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A counterexample to King’s conjecture

Lutz Hille and Markus Perling

Abstract

King’s conjecture states that on every smooth complete toric variety X there exists a
strongly exceptional collection which generates the bounded derived category of X and
which consists of line bundles. We give a counterexample to this conjecture. This example
is just the Hirzebruch surface F2 iteratively blown up three times, and we show by explicit
computation of cohomology vanishing that there exist no strongly exceptional sequences
of length 7 which consist of line bundles.

1. Introduction

It is a widely open question whether, on a given smooth algebraic variety X (say, complete and
smooth), there exists a tilting sheaf. A tilting sheaf is a sheaf T which generates the bounded derived
category Db(X) of X and Extk(T ,T ) = 0 for all k > 0. For such T , the functor

RHom(T , . ) : Db(X) −→ Db(A − mod),

where A := End(T ) is the endomorphism algebra, induces an equivalence of categories (see [Rud90,
Bon90, Bei78]). The existence of a tilting sheaf implies that the Grothendieck group of X is finitely
generated and free, so that, in general, such sheaves cannot exist. However, so far there are a number
of positive examples known, including projective spaces, del Pezzos, certain homogeneous spaces,
and some higher-dimensional Fanos. An obvious testbed for the existence of tilting sheaves are the
toric varieties. There is a quite strong conjecture which was first stated by King [Kin97] as follows.

Conjecture 1.1 (King [Kin97]). Let X be a smooth complete toric variety. Then X has a tilting
sheaf which is a direct sum of line bundles.

If a tilting sheaf decomposes into a direct sum of line bundles, its direct summands T =
⊕t

i=1 Li

form a so-called strongly exceptional sequence, i.e. Extk(Li,Lj) = 0 for all i, j and all k > 0,
and (after possibly reordering the Li) Hom(Li,Lj) = 0 for i > j. Moreover, t is the rank of the
Grothendieck group of X.

It would be very nice if easily computable tilting sheaves on toric varieties existed, and indeed
many positive examples in favor of the conjecture are known (see [CM04, Kaw05, Hil04], and also
[AH99, AKO04, BP05, CS06] for related results). Computer experiments also look promising in
many directions. However, the conjecture has remained somewhat mysterious so far and, as it turns
out, is false in general. It is the purpose of this paper to present a counterexample.

Our counterexample is the toric surface X as shown in Figure 1, which can be obtained by
iteratively blowing up the Hirzebruch surface F2 three times. In coordinates, the primitive vectors
of its rays are given as shown in Figure 1.
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Figure 1. The fan. The endpoints of the lines indicate the position of the primitive vectors: l1 =
(1,−1), l2 = (2,−1), l3 = (3,−1), l4 = (1, 0), l5 = (0, 1), l6 = (−1, 2), l7 = (0,−1).

Note that the rank of the Grothendieck group of X is 7. To show that no strongly exceptional
sequences of length 7 exist on this surface, we will perform explicit computations in the Picard group
to determine cohomology vanishing. More precisely, note that if L1, . . . ,Lt is a strongly exceptional
sequence, then also L1 ⊗ L′, . . . ,Lt ⊗ L′ is strongly exact, where L′ is any line bundle. So one can
assume without loss of generality that the sequence contains the structure sheaf. Then a necessary
condition for the bundles in the sequence is that all of the higher cohomology groups of the bundles
and of their dual bundles vanish, i.e. Hk(X,Li) = Hk(X,L∗

i ) = 0 for all i and all k > 0. This is
a rather strong condition, and our main computation will be to compile a complete list of such
bundles for our surface X. After having obtained this classification, we deduce by simple inspection
that no strongly exceptional sequence of length 7 and consisting of line bundles exists.

Overview
In § 2 we state everything we need to know about cohomology of line bundles on toric surfaces
and we describe in more detail our method of computation. In § 3 all bundles are classified which
have the property that the higher cohomologies of the bundles themselves and of their dual bundles
vanish. In § 4 we show by inspection that no strongly exceptional sequences of length 7 exist on X.

2. The setup

In this section we recall basic facts on cohomology of line bundles on a toric surface and we describe
our method of computation. For general information about toric varieties we refer to [Oda88, Ful93].

2.1 Generalities on toric line bundles
Let X be a complete smooth toric surface on which the torus T acts. The variety X is described
by a fan ∆ which is contained in a two-dimensional vector space NR := N ⊗Z R, where N ∼= Z

2

is the group of one-parameter subgroups of T . We denote by ∆(1) the set of rays, that is, of one-
dimensional cones of ∆. As X is a complete surface, the fan is completely determined by the rays.
We denote the primitive vectors of the rays by l1, . . . , ln, enumerated in counterclockwise order.
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To any li there is associated a T -invariant divisor Di, and every divisor D can, up to linear equiv-
alence, written as a sum of these invariant divisors, i.e. D =

∑n
i=1 ciDi. We denote by M ∼= Z

2

the character group of the torus acting on X and we set MR := M ⊗Z R. The lattice N is in a
natural way dual to M , and the primitive vectors li are integral linear forms on M (and on MR,
respectively). There is a short exact sequence

0 −→ M
A−→ Z

∆(1) −→ Pic(X) −→ 0,

where the matrix A is composed of the li as row vectors. This sequence is split exact. More pre-
cisely, if we choose two of the li, for instance ln−1 and ln, which form a Z-basis of N , then the
divisors D1, . . . ,Dn−2 form a Z-basis of Pic(X). So every divisor D has a unique representation
D =

∑n−2
i=1 ciDi.

Now let D =
∑n

i=1 ciDi be any T -invariant divisor. In a natural way, D defines an affine hyper-
plane arrangement HD = {H1, . . . ,Hn} in the vector space MR, where

Hi = {m ∈ MR | li(m) = −ci}.

All information on the cohomology of the line bundle O(D) is contained in the chamber structure HD

(or, more precisely, in the intersection of this chamber structure with the lattice M). Recall that
the T -action induces an eigenspace decomposition on the cohomology groups of O(D):

Hk
(
X,O(D)

)
=

⊕
m∈M

Hk
(
X,O(D)

)
m

for all k � 0. The dimension of Hk
(
X,O(D)

)
m

as a vector space is determined by the signature
of m with respect to the arrangement HD.

Definition 2.1. Let D =
∑n

i=1 ciDi be a T -invariant divisor on X. Then, for every i = 1, . . . , n,
we define a signature

ΣD
i : M −→ {+,−, 0},

where ΣD
i (m) = + if li(m) > −ci, ΣD

i (m) = − if li(m) < −ci and ΣD
i (m) = 0 if li(m) = −ci.

Moreover, we denote

ΣD : M −→ {+,−, 0}n,

where ΣD(m) is the tuple
(
ΣD

1 (m), . . . ,ΣD
n (m)

)
.

In the following, we mostly work with only one D at a time, whose values for the ci will be clear
from the context. So we usually omit the reference to D in the notation, i.e. we mostly write Σ(m)
instead of ΣD(m).

Given the signature ΣD(m), the computation of Hk
(
X,O(D)

)
m

is straightforward. We use a
method which for toric surfaces can easily be derived from the standard textbook treatment for
cohomology computation for line bundles (we refer to [EMS00, HKP05] for an explicit description
for general toric varieties, see also [AH99, Lemma 3.4]).

For a given signature ΣD(m), a −-interval is a connected sequence of − with respect to the
circular order of the ρi. For example, assume that ∆(1) consists of seven elements enumerated in
circular order. Then the signature +−−++−+ has two −-intervals. Note that due to the circular
ordering of the rays, the signature −− + + + −− has only one −-interval.

Lemma 2.2. Let D be a T -invariant divisor on a toric surface X and m ∈ M . Then we have

dim H1
(
X,O(D)

)
m

=

{
the number of −-intervals − 1 if there exists at least one −-interval,

0 otherwise.
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Figure 2. The central arrangement.

and

dimH2(X,O(D))m =

{
1 if ΣD(m) = {−}n,

0 otherwise.

2.2 Method of computation
Let L1, . . . ,Lt be a strongly exceptional sequence of line bundles, i.e. we have Extk(Li,Lj) = 0
for all i, j and all k > 0. There is a natural isomorphism Extk(Li,Lj) ∼= Hk(X,L∗

i ⊗ Lj), where
L∗

i = Hom(Li,OX) denotes the dual bundle. By this we can assume without loss of generality that
one of the Li is just the structure sheaf OX , i.e. L1, . . . ,Lt is a strongly exceptional sequence if
and only if L∗

i ⊗ L1, . . . ,L∗
i ⊗ Lt is a strongly exceptional sequence. If OX is part of the sequence,

this in turn implies a rather strong condition on the cohomologies of the other bundles. Namely, for
every Li we have

Hk(X,Li) = Hk(X,L∗
i ) = 0 for all k > 0.

Thus, to show that our toric surface does not have a strongly exceptional sequence of length 7,
we proceed in two steps as follows.

(i) We classify all line bundles where higher cohomologies of the bundle itself as well as of its dual
vanish. It turns out that the list of such bundles has a rather short description, although it is
not finite.

(ii) After having obtained the list, we show by exclusion that there are no strongly exceptional
sequences of length 7.

Example 1. Figure 2 shows the arrangement that belongs to the structure sheaf. We see that
this arrangement is central and induces a chamber decomposition of the space MR, consisting of
unbounded chambers. To every chamber there is associated a signature which we have indicated
in the picture. Note that, in fact, there are some more signatures which are not shown. For instance,
the points lying on the line between the chambers with signatures ++++++− and −+++++−
have signature 0 + + + + + −. The origin has signature 0000000.
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Figure 3. A deformation of the central arrangement.

Figure 3 shows a deformation of this central arrangement that belongs to the divisor D =
−(4D1 + 7D2 + 11D3 + 4D4 + 2D5). As we can see, moving the hyperplanes creates new chambers
with new signatures. There are two new unbounded chambers with signatures −−−− + + + and
+++++−+, respectively, which obviously have no influence on the cohomology of O(D). The other
chambers are all bounded and thus contain only a finite number of lattice points (i.e. points in M).
We have indicated the signatures of some of these points in the picture. As one can check, most of
these signatures do not give rise to nonvanishing cohomology, the only exception being the point with
signature +++++++. Recall that we are interested in the classification of line bundles which have
no higher cohomology and whose duals also have no higher cohomology. So, if there is an inequality
li(m) < −ci (or li(m) > −ci), then we have li(−m) > ci (li(−m) < ci, respectively), whereas for
li(m) = −ci we have li(−m) = ci. In our example the signature of m with ΣD(m) = + + + + + + +
becomes Σ−D(−m) = −−−−−−− for the dual bundle, which therefore has nonvanishing H2.

We give one more example and some more notation. In many situations it will not be necessary
to know the complete signature of some point m ∈ M . Therefore we define the following.

Definition 2.3. A partial signature is given by

ΣD : M −→ {+,−, 0, ∗}n

which is a signature for some subset I of {1, . . . , n} such that
(
ΣD(m)

)
i

= ΣD
i (m) for i ∈ I and(

ΣD(m)
)
i
= ∗ for i /∈ I.

It is convenient for us to use the same symbol for signatures and partial signatures. To exemplify
our computations, we prove the following.

Lemma 2.4. We have c5 � 5.
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Figure 4. A partial arrangement.

Proof. Assume D =
∑5

i=1 ciDi and c5 > 0. Now consider the point m in M which has the coordi-
nates (1 − 2c5,−c5) (see Figure 4).

Its partial signature with respect to the linear forms l5, l6, l7 is Σ(m) = ∗ ∗ ∗ ∗ 0 − +. Our aim
is to derive conditions on the values of the ci. Evidently, any complete signature that is obtained
by filling the ∗ has at least one −-interval. Moreover, if any of the ∗ becomes a −, the signature
has at least two −-intervals, and any corresponding line bundle will have nonvanishing H1. So, a
necessary condition is that ΣD

i (m) ∈ {+, 0} for i = 1, . . . , 4 and any valid divisor D. This, in turn,
implies that

c1 � c5 − 1
c2 � 3c5 − 2
c3 � 5c5 − 3
c4 � 2c5 − 1.

(1)

Now the point (−3,−1) has partial signature Σ(−3,−1) = ∗ ∗ ∗ ∗ + + +, and the above conditions
on c1, . . . , c4 imply that for c5 > 3 this point always has signature +++++++, and thus we have
nonvanishing H2. Hence, we conclude c5 � 3.

3. Classification of line bundles without higher cohomology

In this section we carry out the complete classification of line bundles for our toric surface which
have the property that the higher cohomologies vanish for both the bundle itself and its dual.
The result is listed in Table 1. As explained in the previous section, we can always assume that a
line bundle L is uniquely represented by an invariant divisor D =

∑5
i=1 ciDi, and every tuple of

numbers (c1, . . . , c5) represents a unique isomorphism class in Pic(X). As we have already seen in
Lemma 2.4, we can assume that c5 � 3. Moreover, as it does not matter whether we deal with a
bundle or its dual, we can without loss of generality assume c5 � 0. So, this leaves us with four
possible values for c5. Our classification will be done by subsequential case distinctions which on
the top level are guided by the four possible values of c5.

Note that in the following, for a given bundle we will use phrases such as ‘has cohomology’
if either the bundle itself or its dual has a nonvanishing higher cohomology group. We prove the
following theorem.

Theorem 3.1. Table 1 contains all line bundles on X with no higher cohomology groups.
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Table 1. The cohomology free line bundles.

Name (c1, c2, c3, c4, c5) Compatible with

A1 (0, 0, 1, 0, 0) −A6, A7, −C2, C3, −C6, C7, −C9,C10

−B1,k, B2,k, −B3,k, B4,k, −B6,k, B7,k

A2 (0, 1, 1, 0, 0) −A5, A7, −C1, C3, −C4, C5, −C6,−C7, C9, C10

−B1,k, B3,k, −B2,k, B4,k, −B5,k, B7,k

A3 (0, 1, 2, 1, 0) −A4, A7, −C1, −C3, C4, C5

−B2,k, B5,k, −B3,k, B6,k, −B4,k, B7,k if k � 1
A4 (1, 1, 1, 0, 0) −A3, A7, −C1, −C2, −C3, C7, C9,C10,

B2,k if k � 2, B3,k if k � 2, B4,k,
−B5,k, −B6,k, B4,k, −B7,k

A5 (1, 1, 2, 1, 0) −A2, A7, −C1, C8, B1,k, B2,k if k � 2, −B3,k,
−B4,k, B5,k, −B6,k

A6 (1, 2, 2, 1, 0) −A1, A7, B1,k, −B2,k, B3,k if k � 2,
−B4,k, B6,k, −B7,k

A7 (1, 2, 3, 1, 0) A1, A2, A3, A4, A5, A6, B1,k for k � 3, B7,1,
Bi,k for i = 2, . . . , 7 and k � 2,

−Bi,k for i = 1, . . . , 7.
B1,k, k � 2 (k, 2k − 1, 3k − 2, k, 1) −A1, −A2, A5,A6, A7 if k � 3, −A7,

B1,k−1 if k � 2, B1,k+1, B2,k−1, B2,k, B3,k−1, B3,k

B2,k, k � 1 (k, 2k − 1, 3k − 1, k, 1) A1, −A2, −A3, A4 if k � 2, −A6, A7 if k � 2, −A7,
B1,k if k � 2, B1,k+1, B2,k−1 if k � 2, B2,k+1,
B4,k−1 if k � 2, B4,k, B5,k−1 if k � 2, B5,k

B3,k, k � 1 (k, 2k, 3k − 1, k, 1) −A1, A2, A4 if k � 2, −A5, A6 if k � 2, A7 if k � 2, −A7,
B1,k if k � 2, B1,k+1, B3,k−1 if k � 2, B3,k+1

B4,k−1 if k � 2, B4,k, B6,k−1 if k � 2, B6,k

B4,k, k � 1 (k, 2k, 3k, k, 1) A1, A2, −A3, A4 if k � 2, −A5, −A6, A7 if k � 2, −A7,
B2,k, B2,k+1, B3,k, B3,k+1, B4,k−1 if k � 2, B4,k+1,

B7,k−1 if k � 2, B7,k

B5,k, k � 1 (k, 2k, 3k + 1, k + 1, 1) −A2, −A4, A5 if k � 2, A7 if k � 2, −A7,
B2,k, B2,k+1, B5,k−1 if k � 2, B5,k+1,

B7,k−1 if k � 2, B7,k

B6,k, k � 1 (k, 2k + 1, 3k + 1, k + 1, 1) −A1, A3, −A4, −A5, A6 if k � 2, A7 if k � 2, −A7,
B3,k, B3,k+1, B6,k−1 if k � 2, B6,k+1,

B7,k−1 if k � 2, B7,k

B7,k, k � 0 (k, 2k + 1, 3k + 2, k + 1, 1) A1 if k � 1, A2 if k � 1, A3 if k � 1, −A4, −A5,
−A6, A7 if k � 1, −A7,

B4,k, B4,k+1, B5,k, B5,k+1, B6,k, B6,k+1,
B7,k−1 if k � 2, B7,k+1

C1 (2, 4, 7, 3, 2) −A2, −A3, −A4, −A5, C3, C4, C7, C8,
B2,1, B2,2, B4,1, B5,1, B7,0, B7,1

C2 (2, 5, 7, 3, 2) −A1, −A4, C3, C9,
B3,1, B3,2, B4,1, B6,1, B7,0, B7,1

C3 (2, 5, 8, 3, 2) A1, A2, −A3, −A4, C1, C2, C5, C10,
B4,1, B4,2, B7,0, B7,1

C4 (2, 5, 9, 4, 2) −A2, A3, C1, C5, B5,1, B5,2, B7,0, B7,1

C5 (2, 6, 10, 4, 2) A2, A3, C3, C4, B7,0, B7,2

C6 (3, 5, 7, 3, 2) −A1, −A2, C7, C9, B1,2, B2,1, B2,2, B3,1, B3,2, B4,1

C7 (3, 5, 8, 3, 2) A1, −A2, A4, C1, C6, C10

B2,1, B2,2, B4,1, B4,2

C8 (3, 5, 9, 4, 2) A5, C1, B2,1, B2,2, B5,1, B5,2

C9 (3, 6, 8, 3, 2) −A1, A2, A4, C2, C6, C10

B3,1, B3,2, B4,1, B4,2

C10 (3, 6, 9, 3, 2) A1, A2, A4, C3, C7, C9, B4,1, B4,2
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The rest of this section is devoted to the proof of Theorem 3.1.

3.1 c5 = 3
Recall that the partial signature of the point (−3,−1) is ΣD(−3,−1) = ∗ ∗ ∗ ∗ + + +. By the
conditions (1), we immediately obtain the partial signature ∗ + + + + + +. So, the only way to
prevent H2 from showing up in the dual bundle is ΣD

1 (−3,−1) = 0 (then, for the dual bundle,
we have the signature Σ−D(3, 1) = 0 − − − − − −). This in turn means that c1 = 2. However,
then, we have ΣD(−4,−2) = 0 + + + +0+, and thus Σ−D(4, 2) = 0 − −− −0−, hence we get H1.
We conclude that there are no divisors with c5 = 3 and vanishing cohomology.

3.2 c5 = 2
Here, conditions (1) read

c1 � 1,
c2 � 4,
c3 � 7,
c4 � 3.

We first consider c4 = 3. Then Σ(−3, 0) = ∗ ∗ ∗ 0 + +0. If one of the ∗ is replaced by +, this implies
that the dual signature will have at least two −-intervals, independent on the other substitutions.
So we obtain

c1 � 3,
c2 � 6,
c3 � 9.

We treat these 27 possibilities case by case. First, let c1 = 1. Then we have Σ(−2,−1) = 0∗∗++0+,
and so we have H1, leaving only 18 more cases. For these we write the following table.

c1 c2 c3 m Σ(m)
2 4 8 (−3,−2) +0 + 00 − +
2 6 — (−3,−1) 0 + ∗ 0 + ++
2 — 9 (−3,−1) 0 ∗ +0 + ++
3 4 — (−2, 0) +0 ∗ + + +0
3 5 9 (−3,−1) +0 + 0 + ++
3 6 7 (−2, 1) 0 + 0 + + + −

This table contains a list of all values which have cohomology. For given values of c1, c2, c3, the
fourth columns contains a lattice point m ∈ M with bad signature, which is displayed in the fifth
column. Sometimes it suffices to display only a partial signature. Then the box for the corresponding
ci contains a dash (—). All tuples which are not displayed in the above table represent cohomology
free line bundles, namely the following.

c1 c2 c3 c4 c5

2 4 7 3 2
2 5 7 3 2
2 5 8 3 2
3 5 7 3 2
3 5 8 3 2
3 6 8 3 2
3 6 9 3 2
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Now for c4 = 4. We have Σ(−3,−2) = ∗ ∗ ∗ + 0 − + and thus we get the bounds

c1 � 2,
c2 � 5,
c3 � 8.

Moreover, we have Σ(−4, 0) = ∗ ∗ ∗ 0 + +0 and, thus,

c1 � 4,
c2 � 8,
c3 � 12.

Further, Σ(−3,−1) = ∗ ∗ ∗ + + + + and, hence,

c1 � 2
c2 � 5 or
c3 � 8.

We have Σ(−4,−3) = ∗ ∗ ∗ 0 −−+ which implies

c3 � 9

and so the case c3 � 8 cannot occur. Also, the conditions imply that either c1 = 2 or c2 = 5, thus
leaving 24 possibilities.

We first consider the case c1 = 2. Then we have Σ(−3,−2) = 0 ∗ ∗ 000+, which implies c2 � 6
and c3 � 10. Now we take c2 = 5. Then Σ(−4,−3) = +0 ∗ 0 − −+, so that we must have c3 = 9.
For c2 = 6, we have Σ(−4,−2) = 00 ∗ 000+, which implies c3 = 10. Indeed, we have found the
following,

c1 c2 c3 c4 c5

2 5 9 4 2
2 6 10 4 2

Now we consider c2 = 5. We can assume that c1 � 3. Assume that c3 � 10. Then Σ(−4,−3) =
+0 + 0−−+, so we have cohomology, hence c3 = 9. For c1 = 4, we have Σ(−4,−3) = +0 + 0−−+
and thus cohomology, hence c1 = 3, and indeed we have found the following.

c1 c2 c3 c4 c5

3 5 9 4 2

Now we go on with c4 � 5. Then we have Σ(−4,−2) = ∗ ∗ ∗ + 00+, which yields the conditions

c1 � 4,
c2 � 7,
c3 � 11.

The signature Σ(−3,−1) as before implies

c1 � 2
c2 � 5 or
c3 � 8.

Both conditions cannot be fulfilled simultaneously, and hence, for c4 � 5 there are no cohomology-
free bundles.
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3.3 c5 = 1
Again, we start with the conditions (1), which read

c1 � 0,
c2 � 1,
c3 � 2,
c4 � 1.

Now we go for the different cases for c1.

The case c1 = 0. Here we have Σ(−1,−1) = 0 ∗ ∗ ∗ 0 − + so that all of the ∗ can only be
substituted by zeros, and thus c2 = 1, c3 = 2, c4 = 1 and indeed we have found

c1 c2 c3 c4 c5

0 1 2 1 1

with no other possibilities left.

The case c1 = 1. We have Σ(−2,−1) = 0 ∗ ∗ ∗ 00+ which implies

c2 � 3,
c3 � 5,
c4 � 2.

Let c4 = 1, then Σ(−1, 0) = 0 ∗ ∗ 0 + +0, which implies

c2 � 2,
c3 � 3.

From these four cases, only c2 = 1, c3 = 2 has cohomology, as in this case Σ(−1,−1) = +0+00−+.
We have found the following.

c1 c2 c3 c4 c5

1 1 2 1 1
1 2 2 1 1
1 2 3 1 1

Now let c4 = 2. Then Σ(−2,−1) = + ∗ ∗ + 0 − 0, so that

c2 � 2,
c3 � 3,

leaving six cases. We write the following table, as before.

c2 c3 m Σ(m)
2 3 (−3,−2) +0 − 0 −−+
2 5 (−3,−2) +0 + 0 −−+
3 3 (−1, 0) 0 + 0 + + + 0

Thus we have found the following.

c1 c2 c3 c4 c5

1 2 4 2 1
1 3 4 2 1
1 3 5 2 1
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The case c1 � 2. Now for any c1 � 2, the point (1−c1, 0) has signature Σ(1−c1, 0) = +∗∗∗++0.
So, we obtain general conditions

c2 � 2c1 − 1,
c3 � 3c1 − 2,
c4 � c1.

We obtain another general condition as follows. Consider the signature Σ(−c1−1, 0) = −∗∗∗++0.
Assume that c4 � c1 + 2. Then Σ(−c1, 0) = − + ∗ ∗ + + 0 and so the ∗ can only be replaced by +,
hence c2 � 2c1 + 3. The signature Σ(−c2 − 2,−1) then becomes either −0 ∗−0 + 0 or −+ ∗− 0 + 0
which both are bad. Thus, c4 must be strictly smaller than c1 + 2, and we have

c4 ∈ {c1, c1 + 1} for any value of c1 � 2.

Now consider the signature Σ(−c1 − 1,−1) = 0 ∗ ∗ ∗ 0 + +, which yields the following restrictions:

c2 � 2c1 + 1,
c3 � 3c1 + 2.

Now assume that c4 = c1. From the signature Σ(−c1, 0) = 0 ∗ ∗ 0 + +0 we immediately obtain the
conditions

c2 � 2c1,

c3 � 3c1.

If c2 = 2c1−1, we have the signature Σ(−c1,−1) = +0∗ 000+, respectively Σ(−2,−1) = +0∗ 00++,
for the case c1 = 2. In either case, we obtain

c3 � 3c1 − 1.

For c2 = 2c1, we have the signature Σ(1 − c1, 1) = 0 + ∗ + + + −, hence the ∗ cannot be replaced
by − or 0, thus we obtain c3 � 2c1 − 1. We cannot find any more restrictions and, in fact, we have
found the following infinite series of cohomology-free line bundles.

c1 c2 c3 c4 c5

k � 2 2k − 1 3k − 2 k 1
k � 2 2k − 1 3k − 1 k 1
k � 2 2k 3k − 1 k 1
k � 2 2k 3k k 1

Now let c4 = c1 + 1. The signature Σ(−c4,−1) = + ∗ ∗ 0 −−+ yields

c2 � 2c1,

c3 � 3c1 + 1.

This leaves four possibilities of which we can only exclude the case c2 = 2c1, c2 = 3c1 + 2. Here we
distinguish cases c1 = 2, 3,� 4. For c1 = 2, we have Σ(−3,−2) = +0 + 0 −−+, for c1 = 3 we have
Σ(−4,−2) = +0 + 00 − + and for c1 � 4 we have Σ(−c1 − 1,−2) = +0 + 0 + −+, all of which are
bad signatures. So, we have extracted three more series as follows.

c1 c2 c3 c4 c5

k � 2 2k 3k + 1 k + 1 1
k � 2 2k + 1 3k + 1 k + 1 1
k � 2 2k + 1 3k + 2 k + 1 1
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3.4 c5 = 0
We have the signatures Σ(−1, 0) = ∗ ∗ ∗ ∗ 0 + 0 and Σ(1, 0) = ∗ ∗ ∗ ∗ 0 − 0 which imply

−1 � c1 � 1,
−2 � c2 � 2,
−3 � c3 � 3,
−1 � c4 � 1.

As c5 = 0, we can assume without loss of generality c1 � 0. We refine by case distinction by the
values of c1.

The case c1 = 0. Here we can assume without loss of generality that c4 � 0. Let c4 = 0 and
thus without loss of generality c2 � 0. We have the following table.

c2 c3 m Σ(m)
0 2 (−1,−1) 0 − 0 −−− +
0 3 (−1,−1) 0 − + −−− +
1 � 0 (1, 0) −0 − 0 + +−
1 � 2 (0, 1) −0 + 0 + +−

Thus, we have found the following.

c1 c2 c3 c4 c5

0 0 0 0 0
0 0 1 0 0
0 1 1 0 0

Now let c4 = 1. Then Σ(−1,−1) = 0 ∗ ∗ 0 − −+ and hence c2 = 1 and c3 = 2. We have found the
following.

c1 c2 c3 c4 c5

0 1 2 1 0

The case c1 = 1. Assume first that c4 = −1. Then Σ(0, 1) = 0∗∗−++−, which makes c4 = −1
impossible.

Now let c4 = 0. We have Σ(0, 1) = 0 ∗ ∗ 0 + +− which implies that c2 = 1 and c3 = 1. We have
found the following.

c1 c2 c3 c4 c5

1 1 1 0 0

Finally, let c4 = 1. Then Σ(0, 0) = + ∗ ∗ + 000, so

c2 � 1,
c3 � 1.

So we have reduced to six possibilities. Consider the following table.

c2 c3 m Σ(m)
1 1 (−1,−1) +0 − 0 −−+
1 3 (−1,−1) +0 + 0 −−+
2 1 (0, 2) −0 − + + +−
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The remaining cases are as follows, which finishes the classification.

c1 c2 c3 c4 c5

1 1 2 1 0
1 2 2 1 0
1 2 3 1 0

4. Statement and proof of the theorem

We represent the classification obtained in the previous section in Table 1. We distinguish three
types of line bundles, named by the letters A to C, where the B-type bundles form infinite series.
For a given cohomology-free bundle L the table shows the tuple (c1, c2, c3, c4, c5) and a list of all
cohomology-free bundles L′ which have the property that Hk(X,L∗⊗L) = Hk(X,L⊗(L′)∗) = 0 for
all k > 0, which is a necessary condition for L and L′ for being part of the same strongly exceptional
sequence. We say that L and L′ are compatible. Note that for the presentation purposes for the
B-type bundles we have only listed the compatible bundles which are also of type B. For notation,
−A4 for instance means the line bundle (−1,−1,−1, 0, 0). Now we state and prove our main result.
Let X be the toric surface as given in the introduction.

Theorem 4.1. On X there are no strongly exceptional sequences of length 7 which consist of line
bundles.

Proof. This is proved by inspection of the table and the exclusion principle. For example, assume
that we have a strongly exceptional sequence of length 7 which contains C10. Then the rest of the
sequence can at most be selected from A1, A2, A4, C3, C7, C9, B4,1, B4,2. We see from the corre-
sponding rows that at most one of the Ai and at most one of the Ci can be selected simultaneously.
Hence, we can choose at most four elements from the list to complete the sequence. We conclude
that a strongly exceptional sequence of length 7 which contains C10 cannot exist. Thus, we can
eliminate C10 from the table.

As general rules we read off that at most two of the Ai can be part of a strongly exceptional
sequence, i.e. we have either ±Ai, i = 1, . . . , 7 alone or Ai, i = 1, . . . , 7, and A7 (respectively, −Ai

and −A7) together, or Ai and −A7−i, i = 1, . . . , 6 (respectively, −Ai and A7−i) together.
Assume that a strongly exceptional sequence contains three bundles of type Br,k, Bs,l, Bt,m.

We read immediately off from the table that this is not possible if r, s, t are pairwise distinct,
hence at least two of the r, s, t coincide. We also see that always Br,k+1 − Br,k = A7 for all r and
Br,k+n −Br,k = n ·A7, so if two bundles of the same B-type are contained in a strongly exceptional
sequence, these must be of the form Br,k, Br,k+1. Now given such a pair and assume that there exists
one more Bs,l together with this pair in a strongly exceptional sequence. Then Br,k+1 − Bs,l = Ai

for some 1 � i � 6 and Br,k − Bs,l = −A7−i. If there exists another Bt,m in this sequence, we have
Br,k+1 − Bt,m = Aj for 1 � i � 6 and Bt,m − Bs,l = Ai − Aj, which is not possible. So we conclude
that a strongly exceptional sequence can contain at most three of the B. This in turn, together with
the above condition on the A, implies that a strongly exceptional sequence must contain at least
one of the C.

We now proceed with C9. We can only choose at most three of the compatible B and at most
one of the A. So we have to choose at least one out of C2 and C6. These two are mutually exclusive,
so we can choose only one of them. Both choices restrict the choice of the A to −A1, which in turn
is not compatible with B4,k. So that we can choose at most two of the B, which is not enough,
hence we can forget about C9.
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For C8, we can choose at most three of the B and thus to obtain a strongly exceptional sequence,
we have to choose both A5 and C1. However, A5 is not compatible with B2, so we cannot complete
to a full sequence. Hence, we eliminate C8.

For C7, the bundles C1 and C6 are mutually exclusive, so in order to obtain an exceptional
sequence of length seven, we have to choose one out of the A and three out of the B. The C leave
only one choice for the A, namely −A2, which in turn is not compatible with B4,k, hence we can
discard C7.

For C6 we have only the choice of at most one of the A and of at most three of the B left, which
is not enough. So C6 goes away.

For C5, both pairs C3, C4 and B1,2, B7,2 are mutually exclusive, leaving not enough choices to
complete the sequences.

Next we deal with C4. The sequence must contain C1 and −A2, where the latter is not compatible
with the B7, so no C4.

For C3, we can choose at most one A and at most one C. The C are not compatible with A1

and A2, and B4 and B7 are not simultaneously compatible with one of −A3 and −A4, which does
not leave enough choices to also choose −A4, which is not compatible with B4,k. So we can also
exclude C3.

In the remaining cases, for C1 and C2, we do not have any other C at our disposal. Therefore,
we cannot complete a sequence and so we can eliminate C1 and C2.

Altogether, we now have removed all of the C, and as we have seen above, it is not possible to
complete to a strongly exceptional sequence of length 7.
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