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Abstract

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian
schistosomatids particularly in the southern hemisphere. This is changing and current research
emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to
this effort, nine ducks (Spatula cyanoptera, S. versicolor, Netta peposaca), 12 swans (Cygnus
melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults
and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morpho-
logical and molecular analyses (28S and COI genes). Four different schistosomatid taxa were
retrieved from birds: Trichobilharzia sp. inN. peposaca and S. cyanoptera that formed a clade; S.
cyanoptera and S. versicolor hosted Trichobilharzia querquedulae;Cygnusmelancoryphus hosted
the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae
gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous
work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that
based on molecular analyses grouped with T. querquedulae. This study represents the first
description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.
melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-
preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described,
but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electronmicroscopy of T.
querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic
importance. Authors stress the need for additional surveys of avian schistosomatids from the
Neotropics to better understand their evolutionary history.

Introduction

Schistosomatids (Digenea: Schistosomatidae) are digenetic flukes inhabiting the venous and
arterial systems of birds and mammals, with the medically noteworthy genus Schistosoma
Weinland, 1858 as the most well studied taxon. This family is currently composed of 17 genera,
13 of which are found parasitising different orders of freshwater and marine birds (Gibson et al.,
2002; Horák et al., 2015; Flores et al., 2021; Lorenti et al., 2022). As part of the phylogenetic clade
“Derived avian schistosomes”, hereafter clade DAS (sensu Brant & Loker, 2013), the genus
Trichobilharzia Skrjabin&Zakharow, 1920 is considered themost speciose with about 40 species,
mostly parasitising birds of order Anseriformes, and is globally distributed (Brant & Loker, 2009,
2013; Horák et al., 2015; Ebbs et al., 2022).

The life cycle of avian schistosomatids is not as complex compared to other digeneans
because it requires only one intermediate host, an aquatic snail, rather than two or three. The
snail hosts become infected with schistosomatids when miracidia in feces or nasal secretions of
the infected bird hosts are released into the water. In the snail, sporocysts and then furcocer-
cariae will develop, the latter is the infective stage to the birds (Horák & Kolářová, 2011; Horák
et al., 2012). Once the furcocercaria penetrates the skin of the new bird host, it transforms into a
schistosomula and migrates through the bloodstream to reach sexual maturation in the nasal,
arterial, or venous system depending on the schistosomatid species. However, when these
furcocercariae accidentally penetrate humans, it causes a zoonotic allergic condition of a
cutaneous manifestation called cercarial dermatitis or swimmer’s itch (Horák et al., 2015).
The zoonotic cercarial dermatitis has been reported in both Argentina and Chile (Flores et al.,
2015; Oyarzún-Ruiz et al., 2022).
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Host specificity of avian schistosomatids to their mollusk inter-
mediate host has been shown to be somewhat narrow but often not
restricted to a single species (Horák & Kolářová, 2011; Horák et al.,
2015). Unlike the mollusk hosts, reports suggest that the specificity
of schistosomatids to their avian hosts is not as restricted to a single
species of host or host group (Brant & Loker, 2009; Ebbs et al.,
2016). The appearance of schistosomatid host specificity in the
absence of experimental work can be due to consistent ecological
and behavioral traits of their avian hosts (Ebbs et al., 2016).
Although more studies are needed, there are examples of species
that only have been found in a particular host group such as
Allobilharzia visceralis Kolářová, Rudolfová, Hampl & Skírnisson,
2006 parasitising only swans in theNorthern hemisphere (Kolářová
et al., 2006; Brant, 2007; Hayashi et al., 2017), Anserobilharzia
brantae (Farr & Blankemeyer, 1956) Brant, Jouet, Ferte & Loker,
2013 in geese,Trichobilharzia physellae (Talbot, 1936)McMullen&
Beaver, 1945 in diving ducks and Trichobilharzia querquedulae
McLeod, 1937 in blue-winged ducks (Brant & Loker 2009, 2013;
Ebbs et al., 2016). Although these species represent a few examples,
the continued use of molecular tools and phylogenetic analyses can
help establish if this phenomenon is more or less widespread in the
avian schistosomes (Brant & Loker, 2009, 2013).

Flores et al. (2015) summarised the schistosomatid taxa
reported in South America but in the past decade since that
summary, there have been several more investigations into the
systematics of schistosomatids parasitising aquatic birds (see Ebbs
et al., 2016; Pinto et al., 2017, 2022; Flores et al., 2021; Lorenti et al.,
2022) revealing considerable new diversity. The focus of this work
will be on waterfowl hosts (Anseriformes) in the Neotropics
because much of the discovered diversity has come from this group
of avian hosts. These hosts are also the host most likely to overlap
with people in recreating or working aquatic areas; thus, the zoo-
notic potential to transmit cercarial dermatitis.

In Neotropical waterfowl there have been six species of avian
host reported to have schistosomatids; white-cheeked pintail (Anas
bahamensis Linnaeus), yellow-billed pintail (Anas georgica Gme-
lin), blue-winged teal [Spatula discors (Linnaeus)], silver teal [Spat-
ula versicolor (Vieillot)], muscovy duck [Cairina moschata
(Linnaeus)], and the black-necked swan [Cygnus melancoryphus
(Molina)] from Argentina (Szidat, 1951; Flores et al., 2015, 2021;
Ebbs et al., 2016), Brazil (Travassos et al., 1969; Freitas & Costa,
1972; Leite et al., 1978, 1979; Pinto et al., 2017), Chile (Oyarzún-
Ruiz et al., 2019), and Cuba (Sánchez et al., 2018).

If the species richness of Neotropical waterfowl is considered,
only a small fraction of these have been reported as definitive hosts
of avian schistosomatids. Therefore, it is not a case of low species
richness of these schistosomatids in birds, but rather a minimal
effort in the study of their helminth fauna, particularly for schisto-
somatids (Agüero et al., 2016; Oyarzún-Ruiz & González-Acuña,
2021). To date, despite only a small proportion of anseriform host
diversity having been examined, there are already five species
belonging to three genera of avian schistosomatids that have been
described: Trichobilharzia, Nasusbilharzia Flores, Viozzi, Casalins,
Loker & Brant, 2021 and Dendritobilharzia Skrjabin & Zakharov,
1920 (Leite et al., 1978; Ebbs et al., 2016; Flores et al., 2015), with
Nasusbilharzia restricted to the Neotropics (Flores et al., 2021).
Only two of the five species, both from Argentina, have been
molecularly characterised: T. querquedulae and Nasusbilharzia
melancorhypha Flores, Viozzi, Casalins, Loker & Brant, 2021 (Ebbs
et al., 2016; Flores et al., 2021). In Chile there are two previous
records of avian schistosomatids parasitising aquatic birds (i.e.,
Chilean flamingo [Phoenicopterus chilensis Molina] and C.

melancoryphus), but none of these studies included a morpho-
logical or molecular characterisation, only the histopathological
discoveries from the infected birds (Paré & Black, 1999; Oyarzún-
Ruiz et al., 2019). In Argentina and Brazil, studies have found avian
schistosomatids in gulls and penguins (Brant et al., 2017; Vanstreels
et al., 2018; Lorenti et al., 2022).

To continue to advance our impoverished understanding of the
evolutionary ecology and life history of avian schistosomatids in the
Neotropics, this study aimed to use both morphological and
molecular features to characterise the avian schistosomatids para-
sitising waterfowl and freshwater snails in Chile and Argentina.

Material and methods

Sampling and necropsy of waterfowl

The sampling of waterfowl from Chile (Ñuble region, Biobío
region, and Los Ríos region) and Argentina (La Pelada, Corrientes
province) was performed between January 2019 and January 2021.
Five carcasses of C. melancoryphus (died by natural causes) from
the Ramsar site Carlos Anwandter Nature Sanctuary, Los Ríos
region, Chile, were retrieved following an official permission for
research by the state organisation CONAF (Permission number
1201020). Seven wild black-necked swans from different localities
fromÑuble and Biobío regions, whichwere euthanised for humani-
tarian reasons at Centro de Rehabilitación de Fauna Silvestre,
Universidad de Concepción, Chillán, Chile, were also included in
this study. In addition, the carcasses of six wild cinnamon teal
[Spatula cyanoptera (Vieillot)] from Ñuble region hunted by cer-
tified hunters, following the hunting state law Ley de Caza no.
19.473 (SAG, 2018), were also included. For Argentina, one rosy-
billed pochard [Netta peposaca (Vieillot)] from La Pelada, Cor-
rientes province, collected during 2013, and two S. versicolor from
Estancia Santa Rita, Buenos Aires province, and Gualeguaychú,
Entre Ríos province, both collected during 2014, were included as
part of this study (Figure 1).

For the necropsy, the nasal mucosa and turbinate, heart and
associated blood vessels, mesenteric blood vessels and its ramifica-
tions, liver, lungs, and kidneys were examined for the presence of
avian schistosomatids following Lutz et al. (2017). The isolated
trematodes were relaxed in citrated saline and fixed and preserved
in 80% ethanol. Worms for molecular analyses were preserved in
absolute ethanol and kept at -20°C (Christiansen et al., 2016;
Kolářová et al., 2010; Horák et al., 2012). An additional pool of
worms was preserved in 80% ethanol for scanning electron micros-
copy (SEM) (Oyarzún-Ruiz et al., 2022). Small fragments of worms
aimed for SEM were previously sliced and preserved for molecular
analyses. Parasitological descriptors such as prevalence (P), mean
intensity (MI) and mean abundance (MA) were estimated and
interpreted following Bush et al. (1997).

Cercarial emergence and dissection of snails

In an attempt to elucidate the life cycle of the avian schistosomatids
belonging to clade Q, sensu Brant & Loker (2009), a total of 1,390
Physa cf. acuta Draparnaud (Physidae) snails were collected
between 2019 and 2020 in different freshwater bodies from Ñuble
region (n = 351), Biobío region (n = 819), and Los Ríos region (n =
220) in Chile. In addition, during 2015, 10 Physa sp. snails were
collected from Laguna Fantasma, Río Negro province, Argentina
(Figure 1).
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To examine snails for infections, they were pooled in cell culture
plates (maximum five snails per well) under artificial light for a 12-
hour light:12-hour night period during three consecutive days.
Once a well was found with furcocercariae, the snails were arranged
in individual wells to identify the ones that were parasitised. When

the cercarial emergence period completed, all snails were dissected
under stereomicroscope to look for prepatent infections (i.e., pres-
ence of sporocysts in the tissues) (Oyarzún-Ruiz et al., 2022). The
cercariae were identified morphologically following Schell (1985)
and Ostrowski de Núñez (1992).

Figure 1.Map of sampled localities in Chile and Argentina. Circles indicate collections from Chile (A-F). Ñuble region: A = Cobquecura; B = Nebuco; C = Ninquihue; D = Quillón; Biobío
region: E = Santa Clara; Los Ríos region: F = Carlos Anwandter Nature Sanctuary. Diamonds indicate collections from Argentina (G-J). G = La Pelada Lodge; H = Gualeguaychú; I =
Estancia Santa Rita; J = Laguna Fantasma.
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Because just one snail fromArgentina released too few cercariae,
all these cercariae had to be preserved in absolute ethanol at -20°C
for molecular analyses. Snail shells from Chile were deposited at
Museo de Zoología, Universidad de Concepción, Concepción,
Chile (accession number MZUC-UCCC 47890). The whole Physa
sp. snail from Argentina was deposited at the Museum of South-
western Biology Division of Parasites, New Mexico, USA (catalog
number MSB:Host:21642).

Morphological identification of avian schistosomatids

Adult worms were stained with Alum carmine, dehydrated in
increasing concentrations of ethanol (70%-100%), cleared in oil
clove, and mounted in Canada balsam (Lutz et al., 2017). Avian
schistosomatids were photographed and measured using the soft-
ware Motic Images Plus 2.0 associated with the light microscope
MOTIC BA310. Morphological traits and measurements of these
wormswere comparedwith the taxonomic keys and descriptions by
McLeod (1937),McLeod&Little (1942), Schell (1985), Gibson et al.
(2002), Kolářová et al. (2006), Brant & Loker (2009), and Flores et
al. (2021). SEM was performed with the scanning electron micro-
scope HITACHI SU 3500 following Oyarzún-Ruiz et al. (2022).
Worms were disposed in an ionic solution for a maximum of 4
hours to achieve an appropriate conduction of electrons in the SEM
equipment. Because of the equipment specifications, there was no
need for bathing the worms in gold. The stub with worms was
frozen at -30°C with vacuum sealing inside the cool stage. Values
for spot values, variable pressure (VP-SEM), kilovolts (Kv), and
pascals (Pa) were stated.

Slides and vouchers of avian schistosomatids were deposited at
Museo de Zoología, Universidad de Concepción, Concepción, Chile
(accession numbersMZUC-UCCC 47891-47897). Fragments of the
avian schistosomatid collected fromN. peposaca and Physa sp. from
Argentina were deposited at the Museum of Southwestern Biology
Division of Parasites (catalog number MSB:Para:23182 and MSB:
Para:25363, respectively) (Supplementary Table S1).

DNA extraction, polymerase chain reaction, and phylogenetic
analyses

Genomic DNA was extracted using DNeasy blood and animal
tissue kit (QIAGEN, Germany) following the manufacturer’s
instructions. The quantity and quality of DNA for each extracted
sample was measured with a spectrophotometer EpochTM Micro-
plate. Samples with values between 1.6 and 2.0 and an absorbency
proportion A260/A280 were considered pure and suitable for
amplification through polymerase chain reaction (PCR) (Khare et
al., 2014). Extracted DNA was kept at -20°C until molecular ana-
lyses were performed.

A Touchdown PCR was performed to amplify partial sequences
of the cytochrome c oxidase subunit I gene (hereafterCOI; expected
length of band 600-1,000 bp) and 28S rDNA gene (hereafter 28S;
expected length of band 1,500 bp) (Brant & Loker, 2009; Oyarzún-
Ruiz et al., 2022). Primers were the following: for COI
Cox1_schis’_5’ and Cox1_schis’_3’ (Lockyer et al., 2003), and
CO1F15, CO1R15, and CO1RH3R internal (Brant & Loker,
2009); for 28S U178, L1642, DIG12 internal, and ECD2 internal
(Tkach et al., 2000; Lockyer et al., 2003; Olson et al., 2003). PCRwas
performed following Dvořák et al. (2002) and Horák et al. (2012):
3 μL of template DNA was added into a mix of 0.3 μL DreamTaq
Polymerase (Thermo Fisher Scientific,Waltham,MA,USA), 0.5 μL
dNTPs (0.2 mM), 2.5 μL DreamTaq Buffer, 1 μL of each primer

(10 pmol), and 16.7 μL of ultra-pure water to achieve a final volume
of 25 μL.

PCR thermal conditions were different according to each locus,
for COI there were 15 hybridisation cycles at 50°C, 49°C, 48°C, 47°
C, and 46°C with three cycles each for 30 seconds. Then 20 cycles of
hybridisation at 45°C for 30 seconds. For 28S the protocol con-
sidered 15 hybridisation cycles at 55°C, 54°C, 53°C, 52°C, and 51°C
with three cycles each for 30 seconds. Then 20 hybridisation cycles
at 50°C for 30 seconds. For both loci, extension temperature was at
72°C and denaturation was at 95°C. Amplicons were submitted to
electrophoresis in 2% agarose gel, stained with GelRed® (Biotum,
Tehran, Iran), and visualised in an ENDUROTM GDS UV transil-
luminator. Amplicons of expected size were purified and sequenced
in both directions at Macrogen (South Korea).

The obtained sequences were verified and edited with Geneious
Prime® v. 2021.2.2 to get the consensus sequences. A basic local
alignment search was performed with BLASTn tool (https://blas
t.ncbi.nlm.nih.gov) and similar sequences were downloaded from
GenBank (https://www.ncbi.nlm.nih.gov/genbank/) to build mul-
tiple alignments with the former software using the MAFFT algo-
rithm (Katoh & Standley, 2013). Phylogenetic analyses were
performed using Bayesian Inference (BI) with the software BEAST
v2.5 and substitution model rates were estimated with BEAUTi
v2.6.7 (Bouckaert et al., 2019).

The genetic distances between the sequences generated in the
present study and sequences from GenBank were estimated using
MEGA7 (Kumar et al., 2016). The sequences obtained in the
present study were deposited in the NCBI GenBank database
(accession numbers: PP333189-PP333197 for the 28S gene;
PP333615-PP333623, PP334484-PP334485 for the COI gene).

Results

Four distinct adult schistosomatid taxa, one nasal and three vis-
ceral, were isolated from the anatid hosts examined. From Argen-
tina, N. peposaca (P = 1/1) and S. versicolor (P = 2/2), only a few
fragments of visceral schistosomatids were retrieved from their
liver, precluding a formal morphological assessment. From Chile,
in S. cyanoptera, two taxa were recovered, both visceral; one was a
pool of unidentifiable juvenile avian schistosomatids (P = 1/6; MI =
5; MA = 0.83) isolated from liver, and the second was T. querque-
dulae (P = 6/6; MI, MA = 68.83) that was isolated mostly from the
mesenteric vessels of small intestine and viscera, but also the
liver and kidneys, heart, caeca and colon mucosa. Morphology
and morphometric data of the recovered T. querquedulae
(Supplementary Table S2) agreed with the description of McLeod
(1937), McLeod & Little (1942), and Brant & Loker (2009). The
SEM images of T. querquedulae showed additional putative diag-
nostic characters that are not included in the generic or specific
diagnosis of thisT. querquedulae: tegument covered by small spines
that alternate with papillae-like structures of greater diameter
distributed from the oral sucker to posterior end, irregularly altern
on the tegument. On the lateral border of the gynaecophoric canal,
papillae-like structures were observed, with several distributed
around the genital papilla. The tegument of the ventral surface of
the gynaecophoric canal area is corrugated with deep folds over its
complete extension, then resumes its spinous surface on body
surface. Oral sucker showed triangular spines on the anterior
border of oral aperture, which are directed internally, and several
circumoral papillae were seen on the anterior border of oral sucker
(Figure 2).
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For the swan host, C. melancoryphus, from Chile, two taxa
were recovered. The first was N. melancorhypha (P = 50%, 6/12;
MI = 15; MA = 7.5) in the nasal blood vessels of swans from the
Ramsar site Carlos Anwandter wetland (Los Ríos) and San

Fabián commune (Ñuble); small fragments of this same species
(based on genetic data) were retrieved from the kidney of one
bird (A92R; Figure 3), which could represent a migrating worm
to the nasal blood vessels. The morphology and morphometric

Figure 2. Scanning electron microscopy images of Trichobilharzia querquedulae isolated from Spatula cyanoptera from Chile. (A) Oral sucker with small triangular spines on its
ventral surface, which are also directed to its aperture (*). Note the small papillae immediately in the posterior border of oral sucker (arrowheads). (B) Dorsal surface of oral sucker
with evident papillae at its base (*) as well as on the tegument, immediately posterior to it (arrowhead). (C) Presence of circumoral papillae slightly anterior-dorsal to the border of
oral sucker (black arrowheads), also note a pair of dorsal papillae (white arrowhead). (D) Detail of gynaecophoric canal, which is densely covered by small fine spines. Also note the
presence of small papillae covering the border of gynaecophoric canal (*). (E) Dorsal surface of gynaecophoric canal densely covered by small, rounded spines and characterised by
a notorious folded tegument (arrowheads). (F) Spatulated posterior end with its tegument densely covered by small, rounded spines and papillae randomly distributed on its
surface (*).
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Figure 3. Phylogenetic 28S gene tree placing the new taxa among the available sequences of avian schistosomatid taxa in GenBank. Specimens from this study are in bold and the
clades containing the new taxa are highlighted in gray boxes. The “*” represent significant posterior probability support for the Bayesian analysis, values lower than 0.95 are not
indicated. GenBank accession numbers follow the taxon names. To generate the file for BEAST, BEAUTi v2.6.7 was used with Substitution Model GTR rates estimated, substitution
rate estimated, for Priors Yule Model default, MCMC chain length 10,000,000, starting tree random, to generate the xml file for BEAST v2.6.4 (Bouckaert et al., 2019). The tree was
visualised in FigTree v1.4.4.
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data of recovered worms (Supplementary Table S3) agreed with
the description by Flores et al. (2021). From the same locality as
described previously, the second schistosomatid taxon was a
visceral schistosomatid recovered from the liver of two swans.

However, it could not be formally described because only frag-
ments were retrieved from the previously frozen birds. No co-
infections between these two avian schistosomatid taxa were
recorded.

Figure 4. Phylogenetic COI gene tree placing the new taxa among the available sequences of avian schistosomatid taxa in GenBank. Specimens from this study are in bold and the
clades containing the new taxa are highlighted in gray boxes. The “*” represent significant posterior probability support for the Bayesian analysis, values lower than 0.95 are not
indicated. GenBank accession numbers follow the taxon names. The “**”denotes a sequence from a specimen that was also identifiedmorphologically and is vouchered atMuseum
of Southwestern Biology (MSB:Para:181). Bayesian inference analysis performed in BEAST v2.6.4 (Bouckaert et al., 2019). To generate the file for BEAST, BEAUTi v2.6.7 was usedwith
Substitution Model GTR rates estimated, substitution rate estimated, for Priors Yule Model default, MCMC chain length 10,000,000, starting tree random. Tree was visualised in
FigTree v1.4.4.
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All taxa recovered from the hosts belonged to the DAS clade of
avian schistosomatids (sensu Brant & Loker, 2013; Ebbs et al., 2022)
with robust nodal support (Figure 3). Phylogenetic analysis of BI for
both loci supported the morphological identification of T. querque-
dulae and the placement of Trichobilharzia sp. within clade Q
(Figure 4). The worms of T. querquedulae isolated from S. cyanop-
tera grouped with other conspecific sequences with morphological
confirmation and museum vouchers, as a monophyletic clade with
robust nodal support for both loci (Figures 3-4). For COI analysis of
the larvae and adult fragments, the furcocercariae from Physa sp.
W915 from Laguna Fantasma, Argentina, fragments from S. cya-
noptera sequence (A61H), and the sequences isolated in S. versico-
lor from Argentina (W787, W791) were also grouped within the T.
querquedulae clade (Figure 4).

According to both 28S and COI analyses, the unidentified avian
schistosomatid fragments from S. cyanoptera and N. peposaca did
not group with any currently available sequences of morphologic-
ally described Trichobilharzia sp. in GenBank. The phylogeny of
28S placed those fragments of Trichobilharzia sp. fromN. peposaca
as part of a monophyletic clade with a furcocercaria isolated from
Stenophysa (= Physa) marmorata (Guilding) snail from Brazil
(KJ855994). Furthermore, for COI, the Trichobilharzia sp. from
the N. peposaca formed a monophyletic clade with the pool of
juvenile worms of Trichobilharzia sp. isolated in a S. cyanoptera
from Chile, suggesting they might be conspecifics but await mor-
phological identification (Figure 4). This was also supported by the
genetic distances (0.5%; Supplementary Table S5). Unfortunately,
we could not get a 28S sequence for the Trichobilharzia sp. from S.
cyanoptera.

The sequences of N. melancorhypha formed a monophyletic
clade with previously morphologically (also vouchered in a
museum) and genetically described individuals for 28S, with a
robust nodal support. This clade also includes the sequences of
adult worms from the same avian host and furcocercariae ofChilina
gibbosa Sowerby snails from Argentina (Flores et al., 2015, 2021),
and furcocercariae isolated from Chilina dombeiana (Bruguière)
from Chile (Oyarzún-Ruiz et al., 2022). This clade based on genetic
data falls basal to the rest of clade DAS, as was shown by Flores et al.
(2015, 2021) and Oyarzún-Ruiz et al. (2022).

In the 28S phylogenetic analysis, the unidentified taxon, Schis-
tosomatidae gen. sp. A91H (PP333192), isolated from a C. melan-
coryphus, formed an independent clade with sequences of an
unidentified furcocercariae isolated from freshwater snails Chilina
spp. from Argentina (Lineage 2) (Flores et al., 2015) and Chile
(Schistosomatidae gen. sp. Lineage II) (Oyarzún-Ruiz et al., 2022).
This finding represents the first molecular characterisation of the
adult worm from its bird host and thus the life cycle is illuminated.
Future collections should uncover more adults suitable for a formal
morphological description.

A total of 20 furcocercariae morphologically identified to Schis-
tosomatidae were isolated from one Physa sp. (P= 10%, 1/10)
collected at Laguna Fantasma, Argentina. No P. cf. acuta from
Chile was found parasitised by furcocercariae. Because of the
small number of furcocercariae, no morphological characterisa-
tion was done because they were used for molecular analyses. The
molecular phylogeny showed that these larvae were part of the
clade Q (sensu Brant & Loker, 2009), particularly in the well-
supported clade of T. querquedulae (Figure 4). The genetic dis-
tances for comparative purposes as proxies for how taxa are
related, for each gene, are reported and detailed in
Supplementary Tables S4-S5.

Discussion

This study represents the first morphological and molecular char-
acterisation of adult avian schistosomatids from Chilean anseri-
form hosts. A high proportion of the bird species examined were
found infected with the three visceral and one nasal schistosoma-
tids. Based on our results in Chile, the geographical distribution of
T. querquedulae is extended (from Canada to Patagonia in western
hemisphere), N. melancorhypha was isolated in the swan, and both
S. cyanoptera and N. peposaca are recorded as additional definitive
hosts for species of Trichobilharzia in the Neotropics (see Flores et
al., 2015; Ebbs et al., 2016).

Genetically the specimens of T. querquedulae isolated in S.
cyanoptera grouped with those from Brant & Loker (2009) and
Davis et al. (2022). Morphologically, the specimens were mostly
similar to the descriptions of Brant & Loker (2009) and McLeod
(1937) but there were subtle differences. The specimens from this
paper had a longer gynaecophoric canal and seminal vesicle, a wider
distance between acetabulum and gynaecophoric canal, and fewer
testes (180 vs 210 testes) in comparison to the previously men-
tioned authors (see Supplementary Table S2). Notwithstanding,
this morphological identification was supported by the phylogen-
etic analyses of both loci, placing our specimens in the T. querque-
dulae clade (that includes a sequence from a museum voucher that
was morphologically identified, GenBank PP229496). Therefore,
based on the known data, with published sequences and vouchers
from the blue-winged ducks (Spatula spp.) clade such as S. versi-
color fromArgentina (Ebbs et al., 2016), S. discors and S. cyanoptera
from the USA (Brant & Loker, 2009; Garvon et al., 2011), and the
Australian shoveler [Spatula rhynchotis (Latham)] from New Zea-
land (Davis et al., 2022), they are most likely T. querquedulae.
Interestingly, previous records from other species of Spatula from
the USA (Brant & Loker, 2009), and the recent proposal by Ebbs et
al. (2016), stated that T. querquedulae has a cosmopolitan distri-
bution in Spatula spp. The specimens found here represent the first
records from Chile, widening its known geographic distribution in
the Southern Cone, plus representing the second record and an
additional host species in the Neotropics. The high prevalence of T.
querquedulae in S. cyanoptera (6/6) and intensity of infection (MA=
68.83) are remarkable similar to what has been reported previously
(Brant & Loker, 2009; Davis et al., 2022).

Szidat (1951) recorded a visceral Trichobilharzia sp. from S.
versicolor collected in Tapalqué, Argentina, which might represent
the T. querquedulae mentioned here. However, no morphological
description, images, and most importantly, no vouchers exist; thus,
new collections are warranted to stablish its specific identity.

The SEM characterisation of T. querquedulae highlighted add-
itional morphological traits that were not mentioned in the original
description by McLeod (1937) and McLeod & Little (1942) or
Gibson et al. (2002), but that will be useful in future diagnoses.
There are only two publications that used SEM features for Tricho-
bilharzia species characterisation. These SEM features include the
presence of circumoral papillae in Trichobilharzia australis Blair &
Islam, 1983, a nasal avian schistosomatid from Australia (Blair &
Islam, 1983). These same papillae distributed over the tegument
were also described by SEM images in Trichobilharzia arcuata
Islam, 1986. These papillae in T. arcuata were restricted between
the oral sucker and gynaecophoric canal and thus used as a distin-
guishing character from T. australis SEM (Islam, 1986). SEM is
underused for the differentiation of avian schistosomatids; it pro-
vides additional diagnostic features to the existing keys (e.g. Blair &
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Islam, 1983; Islam, 1986; Flores et al., 2021; Lorenti et al., 2022;
Oyarzún-Ruiz et al., 2022) for species with few features visible in
light microscopy. The present study emphasises the importance to
include features visible in SEM for themorphological description of
both adult and larval schistosomatids, with an eventual amendment
ofT. querquedulae at least, but also the genusTrichobilharzia, based
on SEM features.

In the COI phylogenetic tree (Figure 4), there are two uniden-
tified clades, Trichobilharzia sp. Brazil KJ855996 (ex physid snail)
and two immature specimens from this study (A46R ex S. cyanop-
tera, W830 ex N. peposaca) that group with but not within T.
physellae. The North American T. physellae is most often found
in an ecological group of diving ducks (usually Aythya spp.), and
cycles through Physa spp. snails (Brant & Loker, 2009; Pinto et al.,
2014), though a recent record from the snail P. acuta was found in
Europe (Helmer et al., 2021). Thus far, no genetically or morpho-
logically identified specimens have been found in South America
that correspond to T. physellae. One of the specimens collected
herein was from a diving duck, N. peposaca, but those worms were
immature and did not form a clade with T. physellae or the physid
specimen of Trichobilharzia from Brazil. Thus, more specimens
from diving ducks are needed to understand the species diversity of
Trichobilharzia in these ducks from South America. It would be
interesting to show if the clade of Trichobilharzia found here, and
that of T. physellae, are exclusive to the ecological clade of diving
duck hosts (see Johnsgard, 2010), similar to what has been shown
for T. querquedulae in Spatula spp.

Clade Q is composed of species of Trichobilharzia that are
transmitted by aquatic snails in the families Physidae (T. querque-
dulae and T. physellae) and Lymnaeidae (Trichobilharzia franki
Müller & Kimmig, 1994, Trichobilharzia longicauda [Macfarlane,
1944] Davis, 2006, Trichobilharzia regenti Horák, Kolářová &
Dvořák, 1998, Trichobilharzia novaeseelandiae Davis & Brant,
2022, Trichobilharzia sp. A), with most taxa transmitted by lym-
naeid snails (Brant & Loker, 2009; Jouet et al., 2010a, b; Brant et al.,
2011; Horák et al., 2015; Ebbs et al., 2016; Ashrafi et al., 2021; Davis
et al., 2022). In South America there are three previous reports of
physid snails as intermediate hosts of avian schistosomatids, all of
which have been recorded from S. marmorata. Those furcocercar-
iae were identified as Cercaria I from Argentina (Ostrowski de
Núñez, 1978), and Trichobilharzia jequitibaensis Leite, Costa &
Costa, 1978 (Leite et al., 1979) and Trichobilharzia sp. from Brazil
(Pinto et al., 2014). However, some caution with T. jequitibaensis
should be taken as the authors report both a physid and lymnaeid
serving as intermediate hosts. In Argentina and Chile there are four
native species of Physidae, with P. acuta as the invasive species for
both (Valdovinos, 2006; Rumi et al., 2008). Physa acuta has been
recorded as an intermediate host of T. physellae in its natural
distribution in North America (Brant & Loker, 2009; Brant et al.,
2011), but also recently in Europe, where it is considered invasive
(Ebbs et al., 2018; Helmer et al., 2021).

The present study represents the first record of T. querquedulae
recovered from a physid snail in the Neotropics. Unfortunately, no
specific identification was achieved for the snail host, but it has been
vouchered in a museum collection (Museum of Southwestern
Biology, Division of Parasites, MSB:Host:21642) and is available
for specific identification. Availability of physical and curated
specimens is particularly important considering the high intraspe-
cific variations for these snails (Cuezzo, 2009; Collado et al., 2019).
Transmission dynamics of Trichobilharzia spp in physids is
important, for example, to determine if P. acuta from Chile is
refractory to the infection with the native avian schistosomatids

from Clade Q (e.g. Stanicka et al., 2022), or if Physa sp. from
Argentina is a native species, which might explain the infection
despite the small sample size examined. In summary for Clade Q in
South America T. querquedulae from Spatula spp. and Physidae,
Trichobilharzia sp. (W830/A46R) from Argentina and Chile,
together with Trichobilharzia sp. (KJ855994) from Brazil (Pinto
et al., 2014; Ebbs et al., 2016; this study) have been reported.

In addition to the species lineages of Trichobilharzia recovered
in Chile, two other taxa of avian schistosomatids were recovered,
one nasal and one visceral schistosomatid from C. melancoryphus.
The morphology and genetics of the nasal schistosomatid, N.
melancorhypha, was in accordance with Flores et al. (2021),
although with some minor differences such as a smaller acetabu-
lum, smaller distance between oral sucker and acetabulum, longer
seminal vesicle, and a slightly shorter gynaecophoric canal. The
small size of certain structures could be due to how these worms
were preserved before observation, for example, the specimens in
Flores et al. (2021) were measured from hot 5% formaldehyde fixed
material. Notwithstanding the previous information, both phylo-
genetic analyses of 28S and COI supported the morphological
diagnosis as N. melancorhypha. The confirmation of N. melancor-
hypha parasitising C. melancoryphus, together with the recent
description of its furcocercariae from C. dombeiana (Oyarzún-Ruiz
et al., 2022), make this taxon the first avian schistosomatid with its
life cycle elucidated in Chile.

The finding of N. melancorhypha extends its geographic distri-
bution, originally from Argentina (Flores et al., 2021), to Central
and Southern Chile, maintaining its monotypic status. This is
noteworthy because its intermediate host, snails of genus Chilina
Gray, and its definitive host,C. melancoryphus, are both endemic to
South America (Cuezzo, 2009; Fuentealba et al., 2010; Johnsgard,
2010), suggesting the life cycle is restricted to the distribution of
Chilina spp. Cygnus melancoryphus is the only native swan in the
Neotropics (Johnsgard, 2010), which might limit the possibility of
finding N. melancorhypha in other anatids. This is in contrast with
Allobilharzia Kolářová, Rudolfová, Hampl & Skírnisson, 2006,
which exclusively parasitises swans (Cygnus spp.) in the Northern
hemisphere, from North America, Europe, and Japan (Kolářová et
al., 2006; Brant, 2007; Hayashi et al., 2017).

There was an unexpected finding of N. melancorhypha frag-
ments in the kidneys of one of the swans (A92R), with the genetic
identification confirmed through phylogenetic analysis. Although
themigration route of juvenile worms for this nasal species remains
unknown, this observation could represent a systemic migration of
the worms. In contrast, T. regenti, another nasal schistosomatid,
migrates exclusively through the nervous system before reaching
the preferred nasal tissue (Horák et al., 2012; Prüter et al., 2017).
The explanation of this finding herein requires additional sam-
plings and experimental studies to trace the migration of the
schistosomules.

In addition to the finding of the nasal schistosome in C. mel-
ancoryphus, a visceral avian schistosomatid was isolated; Schisto-
somatidae gen. sp. Unfortunately, because of the poor state of the
worm fragments from the host, they could not be described prop-
erly. Until a morphological assessment is performed genetically,
this undescribed visceral schistosomatid phylogenetically groups
within the DAS clade. Interestingly, Schistosomatidae gen. sp.
grouped in a clade with the undescribed Lineage 2/II of furcocer-
cariae isolated from Chilina fulgurata Pilsbry, Chilina perrieri
Mabille and C. gibbosa from Argentina (Flores et al., 2015), and
C. dombeiana from Chile (Oyarzún-Ruiz et al., 2022). These results
suggest they are likely conspecific and represent a new Neotropical
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visceral schistosomatid withC.melancoryphus as the definitive host
for the furcocercariae identified as Lineage 2/II from Flores et al.
(2015) and Oyarzún-Ruiz et al. (2022), representing another
endemic taxon to the Neotropics.

Considering that most visceral schistosomatids are typically
found in the venous system of birds, spreading through paren-
chymatous organs such as the liver and mesenteric vessels (Horák
et al., 2015; Ashrafi et al., 2021), the schistosomatids reported by
Oyarzún-Ruiz et al. (2019) in C. melancoryphus from Southern
Chile might also correspond to Schistosomatidae gen. sp. within
Lineage 2/II (Figure 3). In the study herein, the specimens of
Schistosomatidae gen. sp. were not ideal because of the poor state
of preservation of the hosts, which disrupts the integrity of these
digeneans for morphological assessment (Lutz et al., 2017). The
necropsy of swans recently salvaged or euthanised would offer
better material for the morphological description of this
undescribed schistosomatid.

Future efforts to classify avian schistosomatids from the Neo-
tropics should consider not only collecting non-studied waterfowl
but also other aquatic avian groups that have not been properly
considered such as Suliformes, Charadriiformes, Phoenicopteri-
formes, and Passeriformes (especially those inhabiting wetlands)
(Brant, 2007; Horák & Kolářová, 2011; Flores et al., 2015; Horák et
al., 2015; Lorenti et al., 2022). Even though these groups of birds
have been reported as definitive hosts of avian schistosomatids,
several of these records have no phylogenetic work, vouchers to
reexamine, or genetic data (Horák & Kolářová, 2011). Using an
integrative approach, Lorenti et al. (2022) described two new genera
from two common South American gulls and discussed the entan-
gled systematics of the globally, but poorly understood, schistoso-
matid genus Gigantobilharzia Odhner. Taking into consideration
that Argentina and Brazil concentrate most of the knowledge
regarding South American avian schistosomatid diversity (see
Pinto et al., 2014, 2017; Flores et al., 2015, 2021; Brant et al.,
2017; Lorenti et al., 2022), there is a clear need to replicate these
efforts in neighboring countries to enhance the understanding of
these neglected parasites not only from the biodiversity point of
view, but also for the whole understanding of their evolutionary
relationships. In addition, we need researchers to deposit museum
vouchers for re-examination that is critical to replicating past
studies and clarifying authors hypotheses. Expanding collections
to other southern hemisphere continents to look at how biogeog-
raphy and host use has shaped the evolutionary history of these
avian schistosomatids, relative to what we know about their distri-
bution in the northern hemisphere (Pinto et al., 2017, 2022) is
critical.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0022149X2400035X.
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