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Some topology

In the previous two chapters I argued for the existence of solitons by starting
with a configuration in which φ approached different vacuum values at different
parts of spatial infinity, with these values being chosen in such a way that the
configuration could not be continuously deformed into a uniform vacuum solution
over all of space. For both the kink and the U(1) vortex it was fairly easy to
visualize the situation and convince oneself of the topological stability of the
soliton. However, we want to be able to consider theories in which the space
of vacuum solutions is more complicated, as well as theories in three (or more)
spatial dimensions. In such cases the topological constraints can be harder to
visualize. It is therefore useful to formulate matters more precisely. As I will
explain in this chapter, the mathematical language of homotopy provides an
ideal framework for this.

4.1 Vacuum manifolds
The general situation that we want to consider is a field theory with n scalar
fields that can be assembled into an n-component column vector φ and a scalar
field potential V (φ) that has a family of degenerate minima that form a manifold
M. Let us assume that this degeneracy is a consequence of a symmetry group G
that is spontaneously broken to a subgroup H by the vacuum expectation value
of φ. (One can certainly construct potentials with degenerate minima that are
not related by a symmetry, but in such cases the degeneracy is usually broken by
higher-order quantum corrections.) Given a value of φ, the action of an element
g of G transforms φ to D(g)φ, where D(g) is the appropriate n-dimensional
representation of G. In particular, if φ0 minimizes V , then so does D(g)φ0 for
any choice of g. Furthermore, our assumption that the degeneracy is entirely due
to the symmetry implies that all minima of V are of this form.

One might then guess that there is a one-to-one correspondence between ele-
ments of G and minima of V . This is only true if G is completely broken. If G
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58 Some topology

is only partially broken, there is an unbroken subgroup H that can be defined
by the requirement that it leaves φ0 invariant; i.e., that D(h)φ0 = φ0 for any
element h of H. Consequently, for any given g ∈ G and h ∈ H, gh and g have the
same effect; i.e., D(gh)φ0 = D(g)φ0. We can therefore define equivalence classes
of elements of G by defining two elements g1 and g2 to be equivalent if g2 = g1h

for some h ∈ H. The set of such equivalence classes is the coset space G/H.
There is a one-to-one correspondence between these equivalence classes and the
minima of V , so

M = G/H. (4.1)

A word of caution is appropriate here. In perturbative treatments of field the-
ories the distinction between different Lie groups that share the same Lie algebra
[e.g., SU(2) and SO(3)] is often ignored. It will be essential in our topological
considerations to keep track of these distinctions and to be clear as to precisely
which groups G and H are. This will be discussed in more detail in Sec. 4.3.
However, it will helpful to first introduce the concepts of homotopy and the
fundamental group.

4.2 Homotopy and the fundamental group π1(M)
Let us start by considering closed paths, or loops, on a manifold M. In par-
ticular, let us pick a point x0 on M and restrict our attention to paths that
begin and end at x0. Any such path can be specified by a continuous func-
tion f(t) taking values in M, with 0 ≤ t ≤ 1 and f(0) = f(1) = x0. Figure 4.1
shows three such paths. In this figure,M is the two-dimensional Euclidean plane,
but with the shaded region deleted. It is evident that path b can be smoothly
deformed so that it coincides with path a. However, path c cannot be smoothly
deformed into a, since that would require passing part of the path through the
forbidden shaded region, which is not part of M. The concept of “smoothly
deformable” can be made more precise as follows. Let f(t) and g(t) be continu-
ous paths beginning and ending at x0. They can be smoothly deformed into one

a

 c

x0

b

Fig. 4.1. Loops a and b are homotopic to each other, but not to loop c.
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4.2 Homotopy and the fundamental group π1(M) 59

another if and only if there is a continuous function k(s, t) with 0 ≤ s, t ≤ 1 such
that

k(0, t) = f(t),
k(1, t) = g(t),
k(s, 0) = k(s, 1) = x0. (4.2)

Thus, k(s, t) can viewed as a sequence of loops, labeled by s, that begin and end
at x0, with f being the first in the sequence and g the last. Paths f and g are
said to be homotopic at x0, and the family of paths that define the function k is
a homotopy.

One can define a product on the space of paths. Given paths f and g, their
product is defined as

(f ◦ g)(t) =

⎧⎨
⎩
f(2t), 0 ≤ t ≤ 1/2,

g(2t− 1), 1/2 ≤ t ≤ 1.
(4.3)

In other words, f ◦ g is the path obtained by going around f and then going
around g. An inverse path f−1 can be defined as going around f in the reverse
direction; i.e., f−1(t) = f(1− t).

The next step is to divide the paths on M into homotopy classes, with the
homotopy class [f ] denoting the set of paths that are homotopic to f . The def-
inition of the product of paths can be carried over to the product of homotopy
classes. Because the product of any path homotopic to f with any path homotopic
to g is homotopic to f ◦ g, we have

[f ] ◦ [g] = [f ◦ g]. (4.4)

Note that not every path in [f ◦ g] is a product path. Equation (4.3) shows that
the product of two paths must pass through x0 three times (at x = 0, 1/2, and
1). However, there are certainly paths homotopic to this product that only go
through x0 at their beginning and end, and not at any intermediate points.

There is a trivial “path”, f(t) = x0, that just stays at x0 for its entire length;
let us denote the homotopy class of this path by [I]. It is easy to see that [g]◦[I] =
[I]◦ [g] = [g] and [g]◦ [g−1] = [I] for any [g]. It is also clear that the multiplication
of homotopy classes is associative.

Thus, multiplication of homotopy classes has a group structure, with [I] being
the identity. This group is denoted π1(M, x0), and called the fundamental group
ofM at x0. Because there are generalizations πn(M, x0), which we will encounter
later on, the fundamental group is also known as the first homotopy group.

If M is a connected manifold, the fundamental group does not depend on
the choice of the base point x0. To see this, note that any loop beginning and
ending at x0 can be mapped onto a loop beginning and ending at y0 by adding
a path from y0 to x0 at the beginning of the loop and then traversing this
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60 Some topology

path backward from x0 to y0 at the end of the loop. This mapping preserves
all of the homotopy relations between loops, and thus defines an isomorphism
between the fundamental groups at x0 and y0. If these groups are Abelian, this
isomorphism does not depend on which path from y0 to x0 is chosen, but the
detailed correspondence between homotopy classes of the two groups can be
path-dependent if the groups are non-Abelian.

Because the fundamental group does not depend on the choice of the base
point, one usual writes simply π1(M), and refers to the fundamental group of
M. If all loops on a manifold can be deformed to the trivial loop, then there is
only a single homotopy class. We denote this by writing π1(M) = 0, and the
manifold is said to be simply connected.

Let us consider some examples:

(i) Any loop on the Euclidean plane can be continuously shrunk to a point,
so R2 is simply connected. The same is clearly true for all higher dimensional
Euclidean spaces and, although a loop on a line may be a bit harder to visualize,
for the real line R1. Thus,

π1(Rn) = 0. (4.5)

(ii) Now consider the space shown in Fig. 4.1, the Euclidean plane with a disk
removed. Loops can be characterized by the number of times they wind around
the hole left by the disk, with counterclockwise (clockwise) windings counted
positively (negatively). Thus, in the figure loops a and b have winding number
0, while loop c has winding number 1. Two loops with the same number of
windings are homotopic, and under multiplication of loops the winding numbers
add. Thus, the fundamental group of this manifold is just Z, the additive group
of the integers. The same would be true if we put an outer boundary on the
manifold and reduced it to a ring r1 < r < r2 enclosing the hole. Indeed, we
could just shrink the ring to a circle, S1, without changing the homotopy group.
Thus,

π1(S1) = Z. (4.6)

(iii) Consider next a two-sphere,1 S2. It may be obvious that any loop on this
sphere can be shrunk to a point. If it isn’t, imagine deleting from the sphere some
point through which the loop does not pass. The sphere with a point deleted is
topologically equivalent to the plane, so the result follows from Example (i).
Similar arguments applied in higher dimensions show that

π1(Sn) = 0, n ≥ 2. (4.7)

(iv) Figure 4.2 shows the “figure-eight space”, a plane with two disks removed.
Two loops, a encircling the left hole, and b encircling the right one, are shown.

1 Recall that an n-sphere, Sn, is an n-dimensional manifold that can be viewed as a spherical
hypersurface in n+ 1 Euclidean dimensions. In particular, a one-sphere is a circle and a
two-sphere is the surface of a solid ball in ordinary three-dimensional space.
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4.3 Fundamental groups of Lie groups 61

ba

Fig. 4.2. The “figure-eight space”. Loops a and b do not commute, and the
fundamental group is non-Abelian.

Now consider the product loop a ◦ b ◦ a−1 ◦ b−1 that goes once clockwise and
once counterclockwise around each hole. After some attempts at deforming the
loops, you should be able to convince yourself that this product loop cannot be
deformed to a point. On the other hand, the loop a ◦ a−1 ◦ b ◦ b−1 is clearly
homotopic to the trivial loop. Thus, the fundamental group of this manifold
contains elements [a] and [b] that do not commute, and so is non-Abelian.

4.3 Fundamental groups of Lie groups
Lie groups can be viewed as manifolds, and their fundamental groups are of
particular interest. In examining these, the distinction between groups that share
the same Lie algebra is crucial.2 Let us start with the most familiar example of
two groups with the same Lie algebra, SU(2) and SO(3).

SU(2) is the group of 2× 2 unitary matrices with unit determinant. Any such
matrix can be written in the form

U = b0 + ib · σ, (4.8)

where the σj (j = 1, 2, 3) are the Pauli matrices and

b20 + b21 + b22 + b23 = 1. (4.9)

This last equation is just that for the unit three-sphere, so we see that as a
manifold SU(2) = S3.

SO(3) is the group of rotations in three dimensions. Any element of the group
can be identified by giving a unit vector n̂ that specifies the rotation axis, and
a (counterclockwise) rotation angle about that axis that lies in the range 0 ≤
ψ ≤ π. Note that rotations by π about n̂ and −n̂ have the same effect, and
correspond to the same group element. As a manifold, SO(3) can be mapped
onto a three-dimensional ball of radius π. The center corresponds to the identity
element (rotation by ψ = 0 about any axis). All other elements lie on a radial line
along n̂, with the distance from the origin being equal to ψ. Because (n̂, ψ = π)

2 A more detailed discussion of Lie groups and Lie algebras is given in Appendix A.
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62 Some topology

and (−n̂, ψ = π) are the same group element, antipodal points on the surface of
the ball must be identified.

The relation between the two groups is seen by writing Eq. (4.8) as

U = cos(ψ/2) + in̂ · σ sin(ψ/2). (4.10)

While the range 0 ≤ ψ ≤ π covers all of SO(3), twice that range, 0 ≤ ψ ≤ 2π, is
needed to obtain all of SU(2). With this enlarged range, the two SU(2) matrices
U , given by (n̂, ψ), and −U , corresponding to (−n̂, 2π − ψ), map to the same
element of SO(3). Thus, SU(2) is a double cover of SO(3).

The relation between the topologies of the two groups can be understood in
terms of this mapping. The two elements of SU(2) that are mapped to the same
element of SO(3) lie on antipodal points of the three-sphere defined by Eq. (4.9).
By taking one element from each such pair, we see that SO(3) corresponds to
the upper half of the three-sphere, including the “equator” (which is actually a
two-sphere), but with the caveat that antipodal points on the equator must be
identified. This yields the previous construction of SO(3) in terms of a three-
dimensional ball.3

The relation between the two groups can also be understood from a more
algebraic point of view. The center of a group is defined as the set of group
elements that commute with all elements of the group; this is in fact a subgroup.
The center of SU(2) consists of two elements, the identity matrix I, and the
matrix z = −I, with the latter corresponding to a rotation by 2π about any axis.
These form the cyclic group with two elements, Z2. Now suppose that we define
an equivalence relation under which every SU(2) matrix U is equivalent to zU =
−U . Because z commutes with every element of the group, this equivalence is
compatible with the group multiplication, and the equivalence classes themselves
form a group, SU(2)/Z2, which is just SO(3) itself.

Because SU(2) is topologically a three-sphere, we know from Example (iii)
of the previous section that it is simply connected; every closed loop can be
continuously contracted to a point. What does this tell us about SO(3)? By
using the mapping of elements from SU(2) to SO(3), any path on SU(2) can
be mapped to a path on SO(3). If the path is a closed loop on SU(2), it is
obviously a closed loop on SO(3); since it is contractible on SU(2), it must also
be contractible, and homotopic to the trivial loop, on SO(3). But consider a path
on SU(2) that starts at some U0 and ends at the antipodal point, zU0. This is
not a loop in SU(2), but because U0 and zU0 are mapped to the same element
of SO(3), it is mapped to a closed loop in SO(3). However, this cannot be a
contractible loop in SO(3), because that would imply that it could be smoothly
deformed to a trivial SO(3) loop, which must correspond to a trivial SU(2) loop.

3 It may be easier to visualize this by going to one fewer dimension. The upper half of a
two-sphere (the upper half of the surface of a globe) is topologically the same as a disk
enclosed by a circle, which is the two-dimensional “ball”.
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4.3 Fundamental groups of Lie groups 63

Hence, SO(3) must have at least two homotopy classes. In fact, that is all that it
has. Going around this loop twice in SO(3) corresponds to a path in SU(2) that
runs from U0 to zU0 and then back to U0. This is a closed loop in SU(2), and
hence must be contractible. Thus, we have

π1(SU(2)) = 0, (4.11)

π1(SO(3)) = π1(SU(2)/Z2) = Z2. (4.12)

These ideas can be extended to other Lie groups. For every Lie algebra, there
is a unique simply connected group, known as the universal covering group. Let
G be this group, and let K be either its center or a subgroup of its center. If
G is semisimple, K is a finite group. In this case, by defining the elements g
and kg to be equivalent, where g and k are arbitrary elements of G and K, we
obtain a group G/K that is not simply connected. In fact, by an extension of
the arguments given for SU(2) and SO(3),

π1(G/K) = K. (4.13)

If K is the full center of the covering group, then G/K is known as the adjoint
group.

Turning now to the representations of these groups, recall that the irreducible
representations of SU(2) can be labeled by a “spin” s that can be either an
integer or a half-integer, but that the half-integer spin representations, for which
a rotation by 2π is represented by the matrix −I, are not true (i.e., single-valued)
representations of SO(3). In the general case, the true representations of G/K
are those representations of G for which every element of K is represented by a
unit matrix.

The groups most often encountered in high energy physics applications are
the unitary and orthogonal groups. The group SU(N) is simply connected for
any N ≥ 2. Its center consists of the matrices e2πik/NIN (k = 0, 1, . . . , N − 1),
which form the cyclic group ZN . We have already discussed the representations
for N = 2. For N = 3, recall that any irreducible representation can be con-
structed from the direct product of p fundamental 3 and q antifundamental 3̄
representations by suitable symmetrization or antisymmetrization and extrac-
tion of traces. The triality of such a representation is defined to be p − q (mod
3). Only the representations with zero triality are representations of the adjoint
group SU(3)/Z3. These ideas can be extended to larger N in an obvious manner,
although it should be noted that if N is not prime there are groups intermediate
in size between the adjoint group and the covering group.

The group U(1), the multiplicative group with elements eiα, is topologically a
circle. Hence, we see from Eq. (4.6) that

π1(U(1)) = Z , (4.14)

so that U(1) is not simply connected. Its simply connected covering group is R,
the additive group of real numbers, with U(1) = R/Z.
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None of the orthogonal groups are simply connected. SO(2) is identical to U(1),
and so its fundamental group is Z. For N ≥ 3, we have

π1(SO(N)) = Z2, N ≥ 3. (4.15)

The covering group of SO(N) is known as Spin(N). The first few of these are
more often recognized in other forms. We have already seen that Spin(3) =
SU(2). The next, Spin(4), is identical to SU(2)×SU(2), while Spin(5) = Sp(4),
and Spin(6) = SU(4). For further discussion of these and other compact Lie
groups, see Appendix A.

As mentioned previously, in perturbative treatments of gauge field theories one
is actually only concerned with the Lie algebra, and the distinction between the
Lie groups that share that algebra is unimportant. This distinction often matters
when using topology to study solitons. There is often some freedom in specify-
ing the symmetry group. For the full symmetry group G of the theory, the only
requirement is that all fields in the theory must transform under true represen-
tations of G. Hence, G can always be chosen to be the universal covering group,
but it can also be taken to be a quotient group if some classes of representations
are absent. The choice that is made for G will, however, determine the choice for
the unbroken group H.

For future reference, it should be noted that the results in Eqs. (4.12) and (4.13)
are instances of a more general result. Let G be a connected and simply connected
Lie group, and let H be a subgroup of G. If H is not a connected group, it has
a connected subgroup H0 that contains the identity; if H is connected, H0 = H.
The cosets H/H0 form a group that is often termed the zeroth homotopy group,
π0(H). Then4

π1(G/H) = π0(H). (4.16)

If H is connected, π0(H) = 0. If H is a discrete group, π0(H) = H.

4.4 Vortices and homotopy
In Chap. 3, I argued that a configuration with the asymptotic behavior shown in
Fig. 3.1a could not be continuously deformed to a uniform vacuum solution, and
hence that varying such a configuration until a local minimum of the energy was
reached would produce a nontrivial solution. Let us now rephrase this argument
in the language of homotopy.

In two dimensions, spatial infinity can be described as a circle at r = ∞. As
θ varies from 0 to 2π, the values of the field φ(r =∞, θ) on this circle trace out
a loop in the vacuum manifold M. Roughly speaking, the argument is that if
this loop is in a different homotopy class than the vacuum, then there must be a
soliton solution. However, this is not quite right.

4 For a proof of this theorem, see [49].
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4.4 Vortices and homotopy 65

Homotopy, as defined by Eq. (4.2), is an equivalence relation between two
loops that have a common end point. In the field theory context, this would
relate two field configurations such that φ1(∞, 0) = φ2(∞, 0) = φ0 for some
fixed φ0. However, our arguments for the existence of a vortex involved continuous
deformations of the initial configuration, but without any requirement that there
be a point where the value of the field was held fixed. Thus, from a physical point
of view our primary interest is in free homotopy, where the base point condition is
omitted; two loops f and g are said to be freely homotopic if there is a continuous
function that satisfies the first two, but not necessarily the third, lines of Eq. (4.2).

If two loops are homotopic with a fixed point, they are obviously also freely
homotopic. The converse need not be true, even if the loops share a common
base point. This is illustrated in Fig. 4.3. As long as it is attached to the base
point x0, loop g cannot be deformed into loop f . However, it certainly can be
deformed into f if it is released from the base point. Hence, the two loops are
freely homotopic, but not homotopic with a base point.

These two loops can be related with the aid of loop a; thus, g is homotopic
to a ◦ f ◦ a−1. More generally, two loops h and k with a common base point are
said to be conjugate if there is a loop c such that h is homotopic to c ◦ k ◦ c−1.
This relationship defines a set of conjugacy classes. If the fundamental group is
Abelian, each conjugacy class contains a single homotopy class, but a conjugacy
class can contain several homotopy classes if π1(M) is non-Abelian.

I remarked previously that there is an isomorphism between fundamental
groups with different base points, but that this isomorphism is not unique if
the fundamental group is non-Abelian; i.e., the mapping of homotopy classes in
π1(M, x0) to homotopy classes in π1(M, y0) may depend on the choice of the
path connecting x0 and y0. However, this ambiguity is entirely within a conju-
gacy class; elements of a given conjugacy class at x0 are always mapped to the
same conjugacy class at y0, regardless of the choice of path.

Another issue to be addressed is gauge invariance. We have seen that to obtain
a finite energy vortex we need to work in a gauge theory. This means that many

0

f

a

g

x

Fig. 4.3. Loops f and g are not homotopic. However, they are freely homotopic,
because g is homotopic to afa−1.
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66 Some topology

different field configurations can represent the same physical vortex. How do we
know that all of these correspond to the same conjugacy class?

Let φ1(r, θ) and φ2(r, θ) be two such configurations, so that

φ2(r, θ) = g(r, θ)φ1(r, θ), (4.17)

with the gauge transformation g(r, θ) being a smooth function. Now define a
gauge transformation k(s) that is a continuous function of s such that k(0) =
g−1(r = 0) and k(1) = I; the connectedness of the gauge group guarantees that
such a function exists. Then [50]

F (s, θ) = g

(
s

1− s , θ
)
k(s)φ1(∞, θ) (4.18)

is a smooth function of s and θ with the property that

F (0, θ) = φ1(∞, θ),
F (1, θ) = φ2(∞, θ). (4.19)

Hence, φ1(∞, θ) and φ2(∞, θ) are freely homotopic, and our two gauge-equivalent
configurations correspond to the same conjugacy class.

Let us briefly summarize where we are at this point. Every finite energy con-
figuration can be assigned to a conjugacy class according to the behavior of the
scalar field at spatial infinity, with this assignment being invariant under nonsin-
gular gauge transformations. Configurations within the same conjugacy class can
be smoothly deformed into each other, but those in different classes cannot be. If
there is only a single conjugacy class, there are no topologically stable vortices.
If there is more than one conjugacy class, then a configuration that minimizes
the energy within a nontrivial class (i.e., a class that does not contain the trivial
constant configuration) gives a topologically stable vortex solution.

This connects the existence of topological vortices to the existence of a funda-
mental group with more than one element. However, we have not yet connected
the group structure of π1(M) to the physical properties of vortices. To do this,
we must consider configurations that correspond to assemblies of several vortices.

To this end, consider a gauge theory with one or more types of vortex solutions.
Let us assume that, as with the gauged U(1) vortex of Chap. 3, the energy density
of each vortex is concentrated within a well-defined region of finite area, and that
outside this region the Higgs field φ rapidly approaches a (spatially nonuniform)
vacuum solution. The interactions between well-separated vortices will then be
relatively weak, and one can envision assembling a number of them together to
form a multivortex configuration.

Before this can be done, their asymptotic behaviors must be made compati-
ble. For example, the U(1) vortex solutions of the previous chapter cannot be
smoothly joined when each is written in a gauge where they take the form of
Eq. (3.32). However, they can be combined if they are first gauge-transformed
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4.4 Vortices and homotopy 67

into a form, such as that in Fig. 3.3b, where φ has a fixed phase θ0 outside a
wedge containing the vortex core.

More generally, consider a theory with vortices corresponding to nontrivial
elements of π1(M). Let us assume that as one traverses a large circle enclosing
vortex 1 the field φ traces out a loop in the vacuum manifoldM that begins and
ends at φ1, that going around a circle enclosing vortex 2 the field traces out a
loop beginning and ending at φ2, and so on. In the U(1) theory, where M is a
circle, one can choose the starting points of these loops so that the φj are all the
same. This is not true in general, since for a largerM the various loops need not
have any values of φ in common. However, as long asM is connected, the various
φj can each be smoothly connected by a path fj inM to a common value φ0.

We can then use the following prescription to construct a multivortex
configuration. To begin, deform each vortex so that φ lies on the vacuum
manifold outside a circle of finite radius surrounding the vortex core. Next,
gauge-transform the field of vortex j so that φ = φj everywhere outside a wedge-
shaped region that contains the vortex core. Next, surround this wedge with a
larger wedge and gauge transform φ so that it smoothly varies along the path
fj from φj to φ0 as one goes from the inner wedge to the outer wedge. Outside
the outer wedge for each vortex φ = φ0, so there is no problem in assembling the
wedges into a smooth configuration

Figure 4.4 illustrates this for the case of three wedges. As one moves from the
point Aj to Bj , the field traces out a loop in M corresponding to an element
[hj ] of π1(M, φj). Going along the path CjAjBjDj then gives the corresponding
element [hj ] of π1(M, φ0). Traversing the full loop indicated in the figure gives
the product

[htot] = [h1] ◦ [h2] ◦ [h3]. (4.20)

For the U(1) theory of the previous chapter, with π(M) = Z, this product is
just the addition of the vorticities.

There were two points in this construction where somewhat arbitrary choices
were made. One of these was the choice of the path fj in M linking φj and φ0,
thus defining a map between the homotopy groups with different base points. As
noted previously, such mappings may not be unique, and another choice for this
path could have yielded a different element of π1(M, φ0), although one that was
in the same conjugacy class.

The second arbitrary choice was in the orientation of the wedges for the
vortices. For example, if the wedge for vortex 2 in Fig. 4.4 had been oriented
downward, Eq. (4.20) would have been replaced by

[htot] = [h1] ◦ [h3] ◦ [h2]. (4.21)

Neither of these ambiguities is of any consequence if the homotopy group
is Abelian. The mapping between π1(M, φ1) and π1(M, φ0) is then path-
independent and unique, and the products in Eqs. (4.20) and (4.21) are equal.
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C1 1 1 1 2 2 2 3332 3DBAC DBAC DBA

Fig. 4.4. The patching together of three vortex solutions, as described in the
text. The shaded circles, running left to right, represent the cores of vortices
1, 2, and 3. Along the dotted lines the scalar field is equal to φ1, φ2, and φ3,
respectively. Along the dashed lines, and in the region outside these dashed
lines, the field is equal to φ0.

The elements of π1(M) define topological charges for the vortices that combine
unambiguously in multivortex configurations. The possibilities when π1(M) is
non-Abelian are more complex and will not be described in detail here. A detailed
discussion of these can be found in [49].

4.5 Some illustrative vortex examples
It may be useful to illustrate the results of the previous sections with some
examples.

(i) U(1) = SO(2) symmetry broken by a complex scalar field: This is the case
studied in detail in Chap. 3. The vacuum expectation value of the Higgs field is
of the form 〈φ〉 = veiα, with 0 ≤ α < 2π, so the vacuum manifold M = S1, and
π1(M) = π1(S1) = Z. [Alternatively, we could make use of Eq. (4.16) by taking
the gauge group G to be the covering group of U(1), which is the additive group
of the real numbers, and the unbroken subgroupH to be the additive group of the
integers.] The elements of π1(M) can be identified with the vorticity defined by
Eq. (3.4). This was normalized so that it takes on integer values, and is additive
when vortices are combined.
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4.5 Some illustrative vortex examples 69

(ii) SO(N) symmetry broken to SO(N − 1): This can be achieved with a scalar
field φ that transforms under the vector representation of SO(N) and has a
vacuum expectation value that satisfies an equation of the form

∑N
a=1 φ

2
a = v2.

This defines an (N − 1)-sphere, and so

M = SO(N)/SO(N − 1) = SN−1. (4.22)

For N = 2 we have the previous example, but for N ≥ 3 we have π1(M) = 0,
the trivial group, and there are no topologically stable vortices. This can also be
seen by examining Fig. 3.1a. For N = 2, the arrows are confined to the plane
of the paper and cannot be smoothly rotated to be all parallel. For N = 3,
these arrows live in three dimensions and can be rotated to be perpendicular to
the plane of the paper, giving a topologically trivial configuration that can be
smoothly deformed into a pure vacuum.

(iii) Z2 vortices: Consider an SO(3) gauge theory with two scalar fields, φ and
χ, that transform as SO(3) vectors governed by the scalar field potential

V (φ,χ) =
λφ
4

(φ2 − v2
φ)

2 +
λχ
4

(χ2 − v2
χ)2 + g(φ ·χ)2. (4.23)

The sign of g determines the relative orientation of φ and χ at the minima
of V . If it is negative, these must be parallel, and the symmetry is broken to
U(1). If instead g > 0, φ and χ must be orthogonal vectors of lengths vφ and
vχ, respectively, and the SO(3) symmetry is completely broken. Hence, M =
G/H = SO(3), and π1(M) = Z2.5 We thus have Z2 vortices, with the property
that a combination of two vortices is topologically trivial and can be smoothly
deformed to the vacuum.

In this latter case we can write down a rotationally invariant ansatz,

φ = vφ (0, 0, 1),
χ = vχf(r) (cos θ, sin θ, 0),

Aj = εjkx̂
k a(r)
r

(0, 0, 1), (4.24)

in which φ is constant in space while χ and Aj are essentially embeddings of the
U(1) Higgs and gauge fields into the larger group. We could just as easily use
an ansatz in which χ was constant and φ was the field whose orientation was
twisted from point to point. It is easy to see that there are solutions of both types
(and possibly others, as well). Stability is a more difficult issue, and a detailed
study would be needed to see whether the heavier of these two solutions is stable
under small perturbations against decay to a lighter vortex.

5 Alternatively, we could take G to be the covering group SU(2), in which case H would be
the Z2 subgroup composed of the two elements I and –I. The result for π1(M) would then
follow from Eq. (4.16).
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Now consider the ansatz

φ = vφ (0, 0, 1),
χ = vχf(r) (cosnθ, sinnθ, 0),

Aj = εjkx̂
k a(r)
r

(0, 0, 1), (4.25)

that corresponds to an embedding of a vorticity n solution of the U(1) theory.
Because we have a Z2 topological charge, this solution has vanishing topological
charge if n is even, and unit charge if n is odd. In particular, the n = −1
antivortex solution is topologically equivalent to the vortex solution of Eq. (4.24).
But let us suppose that the two Higgs fields have very different energy scales,
with vφ � vχ, while λφ ∼ λχ. Because 〈φ〉 breaks SO(3) to U(1), at energies well
below vφ one would appear to have a U(1) gauge theory with a single complex
Higgs field formed from the components of χ orthogonal to 〈φ〉. That theory
would have vortices with ordinary integer topological charge, and solutions with
different values of n could not be deformed into one another. The vortex and the
antivortex would not be equivalent.

These two points of view are reconciled by considering the homotopy that takes
an n = 2 SO(3) configuration to the vacuum. In the course of this homotopy,
the untwisting of the χ field must be accompanied, at intermediate stages, by a
twisting of the φ field. At large distances, where the covariant derivatives vanish,
this can be accomplished by a gauge transformation and is unproblematic. How-
ever, within the vortex core there is gradient energy associated with the twisting
of φ. Because the scale of this energy is set by vφ, there is a large potential energy
barrier that must be traversed. As a result, the n = 2 configuration, although
not topologically stable, is dynamically protected from decay into the vacuum
sector.6

This illustrates that while topology is an important guide, it is not the whole
story.

(iv) Weinberg–Salam theory and semilocal vortices: The electroweak interac-
tions of the Standard Model have a gauged SU(2) symmetry, with coupling
constant g, and a gauged U(1) symmetry, with coupling constant g′. The Higgs
field is a complex doublet φ. The minima of V (φ) occur when φ†φ = v2/2,
where v �= 0 is determined by the Higgs field mass and self-coupling. Writing
φ = (φ1, φ2)t, we have

(Reφ1)2 + (Imφ1)2 + (Reφ2)2 + (Imφ2)2 =
v2

2
. (4.26)

This is the equation for a three-sphere. Since π1(S3) = 0, there are no topological
vortices in this theory.

6 The protection against decay is only absolute at the classical level. The decay could proceed
quantum mechanically via tunneling through the potential energy barrier, although the rate
for this would be exponentially small.
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4.5 Some illustrative vortex examples 71

However, there are some interesting related possibilities. First, consider a simi-
lar theory, but with vanishing SU(2) coupling g. There would then be a local U(1)
symmetry, but only a global SU(2) symmetry. As we have seen, finiteness of the
energy requires that the covariant derivative of the scalar field falls sufficiently
rapidly at large distance. This could be achieved if the long-distance twisting of φ
were entirely within the gauged U(1) group, but not if φ were rotated by elements
of the SU(2), because the effects of the gradients could not be compensated by
a coupling to an SU(2) gauge field. Consequently, a vortex configuration with

φ =
(

0
f(r)eiθ

)
(4.27)

and an appropriate U(1) gauge field might actually be stable, because the homo-
topy connecting the asymptotic field to a uniform vacuum configuration would
pass through configurations with SU(2) twisting of φ, and thus infinite energy.
Configurations such as these have been termed semilocal vortices [51].

However, depending on the parameters of the theory, a configuration such as
that in Eq. (4.27) could be unstable even without unwinding. The usual topo-
logical argument for the stability of such a configuration uses the fact that while
avoiding a singularity at the origin forces f(0) to vanish, the need to minimize
the energy from the potential forces f to rapidly approach v as r increases. Now
suppose that instead of setting φ1 = 0 we consider configurations of the form

φ =
(

g(r)
f(r)eiθ

)
(4.28)

with g not necessarily vanishing. The potential is minimized if f2 + g2 = v2,
so there is not necessarily any energetic penalty in letting f be small, or even
vanishing, as long as there is a compensating increase in g. Hence, a configuration
with nonzero vorticity in f might be unstable against the transformation of the
point zero at the origin into an ever increasing region of vanishing f . At spatial
infinity the measured vorticity would remain nonzero, but it would eventually
become unobservable at any finite r. A detailed numerical analysis shows that
such an instability is in fact present if the scalar self-coupling is large compared
to the U(1) gauge coupling. On the other hand, for small scalar self-coupling this
instability is absent and semilocal vortices can exist [52–54].

Still focusing on this latter case, let us restore the SU(2) gauge coupling, but
with g 
 g′. Although there is no longer an infinite energy barrier preventing
the unwinding of the field of Eq. (4.27), one might well expect there to be a
finite barrier that would preserve the semilocal vortex. This has been confirmed
by numerical analysis. However, this analysis also shows that this barrier disap-
pears before g reaches the observed electroweak value. Hence, the SU(2)×U(1)
electroweak theory does not have stable vortex solutions [55–57].
(v) Alice strings: Consider an SO(3) gauge theory with a Higgs field transform-
ing according to the five-dimensional irreducible representation [58]. This field
can be represented as a traceless symmetric 3× 3 matrix that transforms as
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72 Some topology

φ→ RφRt, (4.29)

where R is an SO(3) rotation matrix. Now let V (φ) be such that it is minimized
when two of the eigenvalues of φ are equal, so that φ is of the form

φ = R

⎛
⎝ a 0 0

0 a 0
0 0 −2a

⎞
⎠Rt, (4.30)

or, equivalently,

φ = a(I − 3eet), (4.31)

with e a real unit three-vector. Thus each possible vacuum is specified by a
unit vector e, but with the caveat that −e and e specify the same vacuum. To
identify the vacuum manifoldM, we first note that the space of unit three-vectors
is the unit two-sphere. Making e and −e equivalent corresponds to identifying
antipodal points on the two-sphere, giving a space that is the same as a disk
(a circle and the area it encloses) with antipodal points on its boundary identified.
A closed loop on this space can include a jump from one point on the boundary to
the antipodal point, as shown in Fig. 4.5. By continuous deformations of the path
(e.g., by bringing B ∼ B′ and C ∼ C ′ together and then moving the combined
point away from the disk boundary) one can subtract or add additional jumps,
but only in pairs. Thus, there are two homotopy classes of loops: those which
include an odd number of such jumps, and those with either an even number or
no jump at all. The homotopy group π1(M) is therefore Z2. [A similar argument
gives an alternative demonstration that the fundamental group of SO(3) is Z2.]

C’

A

B’

B C

A’

Fig. 4.5. A closed loop on a disk with antipodal points identified. As drawn, the
loop has three “jumps”. If B′ and C (and thus B and C′) are brought together,
two of these can be eliminated. However, it is never possible to subtract or
add an odd number of jumps.
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4.5 Some illustrative vortex examples 73

We can identify the unbroken gauge group by considering the vacuum with

φ = φ0 ≡

⎛
⎝ a 0 0

0 a 0
0 0 −2a

⎞
⎠ ≡ a(I − e0et0). (4.32)

The unbroken subgroup H clearly includes the U(1) subgroup consisting of
rotations about e0; i.e., about the 3-axis. However, it also includes another com-
ponent, disconnected from the first, consisting of rotations by π about any axis
perpendicular to the 3-axis. Because these rotations by π do not commute with
the elements of the U(1), H is not the direct product U(1)×Z2, but rather the
semidirect product group U(1)�Z2 = Pin(2).

Now consider a vortex solution in which φ at large distances is of the form

φ(r, θ) ≈ R(θ)φ0R(θ)−1

= a[I − 3e(θ)e(θ)t], (4.33)

where e(θ) = R(θ)e0. This will be topologically stable if R(θ) traces out an
uncontractible loop as θ ranges from 0 to 2π; i.e., if e(2π) = −e(0). At each value
of θ the unbroken U(1) subgroup is the set of rotations about e(θ), generated
by a charge operator Q(θ). If one makes a full circuit of the vortex, the result
is a reversal of e, and thus a change in the sign of Q. Hence, the U(1) charges
are double-valued and the sign of a particle’s charge is ambiguous. This can be
represented by imagining a branch cut starting at the vortex and either ending
at another vortex or running out to infinity, and saying that a particle’s charge
changes sign when the particle crosses the branch cut. The exact location of the
branch cut is not physically meaningful and not gauge invariant, but the existence
of a cut is. The vortices (or rather, the strings that are their extension into three
dimensions) that give rise to this phenomenon have been termed “Alice strings”,
in an allusion to Lewis Carroll’s novel [58].

Even though the sign of a charge is not gauge-invariant, it is physically mean-
ingful to ask whether a pair of particles have the same or opposite charges (e.g.,
the two particles cannot annihilate if they have the same charge, but might be
able to if they have opposite charges). However, suppose that we have an Alice
string in three spatial dimensions that closes on itself to make a circular loop.
The branch cut in two spatial dimensions becomes a surface in three dimensions
that is bounded by the string loop, but whose location is otherwise arbitrary.
Now start with two particles with equal charges and take one of them along a
path that goes around the string loop and then returns to its original position.
This reverses the sign of the particle’s charge, so it would seem that the two
particles have opposite sign, and so zero net charge. On the other hand, the elec-
tric flux through a Gaussian surface enclosing both the string loop and the two
particles would be unchanged, as should be expected from charge conservation.
It is tempting to try to reconcile these facts by saying that the U(1) charge of the
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74 Some topology

particle was transferred to the string loop when the particle crossed the surface
of branch cuts. However, the time of this transfer would depend on the arbitrary
choice for locating the surface. Instead, we are led to the conclusion that we can
assign a physically meaningful gauge-invariant charge to the entire system com-
prising the two particles and the loop, but that this charge cannot be localized
within the system in a gauge-invariant manner. In another allusion to Carroll,
such charges have been termed “Cheshire charges” [59].

For further discussion of Alice strings and Cheshire charges, see [60–62].

(vi) A non-Abelian fundamental group: Consider the same SO(3) gauge theory
as in the previous example, but with a potential that is minimized when the
eigenvalues of φ are all distinct, so that

φ = R

⎛
⎝ a1 0 0

0 a2 0
0 0 a3

⎞
⎠Rt, (4.34)

with a1 �= a2 �= a3. This is invariant only under the identity or rotations by π

about either the x-, the y-, or the z-axis, so the unbroken subgroup of SO(3) is
now a discrete group with four elements.

For determining π1(M) it is actually more convenient to take the original
gauge group G to be the covering group, SU(2), so that we can make use of
Eq. (4.16). This doubles the size of the unbroken group H, which now has eight
elements, corresponding to the SU(2) matrices ±I, ±σx, ±σy, and ±σz. These
form the quaternion group, Q, which is clearly non-Abelian. Because H = Q is
discrete, Eq. (4.16) gives

π1(G/H) = π0(H) = Q (4.35)

and we have a non-Abelian fundamental group, as promised. Vortices in this
theory are discussed in [63].

4.6 Higher homotopy groups
There is a natural generalization of the fundamental group. The latter classifies
closed loops, which are maps from a circle, S1, to a given manifold. The higher
homotopy groups, πn(M), classify maps from an n-sphere, Sn, to the manifold.

Let us first consider the second homotopy group, π2(M, x0). Although the
base point x0 is explicitly indicated, we will see below that, as with π1, the
group is independent of the choice of base point. This is the natural object for
classifying particle-like solitons in three spatial dimensions, where spatial infinity
is a two-sphere. (The line-like strings that are the extensions of vortices to three
dimensions are still classified by π1.)

We start by mapping the two-sphere to a finite region of the plane. One way
to visualize this is to imagine puncturing a hole in the surface of a balloon,
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0

t

s

10

1

Fig. 4.6. The mapping from a square to a sphere. The entire perimeter of the
square is mapped onto the north pole of the sphere, and the horizontal lines
of constant s are mapped onto the curves shown on the sphere. As one goes
along each of these curves, t runs from 0, at the north pole, to 1/2, at the edge
of the diagram, and then to 1 as the curve returns to the north pole on the
(hidden) opposite side of the sphere.

and then stretching and flattening out this surface until the infinitesimal circle
surrounding the puncture becomes the perimeter of a square. This square can
be covered by coordinates s and t, with 0 ≤ s, t ≤ 1, as illustrated in Fig. 4.6.
A smooth function on the sphere becomes a smooth function of s and t with the
additional constraint that it has the same value everywhere on the perimeter; i.e.,
f(0, t) = f(1, t) = f(s, 0) = f(s, 1). A convenient mapping of these coordinates
back to the sphere is shown in Fig. 4.6. Here s labels the loops, with s = 0 and
s = 1 being degenerate loops that reduce to a point and s = 1/2 being the largest
loop. The distance along each loop is parameterized by t.

Homotopy is defined by generalizing Eq. (4.2). Let f(s, t) and g(s, t) be two
maps, both of which are equal to x0 everywhere on the perimeter of the square.
These are homotopic if there is a function k(s, t, u) with 0 ≤ s, t, u ≤ 1 such that

k(s, t, 0) = f(s, t),
k(s, t, 1) = g(s, t),
k(s, 0, u) = k(s, 1, u) = k(0, t, u) = k(1, t, u) = x0. (4.36)

Just as before, this relation defines a set of homotopy classes.
The product of two maps can be defined by

(f ◦ g)(s, t) =

⎧⎨
⎩
f(s, 2t), 0 ≤ t ≤ 1/2 ,

g(s, 2t− 1), 1/2 ≤ t ≤ 1 .
(4.37)

This is illustrated graphically in Fig. 4.7. As was true with loops, this prod-
uct can be carried over to homotopy classes. We want to show that these

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139017787.005
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.137, on 21 Nov 2025 at 18:34:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139017787.005
https://www.cambridge.org/core


76 Some topology
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10

1

0

f

Fig. 4.7. Diagrammatic illustration of the product of two maps f(s, t) and
g(s, t). The functions are equal to x0 everywhere on the heavy solid lines.

f g

g

g

f

g f

f

Fig. 4.8. A demonstration that π2 is always Abelian. The functions are equal
to x0 everywhere on the heavy solid lines and in the dark shaded regions. The
transformations indicated by the arrows are all smooth deformations of one
map into the next.

homotopy classes with this product form a group. Associativity is straightfor-
ward to demonstrate. The identity element is the homotopy class containing the
constant map f0(s, t) = x0. The existence of an inverse follows from the obser-
vation that f(s, t) ◦ f(s,−t) is homotopic to the identity map. Thus, we have a
based homotopy group π2(M, x0).

However, note the series of maps shown in Fig. 4.8. Each is clearly homotopic
to the previous one, with the net result being that f ◦ g and g ◦ f are homotopic.
Thus, in contrast with the first homotopy group, π2 is always Abelian.

As with the first homotopy group, π2(M, x0) does not depend on the choice
of x0, provided that M is a connected manifold. In the case of π1, this could
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4.7 Some results for higher homotopy groups 77

be seen by considering a path connecting two possible base points. For π2, this
path must be inflated to become a thin tube, but the demonstration is otherwise
analogous. We can therefore drop the reference to the base point, and simply
write π2(M).

Nevertheless, just as with π1, the isomorphism between π2(M, x0) and
π2(M, y0) can depend on the path of the tube from x0 to y0. If two such paths can
be combined to form a noncontractible loop from x0 to y0 and back to x0, then
there will be maps that can be deformed into each other if the base point condi-
tion is removed, but not otherwise. Thus, these maps will be freely homotopic,
but not homotopic. This situation can arise even if the first homotopy group of
M is Abelian, although it is necessary that this group be nontrivial [48].

When ambiguities of this sort are absent, three-dimensional particle-like soli-
tons can be associated with a unique homotopy class, with an associated additive
topological charge. On the other hand, if there is an ambiguity, the soliton is asso-
ciated with a set of homotopy classes, and there are subtleties in defining the
topological charges of multisoliton configurations. This is seen, for example, in
configurations containing both magnetic monopoles and Alice strings [61].

This discussion of π2 can be carried over, with the obvious generalizations, to
the πn with n ≥ 3. Like π2, these higher homotopy groups are always Abelian.
In particular, we will encounter π3 in our study of Yang–Mills instantons.

4.7 Some results for higher homotopy groups
In our later discussions we will need a number of results concerning the homotopy
groups of spheres. Let us begin with πn(Sn), which classifies maps from one
n-sphere to another. For n = 1, we saw previously that π1(S1) = Z, with the
integer associated with a map being the winding number N that counts the
number of times that the first S1 winds around the second. If the mapping at a
point is counted with a positive or negative sign according to whether the two
circles are being traversed in the same or opposite directions, respectively, then
the total count at every point on the target circle is N . Explicitly, if θ denotes
the angle on the first circle, and α(θ) the angle to which this is mapped on the
second circle, the winding number that was defined in Eq. (3.4) can be written as

N =
1
2π

∫ 2π

0

dθ
dα

dθ
. (4.38)

A winding number can be defined in an exactly analogous fashion for maps
from S2 to S2. Using the standard spherical coordinates θ and φ for the first
sphere and α(θ, φ) and β(θ, φ) for the second, we can define the winding number

N =
1
4π

∫
d2Ω

sinα
sin θ

(
dα

dθ

dβ

dφ
− dβ

dθ

dα

dφ

)

=
1
4π

∫
dθ dφ sinα

(
dα

dθ

dβ

dφ
− dβ

dθ

dα

dφ

)
. (4.39)
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It is useful to rewrite this in terms of Cartesian components. Let us define the
unit vector

ê(r) = (sinα cosβ, sinα sinβ, cosα), (4.40)

with α(r) and β(r) functions of three-dimensional Euclidean space. Converting
Eq. (4.39) to Cartesian coordinates, we find that the winding number of ê(r) on
a sphere of fixed radius is

N =
1
8π
εijkεabc

∫
dSi êa (∂j ê)b (∂kê)c

=
1
8π
εijk

∫
dSi ê · ∂j ê× ∂kê, (4.41)

where dSi is the surface element on the sphere.
This integral is invariant under smooth variation of ê. To see this, consider the

variation ê→ ê′ = ê+v where v is infinitesimal. Because ê and ê′ are both unit
vectors, we must require that v, like ∂kê, be orthogonal to ê. To first order in v,
the change in N is

δN =
1
8π
εijk

∫
dSi (2ê · ∂j ê× ∂kv + v · ∂j ê× ∂kê)

=
1
4π
εijk

∫
dSi ê · ∂j ê× ∂kv

=
1
4π
εijk

∫
dSi ∂j (ê · v × ∂kê)

= 0. (4.42)

The last term on the first line vanishes because the three factors are all orthogonal
to ê, and the last line follows from the fact that the integration is over a surface
without boundary.

Furthermore, N is invariant under perturbations of the integration surface, as
long as ê remains well defined. Hence, if we have a field φ(r) that transforms as
an SO(3) vector and define ê = φ/|φ|, the winding number of ê over a surface
is invariant under deformations of the surface that do not take it through a zero
of φ. Arguments analogous to those for the vortex case then show that N is
equal to the total number of zeros of φ in the region enclosed by the surface of
integration, with each zero being counted with a plus or minus sign according to
the sign of the winding on an infinitesimal sphere enclosing the zero.

These results are readily generalized to arbitrary n, so we have

πn(Sn) = Z. (4.43)

There is a second result that generalizes from the n = 1 case. By removing a
point from Sn to obtain Rn, and noting that Rn is simply connected, we showed
that all maps from S1 into Sn with n > 1 are contractible. Essentially the same
argument shows that maps from any sphere to a higher-dimensional sphere are
contractible; i.e., that

πk(Sn) = 0, n > k. (4.44)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139017787.005
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.137, on 21 Nov 2025 at 18:34:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139017787.005
https://www.cambridge.org/core


4.7 Some results for higher homotopy groups 79

The situation for maps from a larger sphere to a smaller one is less simple. For
all k > 1, πk(S1) = 0, but for 1 < n < k the group πk(Sn) is nontrivial, with a
more complicated dependence on k and n.

We will also make use of some results concerning higher homotopy groups of
Lie groups. First, a theorem due to Cartan [64] implies that

π2(G) = 0, G compact, connected, (4.45)

for any compact connected Lie group G. Next, recall that the group SU(2) is
topologically equivalent to a three-sphere. Setting n = 3 in Eq. (4.43), we have

π3(SU(2)) = Z. (4.46)

SU(2) is a subgroup of every compact simple Lie group G, so every topologically
nontrivial map from the three-sphere to SU(2) can also be viewed as a map from
the three-sphere to G. Because G is a larger manifold, one might wonder if this
map could be untwisted in G, even though it could not be untwisted in SU(2).
The answer turns out to be no and we have

π3(G) = Z, G compact, connected, and simple. (4.47)

Finally, there is an important theorem concerning π2(G/H) that will prove to
be very useful in our study of monopoles in the next chapter. It is analogous to the
theorem for the fundamental group that was given in Eq. (4.16). One route [50]
to obtaining this result is as follows. Let φ be a scalar field transforming under
a gauge group G, and let H be the subgroup that leaves a particular vacuum
value, φ0, invariant. We are interested in maps from a two-sphere to the manifold
of vacua, G/H. Any such map is given by a function φ(s, t), with φ = φ0 when
either s or t is equal to 0 or 1. Since all vacuum values of φ are related by gauge
transformations, we can write

φ(s, t) = g(s, t)φ0, (4.48)

where g(s, t) is an element (or rather a representation of an element) of G. How-
ever, g(s, t) is not uniquely determined, since g(s, t)h(s, t)φ0 = g(s, t)φ0 for any
element h(s, t) of H.

Now consider the parameterization of the sphere given by Fig. 4.6. We can
arbitrarily set g = I at the beginning of each loop; i.e., g(s, 0) = I. Also, because
the s = 0 and s = 1 loops are simply points, g(0, t) = g(1, t) = I. Thus, g = I on
three sides of the square. On the fourth side, all that we know is that g(s, 1)φ0 =
φ0, which implies that

g(s, 1) ≡ h(s) (4.49)

is an element of H. The previous conditions imply that h(0) = h(1) = I, so h(s)
defines a loop in H. We thus have a correspondence between a map φ(s, t) from
S2 to G/H and a map h(s) from S1 to H.
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Now suppose that there are two such maps, φ1(s, t) and φ2(s, t), that yield the
same loop h(s). If we write

φ1(s, t) = g1(s, t)φ0,

φ2(s, t) = g2(s, t)φ0, (4.50)

then g1 = g2 everywhere on the boundary of the square. Hence, g3(s, t) ≡
g−1
2 (s, t)g1(s, t) is equal to the identity everywhere on the boundary, and thus

gives a map from the two-sphere to G. If this map is homotopic to the identity
map, g(s, t) = 1, then φ1 and φ2 will be homotopic to each other.

However, we saw above that π2(G) = 0 for any compact connected Lie group
G. Therefore any map from the two-sphere to G, including g3(s, t), is homotopic
to the identity map, and hence any two maps φ1(s, t) and φ2(s, t) that yield the
same h(s) are homotopic to each other. This clearly extends to the case where
φ1 and φ2 yield different, but homotopic, loops h1(s) and h2(s). Thus, we have
shown that there is a one-to-one mapping of elements of π2(G/H) to elements
of π1(H).

Does this mapping yield all elements of π1(H)? To answer this question, con-
sider the series of loops gt(s) ≡ g(s, t). We have g0(s) = 1 and g1(s) = h(s).
Because g(s, t) is a smooth function, this gives a homotopy connecting the loops
g1(s) and the trivial loop g0(s). Hence, h(s), viewed as a loop in G, is homotopic
to the identity. Conversely, if we are given any h(s) that is homotopic, as a loop
in G, to the identity map, that homotopy defines a g(s, t) and a φ(s, t). Thus, the
mapping from π2(G/H) is onto the subgroup of π1(H) that is mapped onto the
identity element of π1(G). If π1(G) = 0, i.e., if G is simply connected, then all of
π1(H) is mapped onto the single element of π1(G). The mapping from π2(G/H)
to π1(H) is then both one-to-one and onto, so

π2(G/H) = π1(H), G compact, connected, and simply connected. (4.51)

In the application of this result to the search for solitons in gauge theories G is
always compact and connected, so it is only the last condition that is nontrivial.
However, this too is always satisfied if G is taken to be the covering group of the
Lie algebra, with H then being the appropriate subgroup of this covering group.
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