The Fundamental Formula for the Area of a Triangle in Analytical Geometry.

By C. Tweedie.

(Read and Received 8th March 1912).

The algebraic methods employed are usually defective in explaining the sign to be attached to an area; while the trigonometrical method with the transformation of a trigonometrical formula has always seemed a little far fetched so early in analytical geometry.

The following algebraic demonstration is direct enough, and successfully suggests the sign to be attached.

Case I. Let G_1 , G_2 be two points $(1, y_1)$ and $(1, y_2)$ on the line x = 1.

Then the area of $OG_1G_2 = \frac{1}{2}G_1G_2 = \frac{1}{2}(y_2 - y_1)$ in magnitude and sign.

Case II. Let P₁, P₂ be any two points (x_1, y_1) , (x_2, y_2) , and let OP₁ and OP₂ cut the line x = 1 in G₁ and G₂, so that G₁ and G₂ are given by $\left(1, \frac{y_1}{x_1}\right)$ and $\left(1, \frac{y_2}{x_2}\right)$, while $\frac{OG_1}{2\pi} = \frac{1}{2\pi}, \frac{OG_2}{2\pi} = \frac{1}{2\pi}.$

$$OP_1^{-} x_1' OP_2^{-} x_2'$$

$$\triangle OP_1P_2 = x_1x_2 \cdot \triangle OG_1G_2$$

$$= \frac{1}{2}(x_1y_2 - x_2y_1).$$

Hence

There remains the question of sign. When x_1 and x_2 are both like in sign, OG₁G₂ and OP₁P₂ are of like sense of rotation and x_1x_2 is positive. (Fig. 1).

Fig. 1.

If x_1 , say, is positive, and x_2 negative, then OG_1G_2 and OP_1P_2 are of opposite sense of rotation, and x_1x_2 is negative. (Fig. 2).

Fig. 2.

Hence in all cases the usual law for the sign of the area follows.

This is extended to the triangle $P_1P_2P_3$, and to polygons, in the usual manner.