M is pure if rx € N, rx # 0 implies that x € N. Regarding
Z as a Z-module, the only pure submodules are {0} and Z. For, if B # {0} is a pure
submodule and b € B \ {0}, then b- 1 € B so that 1 € B and consequently, B = Z.
In particular, PC({2}) # (2).
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EXAMPLE 3. Let S be a left Ore monoid and let A be a (left) S-act with no constants.
If x € A and Y, Z are subsets of A such that x < Y and Y < Z, then there is an
element y € Y and elements s, ¢ € S such that sx = ¢y, and there is an element z € Z
and u, v € S such that uy = vz. By the left Ore condition, rt = wu forsome r, w € §
so that rsx = rty = wuy = wvz,andx < Z.

Thus A satisfies (T). It is routine to show that any act with no constants over any
monoid satisfies (WEP), so that A is a weak exchange algebra.

A subact B of an S-act A with no constants is pure in A if sa € B impliesa € B
where s € S and a € A. Not all subacts of such acts are pure, for example, regarding
the multiplicative monoid N of positive integers as an act over itself,, it is easy to see
that the only non-empty pure subact is N itself.

For later use, we introduce ‘acts with constants’ as follows. Let A be an S-act
which is the disjoint union of non-empty subacts B and C. For each s € §, there is a
unary operation A, on A given by the left action of s, and for each ¢ € C, we define a
nullary operation v, with value c. It is clear that no A, can be a constant function, so
C is the set of constants of A. It is clear that A satisfies (WEP), and if S is left Ore,
then condition (T) follows as above together with the fact that a constant depends on
any subset. Thus in this case, A is a weak exchange algebra.

EXAMPLE 4. Let 8 : S — G be a surjective homomorphism from a monoid S onto
a non-trivial group G. Then G can be regarded as an S-act without constants where
the action is given by s - g = (s6)g. We claim that the S-act G is a weak exchange
algebra. We have already mentioned that every act over every monoid satisfies (WEP).
To see that G satisfies (T), suppose that x € G and Y, Z are subsets of G such that
x < Yand Y < Z. Then there is an element y € Y and elements ¢, ¥ € S such that
t-x =u-y,and there is anelementz € Z and v,s € Ssuchthatv-y =s-2z. Let
u € S be such that u8 = (uf)~!. Then

ut-x=u-(t-x)=u-u-y)y=uu-y = (uu)by =y,

so (vut)-x =v-(ut-x) =v-y = s-z,and hence x < Z. Thus G is a weak exchange
algebra.

A specific example of this case is given as follows. Take G to be the free group
F G(X) on anon-empty set X, and S to be the free monoid on the set X UX ~1. We can
obtain FG(X) from S by factoring out the (monoid) congruence ~ on S generated
by {(xx7',1) : x € X}U{(x"'x,1) : x € X}. We now take 6 to be the natural
homomorphism from § onto S/ ~.

We can mimic the construction of affine algebras as given in [2, Example 3.2], but,
as we see, the algebras constructed are not, in general, weak exchange algebras.

EXAMPLE 5. Let R be a left Ore domain and M be a torsion-free (left) R-module.
We define an algebra which we call Aff(M) as follows. For each element ¢ of
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R\ {0, 1} define a binary operation u. on M by the rule: p.(x,y) = x + c(y — x).
Define a ternary operation T on M by the rule: 7(x, y,z) = x + y — z. Then Aff(M)
is the algebra with universe M and operations t and w, for all ¢ € R\ {0, 1}.

We remark that if R is the field with two elements, then t is the only basic
operation. On the other hand, if R is a division ring with more than two elements,
then, choosing e € R\{0,1}, c = e ' andd = (1 — ¢)~', we have 1(x,y,2) =
we(pa(z, ¥), ne(z, x)), so that, as in [2, Example 3.2], the basic operations of Aff(M)
can be taken to be the u. for c € R\ {0, 1}.

Note that a subset of Aff(M) is a subalgebra if and only if it is empty or is a coset
of a submodule of M. In particular, every singleton subset of M is a subalgebra, and,
in general, if X € M, then, for any x € X, the subalgebra generated by X is the coset
x + RY where Y = {x' — x : x’ € X\ {x}}. The endomorphisms of Aff(M) are the
mappings « : M — M for which there is an element my, € M and an R-linear map
6:M — M such that ma = mg + m6.

Since {x) = {x}, we have that, in this case, x < Y means x € (Y) so that (T) holds.
Moreover, the closure operator PC coincides with the subalgebra operator. However,
(EP) does not hold, in general. For example, in Aff(Z) we have 6 € ({0,2}) =0+2Z
and 6 ¢ (0) = {0}, but 2 ¢ 0+ 6Z = ({0, 6}). In fact, it is easy to see that Aff(M) is
a weak exchange algebra if and only if R is a division ring.

PROPOSITION 3.1. Let R be a left Ore domain and M be a torsion-free R-module.
Then the following conditions are equivalent:
(1) Aff(M) satisfies (EP),
(2) Aff(M) is a weak exchange algebra,
(3) Aff(M) is an independence algebra,
(4) R is a division ring.

PROOF. If R is a division ring, then by [2, Example 3.2], condition (3) holds.
Every independence algebra is a weak exchange algebra; moreover, since the closure
operator PC coincides with the subalgebra operator, (1) is a consequence of (2).

Suppose that Aff (M) satisfies (EP), and let a and m be non-zero elements of R and
M respectively. Then ({0, am}) = Ram and a’m € Ram, but a*m ¢ (0), so that, by
the exchange property, am € ({0, a*m}), that is, am € Ra’m. Hence am = ba’m for
some b € R, and since M is torsion-free, a = ba®. Thus 1 = ba since R is an integral
domain, and it follows that R is a division ring. a

4. Weak independence algebras

We introduce weak independence algebras which are defined as follows.
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DEFINITION 3. A weak independence algebra is a weak exchange algebra A in
which every directly independent subset of A is A-free.

Clearly, independence algebras are weak independence algebras; further examples
of weak independence algebras are given in the next section. Here we investigate A-
free subsets of weak independence algebras, and obtain some elementary results about
endomorphisms. We start with the following simple observation which is immediate
from the definition above and Lemma 2.2.

LEMMA 4.1. If A is a weak independence algebra with more than one element, then
the A-free sets in A are precisely the directly independent subsets.

We can use this result to show that a B-free subset of a subalgebra B of a weak
independence algebra is A-free. First, we note the following obvious result.

LEMMA 4.2. If B is a subalgebra of a weak independence algebra A, then B is a
weak independence algebra.

COROLLARY 4.3. Let B be a subalgebra of a weak independence algebra A. If
B # (@), then B-free subsets of B are A-free.

PROOF. If |B| = 1, then we must have () = @ and the unique element of B is both
directly independent and A-free.

If |[B| > 1, then, by Lemmas 4.1 and 4.2, a B-free subset X of B is directly
independent. Since direct independence is not relative to a subalgebra, it follows from
the definition of weak independence algebra that X is A-free. a

The following result is worth stressing.

COROLLARY 4.4. Let B # ({) be a subalgebra of a weak independence algebra A
such that |A| > 1. Then the following are equivalent for any X C B:
(1) X is A-free,
(2) X is directly independent as a subset of A,
(3) X is directly independent as a subset of B,
(4) X is B-free.

LEMMA 4.5.. Let A be a weak independence algebra with more than one element
and let X and Y be disjoint non-empty subsets such that X U Y is A-free. Then
(X)N(Y) = (@).

PROOFE. If p € (X) N (Y), then there are term operations ¢, s and elements
X1,...,X, € Xand y1,...,ym € Ysuchthat p = t(xy,...,%,) = sO1, -+ Ym)-
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For any a;,...,a, € A, there is a morphism« : (X U Y) —» A with x;,a = a; and
ya=yfori=1,...,nandj =1,...,m. Now
tay,...,a,) =txia, ..., x,00) = t(xy,...,X,)0 = pa

=50, YA =S, ..., Ym@) =Sty ey Ym) =P
Hence p is a constant, that is, p € (@). O

We can now prove the following more general result.

PROPOSITION 4.6. Let A be a weak independence algebra with more than one
element andlet X, Y and Z be pairwise disjoint non-empty subsets suchthat XUYUZ
is A-free. Then (X UY)N(X U Z) = (X).

PROOF. If X = @, then the result is just Lemma 4.5, so we may assume that X # 0.
If uis an element of (X U Y)N{X U Z), then there are term operations ¢, s and elements
Xiyeo s Xn, Xy ooy X, in X, y1,...,ypin Yand zy, ..., 2, in Z such that

U=1(X1, . s Xny Yiseoes Vo) = S(Xpy ooy Xy 21y oo 5 Zk)-

Let v € (X). Then there is a morphismoa : (XUYUZ) - A withxa =x forx € X,
yao=yfory € Yand za = vforz € Z. Now

U=1t(X), ooy Xny Vir-ees Yn) =010, ..., XpQ, V1O, ..., YiO)
= 0Ky e s Xy Yl ooy YO = UQ = S(X]y ooy Xy Zhy o ey UV
= S0, .. X0 0, e, R0) = S(Xp, ., XL, Uy, D).
Thus u € (X)andso (X U Y)N{(X UZ) = (X). O

We conclude this section with some elementary results connecting direct indepen-
dence and morphisms.

PROPOSITION 4.7. Let B be a subalgebra of a weak independence algebra A and
8 : B — A be a morphism. Then
(1) if6 is one-one and X C B is directly independent, then X0 is directly indepen-
dent,
(2) if Y is adirectly independent subset of B and Z C B is such that Z6 = Y and
8 is one-one on Z, then Z is directly independent.

PROOF. (1) Letx € X. If (x0) N (XO\ {x6}) # (@), then

t(x0) =1 (x6,...,x,0) ¢ (D)
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for some term operations ¢, t’ and elements xy, ..., x, of X\ {x}. Thus
t(x)0 =1t'(xy,...,x,)0 ¢ (D)

and since 6 is one-one, t(x) = t'(xy, ..., x,) € (@), contradicting the direct indepen-
dence of X.

(2) Certainly ZN (@) = @, since ZON (WO = YN (P =0V. Ifz € Z and
(z) N{Z\(z}) # (@), then t(z) = t'(zy, ..., 2,) & (@) for some term operations ¢, '
and elements z;, ..., z, of Z\ {z}. Hence

1(z20) =t ()0 =1 (21, ....2:)0 = t'(210, ..., 2,0).

Now z6 € Y so that {z6} is directly independent and hence A-free. Thus there is a
morphisme : (z0) — A with (z8)a = z,and 1 (z0)a = t((z0)a) = t(z) ¢ (F) so that
t(z0) ¢ (¥). Hence (z8) N (Y\{z8}) # (¥}, contradicting the direct independence
of Y. 0

LEMMA 4.8. Let X be adirectly independent subset of a weak independence algebra
A, andleta : X — A be one-one. If X« is directly independent, then the morphism
a.:{X) — A which extends « is one-one.

PROOF. Clearly, Ima = (Xa) and so we may regard & as a morphism from {X)
onto {(Xa). Let B : Xaa — X betheinverse of a. Since X« is directly independent and
A is a weak independence algebra, we can extend 8 to a morphism B (Xa) - (X).
It is clear that @ and B are mutually inverse and so & is one-one. O

As a simple consequence, we have the following result.

COROLLARY 4.9. Let A be a weak independence algebra. If X and Y are directly
independent subsets of A of the same cardinality, then the subalgebras (X) and (Y)
are isomorphic.

In particular, any two cyclic subalgebras different from the constant subalgebra
are isomorphic.

COROLLARY 4.10. Let t be a unary term operation on a weak independence alge-
bra A. If a, b are nonconstant elements of A, then the elements t(a), t(b) are either

both constants or both nonconstants.

PROOF. The elements t(a), 1(b) correspond under the isomorphism between (a)
and (b). ]
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5. Unary term operations and torsion-freeness

Let A be an algebra and let 7; be the set of all unary term operations on A. Clearly,
T, is a monoid under composition of functions. We show that when A is a nonconstant
weak independence algebra with more than one element the set of nonconstant unary
term operations form a submonoid T;* of T;. We use T} to introduce a notion of
torsion-freeness which generalises that for acts over cancellative monoids [11], and
discuss several properties of torsion-free weak independence algebras.

Using the fact that, in a weak independence algebra A, the directly independent
sets are A-free, the proof of the following lemma is straightforward.

LEMMA 5.1. Let s, t be n-ary term operations on a weak independence algebra A.
If there is a directly independent subset {x;, ..., x,} of A such that s(x,, ..., x,) =
t(xy,...,x,), thens(ay, ...,a,) =t(ay,...,a,) forall ay, ..., a, € A.

When we apply this to 5, ¢ € T;, we have: if s(x) = t(x) for some x € AN\ (),
thens = t.

PROPOSITION 5.2. If A is a weak independence algebra with |A| > 1 and A # (D),
then, for t € T, the following are equivalent:

(1) t =« forsomecce A,
(2) t(a) e (@) foralla e A,
(3) t(x) € (@) for some x € AN\ (D).

PROOF. If (1) holds, then c¢ a constant, so that (@) # @ and (2) holds.
Clearly, (3) follows from (2). If (3) holds, let t(x) = ¢ € (). Now «, € T; and,
since #(x) = x.(x), we have t = k. by Lemma 5.1. O

PROPOSITION 5.3. Let A be aweak independence algebrawith|A| > 1and A # (B)
andlet C = (B). Put Tc = {t € T, : t(a) € Cforalla € A}. Then T¢ is a prime
ideal of the monoid Ty, and T{ = T\ \ T¢ is a right cancellative, left Ore submonoid.

PROOF. Let t € T¢ and s € T;. By Proposition 5.2, t = k. for some constant c.
Hence ts = k.5 = k. € Tc and st = sk, = Ky € Tg, so that T is an ideal.

To say that the ideal T¢ is prime is equivalent to saying that 7}* is a submonoid of
T;. Clearly, the identity function is in T}*. Let t, u € T;*. Then, by Proposition 5.2,
t(a), u(a) € AN (9) for all a € AN\ (@), and so tu(a) € AN (D) for all a € AN (@),
thatis, tu € T;".

Letr, s, t € T and suppose that r¢t = st. Then rt(a) = st(a) forall a € A, and,
ast € T*, we have t(a) ¢ (@) for some a € A. Hence r = s by Lemma 5.1, and so
T} is right cancellative.
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Ifr,s € T, and x € A\ (9), then, by Proposition 5.2, r(x) and s(x) are non-
constants. By Corollary 1.11, (x) has rank 1, and so {r(x), s(x)} cannot be directly
independent. Hence (r(x)) N (s(x)) # (¥). Let z be a nonconstant in the intersection.
Then z = t(r(x)) = u(s(x)) for some ¢, u € T;*, and so, by Lemma 5.1, tr = us and
T; is left Ore. ]

Let A be an act over a cancellative monoid S. Specialising the definition of torsion-
freeness for general acts (see [11, page 218]), A is torsion-free if forany x, y € A and
any ¢ € S, the equality cx = cy implies x = y.

We extend this to weak independence algebras in the following definition.

DEFINITION 4. A weak independence algebra A for which T}* # @ is torsion-free
if, for any ¢ € T}* and any elements a, b of A,

(TF) if t(a) = t(b), then a = b, that is, the nonconstant unary term
operations are injective.

An immediate consequence of the definition is that 77" is left cancellative if A
is torsion-free. Hence, in view of Proposition 5.3, T;* is cancellative, and so being
torsion-free means that A is torsion-free as a 7;"-act. We record the fact that 7" is
cancellative in the following corollary.

COROLLARY 5.4. Let A be a nonconstant torsion-free weak independence algebra
with |A| > 1 and A # (9). Then the monoid T is cancellative and left Ore.

We illustrate the notion by characterising those S-acts and faithful R-modules
which are torsion-free weak independence algebras.

First, let S be a monoid and A be an S-act without constants. Each s € § induces
a nonconstant unary term operation A, given by A,(a) = sa for all a € A. Then
T, =T'=1{A; : s € S}and A : § — T defined by sA = A, is a surjective
homomorphism with S/ kerA = T;".

PROPOSITION 5.5. Let A be an S-act without constants. Then A is a torsion-free
weak independence algebra if and only if S/ ker A is cancellative and left Ore, and A
satisfies the following two conditions for all s, t € §:

(1) A, is injective,
(2) ifsa # ta for some a € A, then sx # tx forall x € A.

PROOF. If A is a torsion-free weak independence algebra, then by Corollary 5.4,
S/ ker A is cancellative and left Ore. Condition (1) is immediate from the definition
of torsion-free. Let s, € S and suppose that sa # ta for some a € A. If there is
an element x such that sx = tx, then A,(x) = A,(x). Now A has no constants, and

https://doi.org/10.1017/51446788700008156 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008156

[19] Relatively free algebras with weak exchange properties 373

so {x} is directly independent. Hence, by Lemma 5.1, A; = A, so that sa = A,(a) =
X(a) = ta, a contradiction. Thus condition (2) holds.

Conversely, if S/ ker A is cancellative and left Ore, then it follows from Example 3
that A is a weak exchange algebra.

Let X C A be directly independent, so that sx # ty forany s,z € Sandx,y € X
with x # y. Then (X) is a disjoint union of cyclic subacts, and by condition (2), each
of these subacts is isomorphic to S. Thus (X) is a free S-act on X, so that certainly X
is A-free and hence A is a weak independence algebra.

That A is torsion-free (as a weak independence algebra) is immediate from condi-
tion (1). ]

Recall that an S-act A is faithful if the homomorphism XA is injective; thus an S-act
with no constants is faithful if and only if S is isomorphic to T} = T;*. As in [11],
we say that A is strongly faithful if, for s, ¢t € § we have s 7 ¢ implies sx # ix
for all x € A. Hence a faithful act A is strongly faithful exactly when condition (2)
of Proposition 5.5 holds. Thus the following is an immediate consequence of the
proposition.

COROLLARY 5.6. Let A be a faithful S-act without constants. Then A is a torsion-
[free weak independence algebra if and only if S is cancellative and left Ore, and A is
a torsion-free strongly faithful act.

We now give the analogous result for faithful modules. Recall that an R-module is
faithful if rM # O for all non-zero elements r of R.

PROPOSITION 5.7. A non-trivial faithful R-module M is a torsion-free weak in-
dependence algebra if and only if R is a left Ore domain and M is a torsion-free
R-module.

PROOF. Suppose that M is a torsion-free weak independence algebra. Since R
acts faithfully, the multiplicative monoid of R is isomorphic to the monoid 7; of
unary term operations, and it follows that the non-zero elements of R form a monoid
isomorphic to 7. Since M is a weak independence algebra, R is a left Ore domain
by Corollary 54. If r € R,m € M \ {0} and rm = 0, then by Proposition 5.2, rn =0
forall n € M. Thus r = 0 as R acts faithfully. Hence M is a torsion-free module.

Conversely, suppose that R is a left Ore domain and M is a torsion-free module.
Example 2 gives that M is a weak exchange algebra. We have pointed out earlier that
if X is a directly independent subset of M, then (X) is a free R-module and so X is
certainly M-free. Thus M is a weak independence algebra, and clearly torsion-freeness
in the sense of Definition 4 follows from torsion-freeness as an R-module. O
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We now give several further examples of torsion-free weak independence algebras,
and we also consider two examples of weak independence algebras which are not
torsion-free.

EXAMPLE 6. Clearly, nonconstant subalgebras of torsion-free weak independence
algebras are torsion-free.

EXAMPLE 7. We saw in Example 4 that, given a homomorphism € from a monoid
S onto a non-trivial group G, we can regard G as an S-set without constants where the
action is given by s - g = (s0)g, that is, A,(g) = (s0)g. Thus A; is clearly injective
for each s € §, and A, = A, if and only if s = 10, so that S/ker A = G. It is easy
to verify that condition (2) of Proposition 5.5 holds, and so, by this proposition, the
S-act G is a torsion-free weak independence algebra.

EXAMPLE 8. Let S be a cancellative left Ore monoid, and let A be an S-act ‘with
constants’ as in Example 3 so that A is the disjoint union of nonempty subacts B and
C, and C is the set of constants. If A is torsion-free (as an S-act) and B is strongly
faithful, then arguing as in the proof of Proposition 5.5 we see that A is a torsion-free
weak independence algebra.

EXAMPLE 9. We have already remarked that independence algebras are weak inde-
pendence algebras. Now let ¢ be a unary term operation on an independence algebra
A and suppose that 1(x) ¢ (@) for some x € A. For any element a of A, there is an
endomorphism o of A with xa¢ = a since {x} is independent. As A is an indepen-
dence algebra, (EP) gives that (x) = (1(x)) so that x = s(¢(x)) for some unary term
operation s. Now a = xa = (s(#(x)))a = s(t(xa)) = s(¢(a)) and it follows easily
that A is torsion-free.

EXAMPLE 10. Let M be a cancellative left Ore monoid with |M| > 1 and trivial
group of units, and let Mx be the free M-act on {x}. Let A = Mx U {b, c} be
the algebra with nullary operations v,, v, (with values b, ¢ respectively), and a unary
operation t,, for each element m of M, where 1,,(m'x) = (mm’)x forallm’ € M, and
t(b) = b, ty(c) = c, and 1,(b) = t,(c) = c for m € M\ {1}. It is easy to see that
M is a weak exchange algebra. The only directly independent subsets of A are the
singleton subsets of Mx, and these are precisely the A-free subsets, so that A is a
weak independence algebra. Clearly, A is not torsion-free, but it is worth noting that
we do have #(a) = t(b) implies a = b for nonconstant elements a, b and nonconstant
unary operations z.

EXAMPLE 11. Let M be a left Ore, right cancellative monoid which is not left
cancellative. Then M, regarded as an M-act has no constants, and it is a weak
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independence algebra which is not torsion-free. The left Ore condition ensures that the
directly independent sets are the singletons. If m, n € M, then, by right cancellation,
there is a well defined M -morphism 6 from Mm to M given by (sm)8 = sn. Thus,
every singleton subset is M -free, and so M is a weak independence algebra It is not
torsion-free because it is not left cancellative.

Monoids with the appropriate properties exist, for example, the opposite monoid
M of the additive monoid P of all ordinals less than ¢, (the least e-number). For, P
is left cancellative, and if «, 8 are any members of P, then there is an ordinal ¥ in P
greater than both ¢ and 8. Now, ¥ € P and o + @” = 0¥ = B + w” so that P is
right Ore but not right cancellative.

We now turn our attention to determining when a subset of a torsion-free weak
independence algebra A is a free generating set for A.

We start by demonstrating the purity of a subalgebra associated with a pair of
endomorphisms. This will also play a role in subsequent papers describing the
endomorphism monoids of certain torsion-free weak independence algebras.

LEMMA 5.8. Ifa, B are endomorphisms of a torsion-free weak independence alge-
bra A, then S, 5 = {a € A : aa = ap} is a pure subalgebra of A.

PROOF. It is easy to see that S, g is a subalgebra. Suppose that a < S, . Then,
either a € (@) so that a € S, 4, or t(a) € S,p with t(a) ¢ (@) for some term
operation ¢. In this case, we have t(aa) = t(a)a = t(a)B = t(aB), and so, since A
is torsion-free, ax = af and a € S, 4.

Thus S, g is pure. O

COROLLARY 5.9. Ifa is an idempotent endomorphism of a torsion-free weak inde-
pendence algebra A, then Ima is pure in A.

PROOF. It is enough to note that since « is idempotent, Ima = S, , where. [ is the
identity automorphism of A. O

PROPOSITION 5.10. Let X be a subset of a torsion-free weak independence algebra
A. If X is directly independent, then for any subset Y of X, the subalgebra (Y) is pure
in (X).

PROOF. If Y = @, there is nothing to prove. Otherwise, choose yg € Y; since A is
a weak independence algebra, there is a morphism ¢ : (X) — A with yo = y for all
y € Yand xa = y, forall x € X\ Y. Clearly, we may regard o as an endomorphism
of (X), and Ima = (Y). Now (X) is torsion-free and a weak independence algebra,
so by Corollary 5.9, (Y) is pure in (X). ]
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We now consider relatively free torsion-free weak independence algebras. We
remark that, as we see from Examples 10 and 11, torsion-freeness is not a consequence
of being relatively free, and, of course, not all torsion-free weak independence algebras
are relatively free, an example being the group of rationals regarded as a Z-module. We
remind the reader that, by the definition of weak independence algebra and Lemma 4.1,
a (free) basis in such an algebra A where |A| > 1 is the same thing as a generating set
which is directly independent.

The following is an immediate consequence of Proposition 5.10.

COROLLARY 5.11. Let A be a relatively free torsion-free weak independence alge-
bra. If Y is a subset of a basis of A, then (Y) is pure in A.

The next result gives several characterisations of the notion of basis in a relatively
free torsion-free weak independence algebra.

THEOREM 5.12. Let A be a torsion-free weak independence algebra with more
than one element and A # (@). For a subset X of A, the following conditions are
equivalent:

(1) X isabasis of A,

(2) X isdirectly independent and (X) = A,

(3) X is a maximal directly independent subset and (X) is pure,

(4) X is a maximal directly independent subset and (X'} is pure for every finite
subset X' of X,

(5) X is aminimal generating set and (X'} is pure for every finite subset X’ of X.

PROOF. We have already noted that (1) and (2) are equivalent.

Suppose that A = (X) and X is directly independent. Certainly, (X} is pure, and,
by Proposition 5.10, for every finite subset X’ of X, the subalgebra (X’) is pure.

Further, every element of A depends on X so that by Corollary 1.10, X is a maximal
directly independent set. Thus both (3) and (4) follow from (2).

To see that (5) is also a consequence, note that if Y is a proper subset of X
and (Y) = A, then for any x € X\\Y we have x € (Y) contradicting the direct
independence of X.

If (3) holds, then (X} = A by Corollary 1.10, and so we have condition (2). If (4)
holds, then, for any element a of A, we have a < X. Hence a < X’ for some finite
subset X’ of X. Since (X'} is A-pure, a € {X’) and so (X) = A and (2) holds.

Finally, if (5) holds and X is not directly independent, then x < X\ {x} for some
x € X. Hence x < X’ for some finite subset X’ of X\ {x} so that x € (X’) by the
purity of (X'). Hence A = (X\\{x}) contradicting the minimality of X. Thus X is
directly independent, and hence (2) holds. O
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From the theorem we see that if a directly independent set generates a weak
independence algebra, it must be a maximal directly independent subset. Since
the rank of a weak independence algebra is the cardinality of any maximal directly
independent subset, it follows that all bases of a relatively free weak independence
algebra A with more than one element have the same cardinality, and that this is the
rank of A. Thus we can rephrase Corollary 1.11 as follows.

COROLLARY 5.13. Let A be a nonconstant relatively free torsion-free weak inde-
pendence algebra with more than one element. Then

(1) if X isabasis of A, then | X| =rank A,
(2) if X is a finite subset of A, and ifrank({X)) = |X|, then X is a basis for (X).

6. Unary algebras

We follow the convention that an algebra is unary if its set of basic operations is
not empty and consists entirely of unary operations.

Two algebras on the same underlying set are said to be term equivalent if their sets
of n-ary term operations are the same for each positive integer n. An algebra which
has only nullary and unary basic operations is term equivalent to a unary algebra, and,
in view of Proposition 5.2, two such algebras which are weak independence algebras
(each having nonconstant elements) are term equivalent if and only if they have the
same constants and the same nonconstant unary term operations.

Our object in this section is to classify certain weak independence algebras with
only nullary or unary basic operations (namely, those which are relatively free and
torsion-free) up to term equivalence,

Let T be a cancellative left Ore monoid with 7 # {1}. Let X be a non-empty set,
Fx be the free T-act on X and C be a torsion-free T-act. Put A = Fy U C; then, for
each ¢t € T, there is a unary operation A, on A given by the left action of T, and for
each ¢ € C, we define a nullary operation v, with value ¢. Then A is an ‘act with
constants’ as in Example 3, and since free acts are strongly faithful, A is a torsion-free
weak independence algebra by Example 8.

It is clear that A is relatively free with basis X.

We call an algebra constructed in this way, a standard weak independence algebra
over T.

THEOREM 6.1. Let A be a torsion-free weak independence algebra which is term
equivalent to a unary algebra. Suppose that |A| > 1 and A # (8). If A is relatively
free, then A is term equivalent to a standard weak independence algebra.
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PROOF. Let C = (), and, using the notation of the previous section, let T; be the
monoid of unary term operations on A. Put T = T* and K = T¢. To show that A is
term equivalent to a standard weak independence algebra, we have to construct such
an algebra over T with underlying set A, and set of constants C.

Certainly, the action of T on A, defined by 7 - @ = t(a), makes A into a T-act with
subact C. Moreover, because A is a torsion-free algebra, C is a torsion-free T-act.

By Corollary 5.4, T is cancellative and left Ore. Let X be a basis for A, and
put F = AN\ C. We complete the proof by showing that F is the free T-act on X.
Certainly, X C F, and it follows from Proposition 5.2 that F is a T-subact of A. Now
X generates A, and since A is term equivalent to a unary algebra, every element of F
can be written as #(x) for some x € X and r € T. Thus X generates F as a T-act.
Now suppose that sx = ¢y forsome s,t € T and x,y € X. Then (x) N (y) # C, but
X is directly independent, and so x = y. It now follows from Lemma 5.1 that s = r.
Thus, by [11, Definition 1.5.11], F is the free T-act on X. ‘ O

We can use the theorem to show that an algebra of the type under consideration can
be embedded in a special way in an independence algebra. First, we need a lemma
which must be well known but does not appear to be written down anywhere.

LEMMA 6.2. Let T be a cancellative, left Ore monoid, and let G be its group of
quotients. If C is torsion-free T-act, then C can be embedded as a T-subact in a
G-act.

PROOF. It follows from [9, Corollary 8.1.9] that the tensor product G ®r C is a
(left) G-act. Of course, D = G ®r C is also a T-act and there is a T-morphism 6
from Cto D given by ¢ = 1 ® c. We complete the proof of the lemma by showing
that € is one-one.

If1®c=1® ¢, then, by [9, Proposition 8.1.8], ¢ = ¢ or there are elements

gi,.--.81inG,cy,...,co1inCandsy, ..., S, t, ..., oy in T such that
1 =gs si1c=1¢
ity = 25 52€1 = h&
g,t,= .g.i;lsH-l si+.l.(-:i“=. .i.+'|Ci+x
groitnt = Ls, e = .

In the latter case, we choose n to be as small as possible. Since T is left Ore, there
are elements u, v in T such that ur, = vs; sothatif n > 2, we have a shorter sequence
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of equations
-1
1= (gru=")(us1) (us))c = (vh)ey
(g1u™ ) (vp) = g5 530 = BC3
8353 = 8454 $4C3y = IyCy
Bn—tthy = s, SpCn1 = C.

Thus we may assume that n = 2 and that our sequence of equations is

1 =g siIc=4a

gith = 52 $0 = c.

Hence 1, = 515, so that s,¢ = tj¢ = s15¢; = 51, and since C is torsion-free, we
have ¢ = ¢’ as required. 0

We now recall the following terminology. For an algebra A and positive integer
n, let T,(A) be the set of n-ary term operations on A and put T(A) = [, T,(A).
We say that an algebra A is a reduct of an algebra B if A C B and for every n, each
element of 7, (A) is the restriction to A” of some member of 7, (B).

COROLLARY 6.3. Let A be a nonconstant torsion-free weak independence algebra
with more than one element and A # (0). If A is relatively free and term equivalent
to a unary algebra, then A is a reduct of an independence algebra.

PROOF. It is enough to prove the result for a standard unary-nullary torsion-free
weak independence algebra A = Fx U C over T. Let G be the group of left quotients
of T. Then, by Lemma 6.2, C can be regarded as a T-subact of a G-act D. Let Fy be
the free G-set on X and consider the standard weak independence algebra B = FxUD
over G. In fact, B is an independence algebra, and, clearly, A is a reduct of B. O

COROLLARY 6.4. Let A be a nonconstant relatively free torsion-free weak inde-
pendence algebra with more than one element and A # (@). If A is finite and term
equivalent to a unary algebra, then A is an independence algebra.

PROOF. As in Corollary 6.3, we may take T to be the monoid 7}* of nonconstant
unary operations on A. Thus T is finite and the result follows. a

7. Basis algebras

After defining various classes of basis algebras, and giving examples, we consider
their elementary properties, and then characterise the algebras in the different classes
which are term equivalent to a unary algebra. We start with the following definition.
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DEFINITION 5. A basis algebra A is a torsion-free weak independence algebra
which satisfies the following condition:

(PEP) if P, Q are pure subalgebras in A with P C @, and X is a basis for P, then
there is a basis Y for Q with X C Y.

Since (@) is a pure subalgebra of A with basis @, it follows that if P is a pure
subalgebra of A, then it has a basis (and so is relatively free). In particular, a basis
algebra is a relatively free algebra. We remark that (@) is always a basis algebra.

We may regard (PEP) as a converse to Proposition 5.10 which says that if a
subalgebra has a basis which can be extended to a basis of A, then it is pure.

Our first examples of basis algebras are provided by independence algebras; they
are basis algebras because the exchange property guarantees that every independent
subset of a subalgebra can be extended to a basis for that subalgebra. The next lemma
gives more examples. '

LEMMA 7.1. A relatively free torsion-free weak independence algebra which is term
equivalent to a unary algebra is a basis algebra.

PROOF. By Theorem 6.1, it is enough to prove the result for a standard weak
independence algebra A over a cancellative left Ore monoid T. Let A = Fy UC
be as in Section 6. It is easy to see that the pure subalgebras of A all have the form
B = Uyey TyUC, where Y C X. Moreover, abasis of B is of the form {u,y : y € Y}
where each u, is a unit of 7. That (PEP) holds is now immediate. ]

Next, we show that relatively free subalgebras of basis algebras are also basis
algebras.

PROPOSITION 7.2. Let B be a relatively free subalgebra of a basis algebra A where
|A] > 1. Then
(1) B =PC(B),
(2) B is a basis algebra.

PROOF. If B = (#), then B = PC(B), and we have already remarked that (@) is a
basis algebra.

Suppose therefore that B # (¥). For (1), we note that by Corollary 1.5, B and
PC(B) have the same rank. They are both relatively free, so that if X and Y are bases
for B and PC(B) respectively, then there is a bijection from X to Y which extends to
an isomorphism from (X) = B to (Y) = PC(B).

In view of (1), to prove (2), it is enough to show that PC(B) is a basis algebra.
We have already remarked that a subalgebra of a torsion-free weak independence
algebra is a torsion-free weak independence algebra. If P and Q are pure subalgebras
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of PC(B), then by Corollary 1.12, P and Q are pure subalgebras of A. In view of
Corollary 4.4, (PEP) holds for PC(B) since it holds for A. O

Further examples of basis algebras are provided by free modules of finite rank over
Bezout domains.

EXAMPLE 12. As mentioned in the introduction, a Bezout domain is an integral
domain in which finitely generated left and right ideals are principal. We remark that
a Bezout domain is the same thing as an integral domain which is a Hermite ring in
the sense of [10].

Now let R be a Bezout domain and F be a finitely generated free left R-module.
By [4, Proposition 1.1.4], every finitely generated submodule of F is free.

Suppose that B is a pure submodule of F. This means that if r is a non-zero
element of R and ra € B where a € F, then a € B. Then F/B is finitely generated
and torsion-free, and hence, by [5, Proposition 1.1.9], free. Thus the exact sequence
0—- B— F — F/B — 0 splits, so that B is a direct summand of F and hence
finitely generated. Consequently, B is free. Thus if C is also a pure submodule and
B C C, then B is a direct summand of C, and any basis of B can be extended to one
for C. That is, (PEP) holds and F is a basis algebra.

As noted above, as well as being a basis algebra, such a free module F has the
additional property that every finitely generated submodule is free; if R is a principal
ideal domain, then by the corollary of [4, Proposition 1.1.4], every submodule is
finitely generated, and hence free. Not all basis algebras share these properties, for
example, it follows from Lemma 7.1 that the N-act N, considered in Example 3, is
a basis algebra, but it is clear that the subact generated by {2, 3} is not free. These
observations lead to the following definitions.

Let x be a cardinal. A basis algebra A is k-free if every subalgebra of A having
a generating set of cardinality at most « is relatively free, that is, has a basis. (This
terminology is inspired by the term right a-fir in [4].) We say that A is semihereditary
if it is n-free for all positive integers n; hereditary if it is k-free for k = |A|; and stable
if it is «-free for k = rank A.

The terminology, semihereditary and hereditary, is justified by the fact that, by
Proposition 7.2, relatively free subalgebras of a basis algebra are themselves basis
algebras. As we have just observed, finitely generated free modules over a Bezout
domain (principal ideal domain) are semihereditary (hereditary). Also, since the class
of independence algebras is closed under taking subalgebras, independence algebras
are hereditary basis algebras.

Returning to the general case, we remark that any basis algebra is 1-free, but not
necessarily 2-free, as seen above. The next result tells us when a basis algebra is
2-free.
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PROPOSITION 7.3. A basis algebra is 2-free if and only if it satisfies the following
condition:
(FGC) any two elements of a cyclic subalgebra generate a cyclic subalgebra.

PROOF. Let C be a cyclic subalgebra of a basis algebra which is 2-free. Then C is
free of rank 1. If B is a subalgebra of C generated by two elements, then B is free by
assumption. Also rank B < rank C by Corollary 1.11, so that B is cyclic.

Now suppose that A is a basis algebra which satisfies condition (FGC), and let a, b
be elements of A. Now, by Corollary 1.5 and Corollary 1.11,

rank{a, b} = rank{{a, b}) = rank PC({a, b}).

Since A is a basis algebra, PC({a, b}) is arelatively free subalgebra of A. IfPC{{a, b})
is cyclic, then by assumption ({a, b}) is cyclic, and hence relatively free. Otherwise,
PC({a, b}) has rank 2, and hence rank{a, b} = 2. Thus {a, b} is directly independent,
and hence A-free. Thus the subalgebra ({a, b}) is relatively free, and it follows that A
is 2-free. O

As an easy consequence, we have the following.

COROLLARY 7.4. If A is a 2-free basis algebra, then every finitely generated sub-
algebra of a cyclic subalgebra is cyclic.

We conclude by characterising those semihereditary or hereditary basis algebras
which are term equivalent to unary algebras.

PROPOSITION 7.5. Let A be a relatively free torsion-free weak independence algebra
which is term equivalent to a unary algebra, and let T{' be the monoid of nonconstant
unary operations on A. Then the following conditions are equivalent:

(1) A is a semihereditary basis algebra,

(2) A is a2-free basis algebra,

(3) A satisfies condition (FGC),

(4) every finitely generated left ideal of T} is principal.

PROOF. By Theorem 6.1, it is enough to prove the proposition for a standard weak
independence algebra A over a cancellative left Ore monoid T. Let A = Fxy U C be
as in Section 6, and note that 7* = T.

By Lemma 7.1, A is a basis algebra.

If (1) holds, then every finitely generated subalgebra is free, and so A is certainly
2-free.

Conditions (2) and (3) are equivalent by Proposition 7.3.
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Suppose that (3) holds and let s, t € T. Choose x € X and consider sx, tx € Tx.
Then sx, tx are in the cyclic subalgebra (x) = Tx U C, and so, by condition (FGC),
the subalgebra (sx, tx) is cyclic. Let (sx, tx) = {y) = Ty U C. Now y is in one of
Tsx, Ttx and it follows that Ts U Tr = Ts or Ts U Tt = Tt. Hence every finitely
generated left ideal of T is principal. '

Now suppose that (4) holds, and let B = |J,, Tsix; U C, where [ is finite and
{xi:iel} S X.Foranyiel,letl;={j €l :x; =x;}andlet J C I be a set of
representatives from the sets I;. Each I; is finite so that the left ideal 7, = Uje L TS
is principal by assumption, with generator f; say. Now B = |J,., Tt:x; U C which has
basis {t;x; : i € J}, and hence is relatively free. Thus A is semihereditary. 0

Similar arguments to those for Proposition 7.5 give the following proposition.

PROPOSITION 7.6. Let A be a relatively free torsion-free weak independence algebra
which is term equivalent to a unary algebra, and let T} be the monoid of nonconstant
unary operations on A. Then the following conditions are equivalent:

(1) A is a hereditary basis algebra,
(2) A satisfies the following condition:

(C) every subalgebra of a cyclic subalgebra is cyclic,
(3) every left ideal of T} is principal.
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