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Abstract

In this paper we provide examples and counterexamples of symmetric ideals of multilinear mappings
between Banach spaces and prove that if Xj X, are operator ideals, then the ideals of multilinear
mappings C(X\ X,,) and \T\, . . . , Tn \ are symmetric if and only if Xi = •••=!„.
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1. Introduction

The notion of ideal of multilinear mappings between Banach spaces goes back to
Pietsch [8], In [4], Floret-Garcia introduced the notion of symmetric ideals of mul-
tilinear mappings, which plays an important role in the interplay between ideals of
multilinear mappings and ideals of homogeneous polynomials. The aim of this paper
is to provide a number of examples and counterexamples of symmetric ideals and to
investigate the symmetry of the ideals C(XU ... ,Xn) and [X\, ..., Xn], where each Xj
is an operator ideal, which are generated by the factorization and the linearization
methods.

Throughout this paper n is a positive integer, E, Eu . . . , £ „ , F, G, Gx,... ,Gn

and H will stand for (real or complex) Banach spaces. The Banach space of all contin-
uous n-linear mappings A : E\ x • • • x En ->• F will be denoted by C(E\, . . . , £ „ ; F)
(and£("£; F) if E\ = • • • = En — E). For the general theory of multilinear mappings
we refer to Dineen [3].
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2. Symmetric ideals of multilinear mappings

Given n e N, an ideal of n-linear mappings M. is a subclass of the class of all
continuous n-linear mappings between Banach spaces such that for Banach spaces
E\,..., En and F, the components M(E\, . . . , £ „ , F) := C(E\, . . . , £ „ , F) n M
satisfy:

(i) M(EU . . . , £ „ , F) is a linear subspace of C(E{, . . . , £ „ , F) that contains the
n-linear mappings of finite type.

(ii) The ideal property; if A e M(EU ..., En, F), t e C(F, H) and u-s e
C(Gj,Ej) for j = 1,2, ...,n, then the composition tA(u\,...,un) is in
M(Gu...,Gn,H).

By As we denote the symmetrization of the n-linear mapping A e C(nE, F)
(see, for example, [3, page 6]). According to Floret-Garcia [4], an ideal of n-linear
mappings M. is said to be symmetric if As e A4(nE, F) whenever A e A4("E, F).

Let us fix some terminology in order to make the interplay with the theory of ideals
of polynomials clear. For A e C("E, F), we define A(x) := A{x, ..., JC); and given a
continuous n-homogeneous polynomial P : E ->• F, P denotes the unique symmetric
n-linear mapping associated to P. Given an ideal of n-linear mappings M, it is easy
to see that the classes Mv := {P : P e M) and MA :— [A : A e M] are ideals of
n-homogeneous polynomials (compare with [4, Section 1.8]). It is also easy to check
that Mv c MA for every M and that M is symmetric if and only if Mv = M*.

3. Examples

3.1. Routine computations show that the following standard ideals are symmetric:
n-linear mappings of finite type, approximable, nuclear, compact, and weakly compact
n-linear mappings. Alencar [1, Corollary 3] proved that the ideal of Pietsch integral
n-linear mappings is symmetric.

3.2. A non-symmetric ideal. A bilinear mapping A e C(2E; F) is said to be ab-
solutely (1; 1, oo)-summing if (A(XJ, yj))JLi is absolutely summable in F whenever
(xj)JL\ is weakly absolutely summable and (yj)JLi is bounded in E. For the theory
of absolutely summing multilinear mappings the reader is referred to Matos [7]. It
is straightforward to check that the class of all absolutely (1; 1, oo)-summing bilin-
ear mappings between Banach spaces is an ideal of bilinear mappings, denoted by
>dj(i:i,oo)' We see that it is not symmetric. Define

A : £oo x lx —> l^ : A(x, y) := xtu(y),
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where x = (xj)JLl and u : tx —> l^ is a chosen bounded linear operator which fails
to be absolutely 1-summing. In order to see that A is absolutely (1; 1, oo)-summing,
observe that, if x} = (x')fll e £-«, then

(supll^-l JCJ| < +OO,

whenever (xJ)JLl is absolutely weakly summable and Cy,)0!, is bounded in i x . Let
/4f € £(2£^;^o c) be defined by A'(x, y) :— A(y,x). Since u is not absolutely 1-sum-
ming, choosing y, = (1, 1, . . . ) for every j , we have that YlT=i \\A'(xj, yj)\\ = oo for
some weakly summable sequence (-Xy)^, in 0.^, which shows that A' is not absolutely
(1; 1, oc)-summing. Therefore, A € £a5(i:i,oo)(2^co;^oo) and, since As = (A + A')/2,
As i AMU:I.OO(2^OO; ^OO)» proving that £UV(i;i,oo) is not symmetric.

Sections 4-5 will provide many examples of symmetric and non-symmetric ideals.

4. The factorization method

This factorization method, along with the linearization method (see Section 5), was
introduced by Pietsch [8] and has been developed by several authors since then. Given
n e N and operator ideals 2U ..., Xn, an H-linear mapping A e C(EU ..., £„; F)
is said to be of type £ ( J , , . . . , 2n), in symbols A e C{2U . . . , 2n)(Eu . . . , £ „ ; F),
if there are Banach spaces G\, .. .,Gn, linear operators Uj e 2}{Ej\G j), j =
1 , . . . , / ; , and a continuous n-linear mapping B e C(G\, . . . , Gn\ F) such that A =
B o ( « , , . . . , «„). The proof that C(2]t . . . , 2n) is an ideal of n-linear mappings can
be found in [2, 5].

THEOREM 4.1. Let 2\, . . . , J,, be operator ideals. The following statements are
equivalent:

(a) C(2\, ..., 2n) is a symmetric ideal ofn-linear mappings.
(b) £(X|, . . . , 2n) = £(1,7(1), • • • - 2a{n)) for every permutationo oftheset{\, . . . , « } .
(c) I , = T2 = • • • = !„.

PROOF, (C) implies (b). This is obvious.
(b) implies (a). Let Sn denote the group of permutations of {1, 2, . . . , n}. Let

A e £ ( I , 2 n ) ( n E ; F ) , A = B o ( « , , . . . , un) w i t h Uj e 2 j ( E ; G j ) , j = l , . . . , n ,
and B € £ ( G : , . . . , Gn; F). Given a e Sn, define Aa : E x • • • x E -> F and
fia : Cff-i(i, x • • • x Ga-Un) -+ F by

j , . . . , xn) '.=

\, . . . , y n ) : = B ( y a ( i ) , ..., y a M ) ,
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to get Aa = Bn o (wC T-i ( i) , . . . , «,r-i(,,)). This proves that, for every o e Sn,

An e C{Ia-Hl),..., la-Hn))("E\ F) = C(IU . . . , ! „ ) ( "£ ; F ) .

Since n\As = ^ f f e S , Aa it follows that A5 € £ ( ! , , . . . , Xn)("£; F ) .

(a) imples (c). Select i, j e {1, 2 , . . . , n] and let u e li(E\ F). Fix <p e E',ae E

such that ¥>(a) = 1 and define A e C("E; F ) , B e £ ( K , . . . , F,..., K\ F) by

A(xu ...,xn) := <p(xi) • • • <p(Xi) • • • <p(xn)u(Xi),

.., A,,-_i, z , A . , - + i , . . . , A.n) : = A) • • • A.,- • • • A

where 5} means that a, is omitted. Thus A = fi o (<p, ..., u, ..., <p), proving that
A e £ ( ! , , . . . , !„)("£; F) . By assumption it follows that As € £ ( ! , , . . . , ln)("E; F),
say As = C o ( u , , . . . ,vn) with u7- 6 lj(E;Gj), j = 1, . . . , n, and C 6 £ ( G , , . . . ,
C ; F ) . If CL : G,<8v •••®TGB -> F is the linearization of C and /,• : Gy ->

• • • ®^Gn is the operator defined by

there are nonzero constants /M and ^ 2 such that CLoijOVj = K\u + K.2<p{-)u{a). Since
Vj € X,-(£; G ; ) and ^2<^(-)"(^) is a finite rank operator, it follows that u e Tj(E; F),
proving that Z, c Z; . The proof is complete because i and j are arbitrary. D

REMARK 4.2. It is interesting that even in a symmetric ideal M. of n-linear mappings
it is not always true that A e M. whenever As e M.. Leung [6] can be used to
accomplish this task, but we describe a (simpler) counterexample: a bilinear mapping
A € C(2E; F) is said to be absolutely (1; 2, 2)-summing (or 2-dominated), in symbols
A e £aj(i;2,2)(2£; F), if (A(XJ, yj))f=i is absolutely summable in F whenever (Xj)JL]

and Cy,)°ii are weakly 2-summable in E. It is well known that CaS(\,i.2) — £ ( n 2 , n 2 )
(see, for example, [9, Proposition 3.6]), where n 2 is the ideal of all absolutely 2-
summing operators. So, from Theorem 4.1, it follows that £a.V(i;2,2) is a symmetric
ideal of bilinear mappings. Consider the bilinear mapping A e C(2f.2\ l\) given by

A((a,)~,, (A)~,) := (a,ft - a2ft, «3j84 - «4ft, «5/36 - a 6 f t , . . . ) .

If (e7-)JLi are the canonical unit vectors of l2, we have that A(e2j+\, ^ + 2 ) = ej+\ for
every j e N. Then A $ £aJ(i;2,2)(2^2;^i) (because (^ )J i , is weakly 2-summable in
t2), but As e CaS(\;2,2)(2^2-J\) (because A5 = 0).

5. The linearization method

Let the notation M\ mean that the /-th coordinate is not involved. For i = 1, . . . , n,
let /, : £ (£1 , . . . , £„; F) -> £ ( £ , ; £ ( £ ) , .'('., £„; F)) be the isometric isomorphism
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defined by / , ( A ) ( X , ) ( J C , , .'i1., xn) : = A(xu . . . , xn). Of course, if Ex = • • • = En and

A is symmetric, then lx{A) = I2(A) = • • • = In(A). In this case we write I (A)

instead of / , (A). An M-linear mapping A e C(EU . . . , £ „ ; F ) is said to be of type

[ I i , . . . , Xn], in symbols A e [Xu .. .,Xn](Eu . . . , £ „ ; F), if, for every i = I, ... ,n,

the operator/ , (A) e J , ( £ , ; £ ( £ , , .'{I., £„ ; F ) ) . Again, the proof that [ I , , . . . , Z J is

an ideal ofn-linear mappings can be found in [2] and [5].

LEMMA 5.1. If Xl andX2 are operator ideals such that [X\, X2] is a symmetric ideal
of bilinear mappings, then X\ — I2.

PROOF. Let u e X\{E; F). Fix <p e E', a e E such that cp(a) = 1 and define
A € £(2£; F), T e C(F\ C(E; F)) by A(x, y) := <p(y)u(x) and T(z)(y) := <p(y)z.
It follows that T o u = /,(A), hence I,(A) e XX{E;C{E\ F)). On the other hand,
12(A) — <p(-)u, which is a finite rank operator, therefore A e [XUX2](2E; F). By
assumption we have As e [XU12](2E; F) . Since 21 (As) = h(A) + I2(A), it follows
that/,(A) eX2(E\C(E\F)). Defining U : C(E;F) -> F by U(v) := v(a), we get
U o Ii(A) = M, which proves that u e X2(E; F) . We proved that X\ c J 2 and the
other inclusion is analogous. D

THEOREM 5.2. Let X\, ... ,Xn be operator ideals. The following statements are
equivalent:

(a) \X\, ..., Xn\ is a symmetric ideal ofn-linear mappings.
(b) [Xi,..., Xn] = [Xa(l), ..., !„(„)] for every permutation a of the set {I, 2, . . . , « } .

(c) I , = I , = • • • = Xn.

P R O O F , (C) implies (b). This is obvious.

(b) implies (a). Let A e [T,, . . . , Xn]("E; F ) . Then A e [I f f ( 1 ) , . . . , InW](nE; F)

for every CT by assumption; hence Ij(A) e Xk(E;C("~iE; F ) ) for every j,k =

l , . . . , / i . Fix a permutation ex and consider the operator Ra : C(n'lE;F) —>

£ ( " - ' £ ; F) defined by Ro(B){x2, ... ,xH) := B(xam,K>.™,xaM). where I"."*.1*!
means that the c r " ' ( l ) - t h coordinate is omitted. For every x\, ..., xn e E,

n \ I ( A s ) ( x \ ) ( x 2 , . . . , x n ) = Y^ A ( * o ( \ ) , • • • , x t r M )
aeSn

J2 , K'M», xaM)

2, . . . , Xn),

proving that n\I(As) = J2nesn
 R" ° '<r-'(i)(^)- However, /ff-i(i)C4) belongs to Xk

for every o and every k, so I(AS) e Xk(E;C("~lE\ F)) for every k. It follows that
Ase [ I , , . . . , !„]("£; F) .
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(a) implies (c). By Lemma 5.1, we may assume n > 3. Fix y e {2, 3 , . . . , n\ and
let T e [I,, lj](2E; F). As before, fix <p e £', a e E such that <p(a) = 1 and define
A € £("£; F), Vi : £ (£ ; F) -* £("- '£ ; F) by

• • • <p(xn)T(xi,Xj),

fi(S)(x2, ...,xn) = <p(x2) • • • <p(xj) • • • <p(xn)S(xj),

where <p(Xj) means that <p(xj) is omitted. From /i(A) = ^ I ° h(T) we get I\(A) G
) . Defining £/ :£ (" - '£ ; F)-»• £("- '£; F) by

U(B)(x2, ...,xn):— B(x3, ...,Xj-i,x2,Xj,

it follows that /,(A) = ( /o f , o I2(T), hence Ij(A) e lj{E\C{n~*E\ F)). It is not
difficult to see that for k = 2, 3 , . . . , n, k ^ y, Ik(A) is a finite rank operator and so
Ae[li In]("E; F). By assumption we have that As e [lx, . . . ,!„]("£; F) also.
Using that

_ 1

0

_ 1
~ 2^!

o-eS,

1

—

1 ^ _ ^

= — Y] <P(X<JG)) • • • <p(xaU)) • • • <p(xaM)Ts(xa(l), xaij)),

oeSn

and defining AB := {a e Sn : CT(1) = 1 or a{j) = 1}, it follows that

n\I(As)(xi)(x2, ...,xn)

<P(XoV)) • • • <P(xa(j)) • • • <P(xaM)TS(Xam, XaU)).

Therefore for each a £ An, a(\) ^ 1, and a(j) ^ 1,

2> • • • . xn) : = Y^ <P(xa(2)) • • • <P(X°U)) • • • <P(xa(n))Ts(xa0),xaU))
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is a finite rank operator in C(E;£("~lE; F)). For every k = 1, . . . , « , n\I(As) e
Xk(E; £ ( " " ' £ ; F)), then the operator R : E -> £ ( " - ' £ ; F)) defined by

rxeA,

belongs to ! * ( £ ; £ ( " - ' £ ; F)) for every A: as well. Defining / : £ ( " - ' £ ; F) ->•
£ ( £ ; F) by f(B){y) := B(y, a, ... ,a), there are nonzero constants Kt and Â 2 such
that for every x, y e E,

= K{l{Ts){x)(y) +

If g : £(""'£; F) -+ F is defined by g(B) := B(a, . . . , a), then

(g o /(/4S))(JC) = - T(x, a) + - T(a, x) + ^—— <p(x)T(a, a),
n n n

for every x € E. Since g o I(AS) e 2it(£; F) for every /:, and <p(-)T(a, a) is a finite
rank operator, it follows that (T(-, a) + T(a, •)) € T t ( £ ; F) for every &. Finally, let
\j/2 : F —> £ ( £ ; F) be given by \jr2{z){x) := <P(JC)Z. Then

(/ o R)(x)(y) = KJ(Ts)(x){y) + y f2(T{x, a) + T(a,

for every x, y € E, which proves that

foR = Ktl(Ts) + -j (f2 o (7-(-, a) + T{a, •)))•

Therefore, / (Ts) 6 J^(£; £ ( £ ; F)) for every <:, and this implies that

Thus far we have proved that [1\, Jj] is symmetric. Now we call on Lemma 5.1 to
conclude that J , = Xs for j = 2,3, ...,n. D

Final remark The notion of strongly symmetric quasi-normed ideals of multilinear
mappings was introduced by Floret-Garcia [4]. It is easy to see that, given a normed
operator ideal I , the symmetric ideals £ ( I , . . . , T) and [X, ..., J] are strongly sym-
metric (see [2] for the quasi-norm on C(X,..., J ) and the norm on [ I , . . . , X]).
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