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Abstract. We study shift spaces over a finite alphabet that can be approximated by
mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s
d̄ metric (d̄-approachable shift spaces). The class of d̄-approachable shifts can be
considered as a topological analog of measure-theoretical Bernoulli systems. The notion
of d̄-approachability, together with a closely connected notion of d̄-shadowing, was
introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys. 43(3) (2023),
943–970]. These notions were developed with the aim of significantly generalizing speci-
fication properties. Indeed, many popular variants of the specification property, including
the classic one and the almost/weak specification property, ensure d̄-approachability and
d̄-shadowing. Here, we study further properties and connections between d̄-shadowing
and d̄-approachability. We prove that d̄-shadowing implies d̄-stability (a notion recently
introduced by Tim Austin). We show that for surjective shift spaces with the d̄-shadowing
property the Hausdorff pseudodistance d̄H between shift spaces induced by d̄ is the same
as the Hausdorff distance between their simplices of invariant measures with respect to
the Hausdorff distance induced by Ornstein’s metric d̄ between measures. We prove that
without d̄-shadowing this need not to be true (it is known that the former distance always
bounds the latter). We provide examples illustrating these results, including minimal
examples and proximal examples of shift spaces with the d̄-shadowing property. The
existence of such shift spaces was announced in the earlier paper mentioned above. It
shows that d̄-shadowing indeed generalizes the specification property.
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1. Introduction
Given a finite set(an alphabet) A we let A ∞ stand for the full shift over A, that is, a set
of all A-valued infinite sequences. To avoid trivialities, we assume that A has at least two
elements. We endow A ∞ with the product topology induced by the discrete topology on
A, which turns A ∞ into a compact metrizable space. Let ρ be a metric compatible with
the topology on A ∞. The shift operator σ : A ∞ → A ∞ turns A ∞ into a non-invertible
dynamical system. From the dynamical point of view, the most interesting objects are
closed non-empty σ -invariant subsets of A ∞ (one-sided shift spaces or subshifts). We
also consider the space M(A ∞) of all Borel probability measures on A ∞ with the
weak∗ topology. The set of σ -invariant measures inM(A ∞) concentrated on a shift space
X ⊆ A ∞ is denoted byMσ (X). Each of these objects (invariant measures and subshifts)
has a canonically defined sequence of Markov approximations converging to it in a natural
topology. This fact, however, is of little practical use, because the convergence is too weak
to allow for a transfer of dynamical properties from an approximating sequence to the
properties of its limit.

Recall that the natural topology on the space of all subshifts of A ∞ is the hyperspace
(Vietoris) topology of non-empty closed subsets of a compact metric space. In other
words, a sequence of shift spaces (Xn)

∞
n=1 ⊆ A ∞ converges to a shift space X ⊆ A ∞

in the hyperspace topology if ρH(Xn, X) → 0 as n → ∞ (here, ρH is the Hausdorff
metric corresponding to ρ). Similarly, we say that simplices of invariant measures of
shift spaces (Xn)

∞
n=1 ⊆ A ∞ approximate the simplex of invariant measures of a shift

space X ⊆ A ∞ if Mσ (Xn) converges to Mσ (X) as n → ∞ in the natural hyperspace
topology of Mσ (A ∞), that is, if DH(Mσ (Xn),Mσ (X)) → 0 as n → ∞, where DH is
the Hausdorff metric corresponding to a metric D compatible with the weak∗ topology on
Mσ (A ∞).

Fortunately, for both measures and subshifts, stronger metrics than ρ and D are also
available. A useful metric for σ -invariant measures is Ornstein’s metric d̄M. In [23] we
studied a topology on the powerset of A ∞ induced by the Hausdorff pseudometric d̄H

derived from d̄-pseudometric on A ∞. A very similar idea of using d̄-approximation was
independently considered by Thompson [42], who used it in the settings of [4].

Recall that the pseudometric d̄ is given for x = (xj )
∞
j=0, y = (yj )

∞
j=0 ∈ A ∞ by

d̄(x, y) = lim sup
n→∞

1
n
|{0 ≤ j < n : xj �= yj }|. (1)

Since d̄(x, y) can be zero for distinct x and y, d̄ is not a metric. Nevertheless, after
factorizing by the equivalence relation ∼ on A ∞, where x ∼ y if and only if d̄(x, y) = 0,
we obtain the factor space A ∞/∼ on which d̄ becomes a complete, non-separable metric.
Since d̄ is bounded by 1 on A ∞, it induces a Hausdorff pseudometric d̄H on the space
CL(A ∞, d̄) of all non-empty d̄-closed subsets of A ∞. Similarly, d̄M is a complete
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bounded non-separable metric on Mσ (A ∞) inducing a Hausdorff metric d̄H
M on the

space CL(Mσ (A ∞), d̄M) of all non-empty d̄M-closed subsets of Mσ (A ∞). Note that
d̄M-convergence implies weak∗ convergence, so for each shift space X ⊆ A ∞ the set
Mσ (X) is d̄M-closed. It is also known that the set of ergodic measures on X, denoted
byMσ e(X), is d̄M-closed.

Hence, we obtain two more ways to say that shift spaces (Xn)
∞
n=1 ⊆ A ∞ approximate

X ⊆ A ∞:

lim
n→∞ d̄H(Xn, X) = 0, (2)

lim
n→∞ d̄H

M(Mσ (Xn),Mσ (X)) = 0, (3)

Note that we do not assume that the approximation in (2) and (3) is monotone (meaning
X1 ⊇ X2 ⊇ · · · and X = ⋂

Xn), but in practice it is often the case.
In [23], we studied the consequences of the existence of an approximating sequence as

in (2) and (3). We were especially interested in the case when the approximating sequence
is the sequence of Markov approximations. We introduced d̄-approachable shift spaces
(subshifts that are approached by their topological Markov approximations not only in
the ‘usual’ Hausdorff metric topology, but also in the d̄H sense). We also considered a
condition that is ostensibly a relaxation of (3):

lim
n→∞ d̄H

M(Mσ e(Xn),Mσ e(X)) = 0. (4)

We proved in [23] that for every shift space X and Y over A we have

d̄H
M(Mσ (X),Mσ (Y )) = d̄H

M(Mσ e(X),Mσ e(Y )) ≤ d̄H(X, Y ), (5)

hence

(2) �⇒ (3) ⇐⇒ (4).

In other words, d̄H approximation (2) implies convergence of simplices of invariant
measures in the Hausdorff metric d̄H

M induced by Ornstein’s d̄M metric on the space
Mσ (A ∞) as in (3). As a consequence, certain features of simplices of invariant measures
of shift spaces in the approximating sequence are inherited by the simplex of the limit.

In analogy with Friedman and Ornstein’s result characterizing Bernoulli measures
among all totally ergodic shift-invariant measures as d̄M-limits of their own Markov
approximations (see [14]), we also characterized in [23] chain-mixing d̄-approachable shift
spaces using the newly introduced d̄-shadowing property. (Note that Ornstein’s theory
characterizing Bernoullicity works best for invertible measure-preserving systems. In
particular, Markov shifts carrying Markov approximations mentioned here are two-sided,
while we consider the one-sided setting.) In this way we obtained a large family of
shift spaces that contains all β-shifts and all mixing sofic shifts, in particular all mixing
shifts of finite type. This is because many specification properties imply chain mixing
and d̄-approachability (this is the case, for example, for all shift spaces with the almost
specification property). We refer to [23] for more details.

We also showed in [23] that if every Xn has an entropy-dense set of ergodic measures
and the sequence (Xn)

∞
n=1 converges to X in the sense defined by any of (2)–(4), then
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ergodic measures of X are also entropy dense. This established a new method of proving
entropy density. As a consequence, we obtained entropy density of ergodic measures for all
surjective shift spaces with the d̄-shadowing property. Entropy density of ergodic measures
is a property introduced by Orey in 1986 [34] and Föllmer and Orey in 1988 [13]. Recall
that ergodic measures of a shift space X are entropy dense if every invariant measure can
be approximated with an ergodic one with respect to the weak∗ topology and entropy at
the same time. In particular,Mσ e(X) is a dense subset ofMσ (X). Note that there are shift
spaces with dense, but not entropy-dense, sets of ergodic measures (see [16]). Density of
ergodic measures and entropy density are strongly related to the theory of large deviations
and multifractal analysis [5, 12, 38, 39]; see Comman’s article [6] and references therein
for more information about that connection.

The results of [23] are also applicable to the study of the dynamics of the so-called
B-free shifts (or systems), a subject that has recently attracted considerable interest (see
[10, 11, 19–22, 24–26].

In the present paper, we study further properties of d̄-approachable shift spaces.
In particular, in §5 we construct minimal and proximal examples of chain-mixing
d̄-approachable shift spaces. These examples demonstrate that our technique yields entropy
density for shift spaces that are beyond the reach of methods based on specification,
as specification excludes both proximality and minimality. So far only specification-like
conditions have been invoked to prove entropy density explicitly (see [12, 38]). We note
that there exists a general theorem due to Downarowicz and Serafin [8] that guarantees
existence of minimal shifts with entropy-dense ergodic measures, but due to its generality
it is hard to see concrete examples. We also prove (see §3) that d̄-approachability
implies d̄-stability, where d̄-stability is a property recently introduced by Austin [1].
Austin combined one of Ornstein’s conditions equivalent to Bernoullicity with equivariant
analogs of some basic results in measure concentration to characterize Bernoullicity
of the equilibrium measure of a continuous potential ϕ under the assumption that the
equilibrium is unique. Austin formulated his main condition in terms of a stronger kind
of differentiability of the pressure functional at ϕ. He proved that the condition is always
necessary and he showed that it is sufficient if the shift space is ‘d̄-stable’. Austin
remarked that the class of ‘d̄-stable’ subshifts includes the full shift and several other
examples with the specification property. He also suspected that d̄-stability holds also for
examples without any specification properties. Hence, our minimal and proximal examples
of d̄-approachable shifts confirm this suspicion. In §4 we also show that the implication
(3) �⇒ (2) holds true if all shift spaces involved have the d̄-shadowing property, hence
chain mixing and d̄-approachability suffice for this implication; see Theorem 4.1. We note
that the implication (3) �⇒ (2) does not hold in general by producing a sequence of shift
spaces (Xn)

∞
n=1 such that for some shift space X we have d̄H

M(Mσ (Xn),Mσ (X)) → 0
while d̄H(Xn, X) → 1 as n → ∞; see Proposition 4.4.

We prove (Proposition 4.2) that it is possible to find a sequence of shift spaces (Xn)
∞
n=1

such that Mσ (Xn) converges in d̄M to a singleton set that is not a simplex of invariant
measures for any shift space. Finally, we prove that the d̄-shadowing on the measure center
of a shift space (the smallest invariant subshift of full measure for every invariant measure)
implies the same for the shift. We recall our notation and basic definitions in §2.
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The results of the present paper, as well as the results of [23], are also applicable to
two-sided shift spaces (shift-invariant subsets of AZ), provided that the definition of the
pseudometric d̄ stays as in (1), that is, we average over the coordinates 0, 1, . . . , n − 1.

2. Definitions
2.1. Hausdorff pseudometrics. Let Z be a set. A pseudometric on Z is a real-valued,
non-negative, symmetric function ρ on Z × Z vanishing on the diagonal {(x, y) ∈ Z ×
Z : x = y} and satisfying the triangle inequality. Let ρ be a bounded pseudometric on Z.
For z ∈ Z and non-empty A, B ⊆ Z, we define

ρ(z, B) = inf
b∈B

ρ(z, b) and ρH(A, B) = max
{

sup
a∈A

ρ(a, B), sup
b∈B

ρ(b, A)
}

.

We call ρH the Hausdorff pseudometric induced by ρ on the space of all non-empty subsets
of Z. If ρ is a bounded metric, then ρH becomes a metric on the set CL(Z, ρ) of closed
non-empty subsets of (Z, ρ). Note that in our settings some properties, well known in
the compact case, fail because we consider (Z, ρ) where ρ is not necessarily compact,
but only a bounded pseudometric space. For example, ρ and another pseudometric ρ̃ may
induce the same topology on Z but the spaces (CL(Z), ρH) and (CL(Z), ρ̃H) need not be
homeomorphic.

2.2. Shift spaces and languages. We let N denote the set of positive integers. We
also write N0 = N ∪ {0}. Unless otherwise stated, the letters i, j , k, l, m, n always denote
integers. An alphabet is a finite set A endowed with the discrete topology. We refer to
elements of A as symbols or letters. The full shift A ∞ is the Cartesian product of infinitely
many copies of A indexed by N0. We endow A ∞ with the product topology. A compatible
metric on A ∞ is given for x, y ∈ A ∞ by

ρ(x, y) =
{

0 if x = y,

2− min{j :xj �=yj } otherwise.

The shift map σ : A ∞ → A ∞ is given for x = (xi)
∞
i=0 ∈ A ∞ and j ≥ 0 by σ(x)j = xj+1.

A shift space over A is a non-empty, closed, and σ -invariant subset of A ∞. A word over
A is a finite sequence of elements of A. The number of entries of a word w is called the
length of w and is denoted by |w|. The empty sequence is called the empty word and is
the only word of length 0. We denote it by λ. The concatenation of words u = u1 · · · uk

and v = v1 · · · vm is the word u1 · · · ukv1 · · · vm denoted simply by uv. Given x ∈ A ∞
and 0 ≤ i < j , we let x[i,j) denote the word xixi+1 · · · xj−1 over A of length j − i. We
say that a word w appears in x ∈ A ∞ if there exist 0 ≤ i < j such that w = x[i,j). A
word w appears in a shift space X ⊆ A ∞ if there exists x ∈ X such that w appears in
x. The language of a shift space X ⊆ A ∞ is the set B(X) of all finite words over A

appearing in X. We agree that the empty word appears in every sequence in A ∞. For
n ∈ N0, we let Bn(X) ⊆ An be the set of all words w ∈ B(X) with |w| = n. Given a
set F of finite words over A, we define XF be the set of all x = (xi)

∞
i=0 ∈ A ∞ such

that no word from F appears in x. The resulting set XF is either empty or a shift space.
Furthermore, for every shift space X over A one can find a collection F of finite words
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such that X = XF. A shift space X is a shift of finite type if there exists a finite set F such
that X = XF. Every shift space X ⊆ A ∞ is the intersection of a sequence (XM

n )n≥0 of
shifts of finite type. To construct that sequence, we define F[n] to consist of all words w
over A with |w| = n + 1 and w /∈ Bn+1(X). In this way, we obtain for each n ≥ 0 a shift of
finite type XM

n = XF[n] such that Bj (X) = Bj (X
M
n ) for 0 ≤ j ≤ n + 1. We call the shift

space XM
n the nth (topological) Markov approximation of X or finite type approximation

of order n to X. We note that for every shift space X, its Markov approximation XM
n can

be conveniently described using a Rauzy graph. The nth Rauzy graph of X is a labeled
graph Gn = (Vn, En, τn), where we set Vn = Bn(X) and En = Bn+1(X), and for each
w = w0w1 · · · wn ∈ En we define i(w) = w0 · · · wn−1 ∈ Vn, t (w) = w1 · · · wn ∈ Vn,
and τn(w) = w0 ∈ A. The sofic shift space Xn presented by Gn satisfiesBj (Xn) = Bj (X)

for j = 1, . . . , n + 1; see Proposition 3.62 in [28]. It is now easy to see that Xn is the nth
topological Markov approximations for X.

The following definitions of (chain) mixing and (chain) transitivity are stated only for
shift spaces. We will do the same for several notions: instead of presenting a general
definition for continuous maps acting on compact metric spaces (for the latter, see [28]),
we will state an equivalent definition adapted to symbolic dynamics. This applies to (chain)
transitivity, (chain) mixing, specification, and its variants.

A shift space X is transitive if for every u, w ∈ B(X) there exists v with uvw ∈ B(X).
A shift space X is topologically mixing if for any u, w ∈ B(X) there exists N ∈ N0 such
that for each n ≥ N there is v = v(n) ∈ Bn(X) such that uvw ∈ B(X).

A shift space is chain transitive (respectively, chain mixing) if its topological Markov
approximations XM

n are transitive (respectively, topologically mixing) for all except finitely
many ns.

2.3. Ergodic properties of shift spaces. Let M(X) be the set of all Borel probability
measures supported on a shift space X ⊆ A ∞. In particular, M(A ∞) stands for the
space of all Borel probability measures on A ∞. We writeMσ (X) andMσ e(X) to denote
respectively the sets of σ -invariant and ergodic σ -invariant measures inM(X). We endow
M(A ∞) with the weak∗ topology, hence it becomes a compact metrizable space and
Mσ (X) is its closed subset for every shift space X ⊆ A ∞.

We say that x ∈ A ∞ generates μ ∈Mσ (X) along a strictly increasing sequence of
integers (Nk)

∞
k=1, if for every continuous function f : X → R the sequence of Cesàro

averages of (f (σn(x)))∞n=0 along (Nk)
∞
k=1 converges and the limit satisfies

lim
k→∞

1
Nk

Nk−1∑
n=0

f (σn(x)) =
∫
A ∞

f dμ.

Compactness implies that for every strictly increasing sequence of integers (Nk)
∞
k=1 and

every point x ∈ X there is a subsequence of (Nk)
∞
k=1 such that x generates an invariant

measure along that subsequence. In particular, every point always generates at least one
measure. A point x ∈ A ∞ is generic for μ ∈Mσ (X) if μ is the unique measure generated
by x. Every ergodic measure has a generic point. We denote by h(μ) the Kolmogorov–Sinai
entropy of μ ∈Mσ (X). We say that ergodic measures of a shift space X are entropy dense
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if for every measure μ ∈Mσ (X), every neighborhood U of μ inMσ (X), and every ε > 0
there is ν ∈ U ∩Mσ e(X) with |h(ν) − h(μ)| < ε. Note that having entropy-dense ergodic
measures is preserved by conjugacy.

2.4. The functions d̄ and d̄M. Given x = (xn)
∞
n=0, y = (yn)

∞
n=0 ∈ A ∞, we set

d̄(x, y) = lim sup
n→∞

1
n
|{0 ≤ j < n : xj �= yj }|.

The function d̄ is a pseudometric on A ∞, but d̄ is not a metric if A has at least two
elements, because the implication d̄(x, y) = 0 �⇒ x = y fails. The function d̄ is not
continuous in general. Furthermore, d̄ : A ∞ × A ∞ → [0, 1] is shift invariant (for all
x, y ∈ A ∞ we have d̄(x, y) = d̄(σ (x), σ(y))).

Ornstein’s metric d̄M on Mσ (A ∞) is usually defined with the help of joinings.
(Ornstein’s metric d̄M is usually denoted by d̄ , but in [23] as well as in this paper the
distinction between d̄ and d̄M is crucial. We refer to d̄M as the ‘d-bar distance for measures’
and we call d̄ on A ∞ ‘pointwise d-bar’ or simply ‘d-bar’.) A σ × σ -invariant measure ξ

on A ∞ × A ∞ is a joining of μ, ν ∈Mσ (A ∞) if μ and ν are the marginal measures for
ξ under the projection to the first (respectively, the second) coordinate. We write J (μ, ν)

for the set of all joinings of μ and ν. Note that J (μ, ν) is always non-empty because the
product measure μ × ν belongs to J (μ, ν). Ornstein’s metric d̄M onMσ (A ∞) is given by

d̄M(μ, ν) = inf
ξ∈J (μ,ν)

∫
A ∞×A ∞

d0(x, y) dξ(x, y),

where d0(x, y) = 1 if x0 �= y0 and d0(x, y) = 0 otherwise. The spaceMσ (A ∞) endowed
with the d̄M-metric becomes a complete but non-separable (hence, non-compact) metric
space. The space Mσ e(A ∞) ⊆Mσ (A ∞) of ergodic measures is d̄M-closed, as are
the spaces of strongly mixing and Bernoulli measures on A ∞. The entropy function
μ �→ h(μ) is continuous onMσ (A ∞) under d̄M. The convergence in d̄M implies weak∗
convergence (for more details, see [35]).

Applying Hausdorff metric construction described in §2.1 to the bounded metric
space (Mσ (A ∞), d̄M), we obtain a metric denoted by d̄H

M defined on the space
CL(Mσ (A ∞), d̄M) of non-empty closed subsets of (Mσ (A ∞), d̄M). For every shift
space X the sets Mσ (X) and Mσ e(X) are closed sets in the Hausdorff metric d̄H

M.
Similarly, starting from the pseudometric space (A ∞, d̄), we get a pseudometric d̄H on
the set of all non-empty subsets of A ∞.

2.5. On d̄-shadowing and d̄-approachability. A shift space X ⊆ A ∞ is d̄-approachable
if its Markov approximations XM

1 , XM
2 , . . . satisfy d̄H(XM

n , X) → 0 as n → ∞. Every
shift of finite type is d̄-approachable.

We say that the shift space X has the d̄-shadowing property if for every ε > 0 there is
N ∈ N such that every sequence (w(j))∞j=1 in B(X) with |w(j)| ≥ N for j = 1, 2, . . .

is ε-traced by some point x′ ∈ X, that is, there is x′ ∈ X such that d̄(x, x′) < ε, where
x = w(1)w(2)w(3) . . . . The d̄-shadowing property was introduced in [23]. It is closely
related to the average shadowing property introduced by Blank [3] and studied in [27].
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Every mixing sofic shift space has the d̄-shadowing property, and d̄-shadowing is inherited
by d̄H-limits of shift spaces with the d̄-shadowing. Note that d̄-shadowing implies
d̄-approachability, but to prove the converse we need to assume additionally that the shift
space in question is chain mixing. The exact statement is Theorem 6 in [23], which says
that a shift space X ⊆ A ∞ is chain mixing and d̄-approachable if and only if σ(X) = X

and X has the d̄-shadowing property. Theorem 6 in [23] lists a third condition, but we will
not need it until §5, so we postpone the exact statement.

As we have already mentioned in the introduction, this characterization is a topological
counterpart of the result saying that a totally ergodic shift-invariant probability measure
is Bernoulli if and only if it is the d̄M-limit of the sequence of its canonical Markov
approximations.

In §5.1, we also show how to apply this corollary even in the case when natural
approximations of our shift are not comparable via inclusion, hence do not form a
descending chain of shift spaces.

3. d̄-approachability vs. d̄-stability
We recall the notion of d̄M-stability that has been recently introduced by Austin [1]. Then
we show that it follows from the d̄-shadowing property. Later we discuss some further
properties of d̄M-stable shifts.

Definition 3.1. A shift space X ⊆ A ∞ is d̄M-stable if for every ε > 0 there is an open
neighborhood U ofMσ (X) in the weak∗ topology onMσ (A ∞) such that if ν ∈ U, then
there is μ ∈Mσ (X) with d̄M(μ, ν) < ε.

Note that we use slightly different notation: Austin writes d̄ instead of d̄M. Equivalently,
a shift space X is d̄M-stable if any shift-invariant measure which lives close enough
to X in the weak∗ topology is actually close in Ornstein’s d̄M metric on Mσ (A ∞)

to a shift-invariant measure supported on X. This observation (noted already in [1]) is
formulated as the next lemma for future reference. We state it in terms of the natural basis
(Un)

∞
n=1 of open neighborhoods of a shift space X with respect to the Hausdorff topology

induced by the usual (product) topology on A ∞ (the topology of the Hausdorff metric ρH),
where for n ≥ 1 we have

Un(X) =
⋃

{[u] | u ∈ Bn(X)}.

LEMMA 3.2. A shift space X ⊆ A ∞ is d̄M-stable if, and only if, for any ε > 0 there are
δ > 0 and N ∈ N such that d̄M(ν,Mσ (X)) < ε whenever ν ∈Mσ (A ∞), n ≥ N , and
ν(Un(X)) > 1 − δ.

PROPOSITION 3.3. If a shift space X ⊆ A ∞ has the d̄-shadowing property, then X is
d̄M-stable.

Proof. Fix 1 > ε > 0. Use the definition of the d̄-shadowing property to pick n such that
every sequence (w(j))∞j=1 in B(X) with |w(j)| ≥ n for every j ≥ 1 is ε/2-traced in the
d̄ pseudometric by some point in X. Let ν be a shift-invariant measure on A ∞ such that
ν(Un(X)) > 1 − ε/2. We would like to show that d̄M(ν,Mσ (X)) < ε.
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Let y = (yi)
∞
i=0 ∈ A ∞ be a generic point for ν (such a point always exists in A ∞).

Hence, the frequency of visits of y to in Un(X) satisfies

lim
N→∞

1
N

{0 ≤ k < N : σk(y) ∈ Un(X)} = ν(Un(X)) > 1 − ε/2.

Define m0 ≥ 0 as the smallest � ≥ 0 such that y[�,�+n) ∈ Bn(X). Inductively, given
mk for some k ≥ 0, we define mk+1 as the smallest integer � ≥ mk + n such that
y[�,�+n) ∈ Bn(X). Then the set

M = N0 \
∞⋃

k=0

[mk , mk+1)

is contained in the set

{� ∈ N0 | y[�,�+n) �∈ Bn(X)},
so its upper density is less than ε/2. For k ∈ N0, we extend the word y[mk ,mk+n) ∈ Bn(X)

to the right to form some word v(k) ∈ B(X) of length mk+1 − mk . Then the sequence

z = y[0,m0)v
(0)v(1) · · ·

differs from y only at positions (indices) belonging to the set M. Hence, d̄(y, z) ≤ ε/2.
The same is true for y′ = σm0(y) and z′ = σm0(z). Furthermore, y′ is still generic for ν.
By the d̄-shadowing property,

z′ = v(0)v(1) · · ·
can be approximated by z′′ ∈ X such that d̄(z′, z′′) < ε/2. Therefore,

d̄(y′, z′′) < ε/2 + ε/2 = ε.

It is a standard fact (see [17, Theorem 15.23]) that every measure generated by
z′′ is ε-close with respect to the d̄M distance to the measure generated by y′. Hence
d̄M(ν,Mσ (X)) ≤ ε.

Shift spaces with the specification property are primary examples of d̄-stable shift
spaces provided by [1]. Recall that a shift space X ⊂ A ∞ has the specification property
if there exists k ∈ N such that for any u, w ∈ B(X) there is v with |v| = k such that
uvw ∈ B(X). The specification property is a very useful property with many consequences
for a shift space. For a more extensive overview on the specification property and its
relatives we refer the reader to [30]. Here we note that the specification property and even
either one of its two weaker, incommensurable variants known as the almost specification
property or the weak specification property (see [30]) imply d̄-approachability and chain
mixing, hence d̄-shadowing [23]. Therefore, we obtain the following corollary.

COROLLARY 3.4. Let X be a shift space satisfying one of the following conditions:
(1) X has the specification property;
(2) X has the weak specification property;
(3) X has the almost specification property.
Then X is d̄M-stable.
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Note that the nomenclature is not fixed; we follow [30]. Recall that a mistake function
is a non-decreasing function g : N → N with g(n)/n → 0 as n → ∞. We say that a shift
space X has the almost specification property if there is a mistake function g : N → N such
that for any u, w ∈ B(X) there is a word v ∈ B(X) satisfying v = u′w′, where |u| = |u′|,
|v| = |v′|, and the following inequalities hold:

|{1 ≤ j ≤ n : uj �= u′
j }| ≤ g(|u|),

|{1 ≤ j ≤ n : wj �= w′
j }| ≤ g(|w|).

We say that a shift space X has the weak specification property if there is a mistake function
g such that for any u, w ∈ B(X) there is v with uvw ∈ B(X) satisfying |v| = g(|w|). The
weak and almost specification properties are independent of each other: neither one implies
the other (see [31]). Additionally, in contrast to the classical specification property, the
weaker versions do not imply the uniqueness of the measure of maximal entropy (see
[31, 37]).

Remark 3.5. Using Proposition 3.3, we see that the proximal shift space constructed in
Example 5.4 and the minimal shift space from §5.2 (see Theorem 5.11) are d̄M-stable. This
answers Austin’s question affirmatively. We note that these examples do not have any of
the specification properties mentioned in Corollary 3.4, because any of these specification
properties implies that a shift having one of them and positive topological entropy has
many disjoint minimal proper subsets. Hence, such a shift space is neither minimal nor
proximal.

We list certain properties of d̄M-stable shift spaces. But first we recall some definitions.
Let X ⊆ A ∞ be a shift space. The measure center of X is the smallest shift space X+ ⊆ X

such that μ(X+) = 1 for every μ ∈Mσ (X). In other words, X+ is the smallest subshift
of X containing supports of all invariant measures on X. The measure center is determined
by the language of all words in B(X) whose cylinders have positive measure for at least
one measure inMσ (X), that is,

B(X+) = {w ∈ B(X) | there exists μ ∈Mσ (X) : μ[w] > 0}.
The following observation follows directly from the definitions.

PROPOSITION 3.6. A shift space X is d̄M-stable if and only if its measure center X+ is
d̄M-stable.

It is possible that X+ = X holds true for every d̄M-stable shift space. In the next
proposition, we note that d̄M-stability of X implies that the canonical Markov approxi-
mations of X form a sequence of shift spaces satisfying (3). That is, d̄M-stability implies
that X has a property we call d̄M-approachability.

PROPOSITION 3.7. If X ⊆ A ∞ is a d̄M-stable shift space, then

d̄H
M(Mσ (XM

n ),Mσ (X)) → 0 as n → ∞.
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Proof. Fix ε > 0. Let δ > 0 and n ≥ 1 be such that if ν ∈Mσ (A ∞) and ν(Un(X)) >

1 − δ, then d̄M(Mσ (X), ν) < ε. Fix m ≥ n and μ ∈Mσ (XM
m ). Since XM

m ⊆ Un(X)

we see that d̄M(μ,Mσ (X)) < ε, so d̄H
M(Mσ (XM

m ),Mσ (X)) < ε for m ≥ n. Hence,
d̄H
M(Mσ (XM

n ),Mσ (X)) → 0 as n → ∞.

The converse is not true, that is, the condition d̄H
M(Mσ (XM

n ),Mσ (X)) → 0 as
n → ∞ does not imply d̄M-stability. Any shift of finite type X with non-transitive X+ is a
counterexample. A concrete example is the shift space X over {0, 1} consisting of only two
fixed points 0∞ and 1∞. It is a binary shift of finite type with 01 and 10 as the forbidden
words. Such a shift space (trivially) satisfies d̄H

M(Mσ (XM
n ),Mσ (X)) → 0 as n → ∞, but

is not d̄M-stable because of Proposition 3.9 below. Nevertheless, adding an assumption of
chain mixing to d̄M-approachability, we obtain d̄M-stability.

PROPOSITION 3.8. If X ⊆ A ∞ is a chain-mixing shift space with d̄H
M(Mσ (XM

n ),
Mσ (X)) → 0 as n → ∞, then X is d̄M-stable.

Proof. Fix ε > 0. Find N > 0 such that d̄H
M(Mσ (XM

N ),Mσ (X)) ≤ ε/2. Since X is chain
mixing, XM

N is a topologically mixing shift of finite type so it also has the d̄-shadowing
property (see [23]). Hence, XM

N is d̄M-stable by Proposition 3.3. Let δ > 0 and m ≥ 1
be such that if ν ∈Mσ (A ∞) and ν(Um(XM

N )) > 1 − δ, then d̄M(Mσ (XM
N ), ν) < ε/2.

Without loss of generality we have m ≥ N , so Um(X) ⊆ Um(XM
N ). Let μ ∈Mσ e(A ∞)

be such that μ(Um(X)) > 1 − δ. Then μ(Um(XM
N )) ≥ μ(Um(X)) > 1 − δ. Hence,

d̄M(μ,Mσ (XM
N )) < ε/2, so there exists μ′ ∈Mσ e(XM

N ) such that d̄M(μ, μ′) < ε/2.
Since d̄H

M(Mσ (XM
N ),Mσ (X)) < ε/2 there exists ξ ∈Mσ e(X) with d̄M(ξ , μ) ≤

d̄M(ξ , μ′) + d̄M(μ′, μ) < ε.

We do not know if d̄M-stability implies the stronger condition called d̄-approachability
(the sequence of canonical Markov approximations of our shift space is a sequence of shift
spaces satisfying condition (2)), even if we assume that the shift space is chain transitive
or chain mixing. The examples discussed in Proposition 4.4 suggest that it might not be
the case.

Next, we note that d̄M-stability implies weak∗ density of ergodic measures inMσ (X)

and, as a consequence, entropy density (interestingly, we need to prove weak∗ density first
to obtain transitivity of X+ and obtain entropy density as a consequence of transitivity of
X+). Hence, if X is a d̄M-stable shift space then the simplex of invariant measuresMσ (X)

is either a Poulsen simplex or a singleton. Note that the latter possibility can occur. As an
example, take X = {0∞}.
PROPOSITION 3.9. If X ⊆ A ∞ is a d̄M-stable shift space, then X+ is transitive and
ergodic measures are entropy dense inMσ (X).

Proof. We first prove that Mσ e(X) is weak∗ dense in Mσ (X). To prove the density of
ergodic measures it is enough to show that for every μ1, μ2 ∈Mσ e(X) the measure
1
2 (μ1 + μ2) is a limit of a sequence of ergodic measures in Mσ e(X). Fix ε > 0. Let
δ > 0 and n ≥ 1 be such that if μ(Un(X)) > 1 − δ, then d̄M(Mσ (X), μ) < ε. Since
the ergodic measures of A ∞ are dense in Mσ (A ∞), when the latter space is endowed
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with the weak∗ topology we can find ν ∈Mσ (A ∞) with D( 1
2 (μ1 + μ2), ν) as small as

necessary. Here D stands for any metric onMσ (A ∞) compatible with the weak∗ topology.
In particular, we may assume that D( 1

2 (μ1 + μ2), ν) is sufficiently small to guarantee
ν(Un(X)) > 1 − δ. By d̄M-stability, there is ξ ∈Mσ (X) such that d̄M(ν, ξ) < ε. Since
ν is ergodic, we can assure that ξ is an ergodic measure. By the triangle inequality,
D( 1

2 (μ1 + μ2), ξ) ≤ D( 1
2 (μ1 + μ2), ν) + D(ν, ξ). Since ν and ξ can be arbitrarily close

in d̄M, they can also be arbitrarily close in D. Hence, ξ can be arbitrarily close to
1
2 (μ1 + μ2) in D and the ergodic measures must be weak∗ dense. Now, transitivity of
X+ follows easily from weak∗ density of ergodic measures (see Proposition 6.4 in [16]
for details). By Proposition 3.6 the measure center X+ is a d̄M-stable shift space. Now,
Proposition 3.7 implies d̄H

M(Mσ ((X+)Mn ),Mσ (X+)) → 0 as n → ∞. Transitivity of X+
implies that its Markov approximations are entropy-dense shift spaces. Hence, ergodic
measures are entropy dense inMσ (X+) by [23], but clearlyMσ (X) =Mσ (X+).

PROPOSITION 3.10. If X is a strictly ergodic d̄M-stable shift space, then the unique
invariant measure on X is isomorphic to an odometer.

Proof. Assume that X is a strictly ergodic infinite shift space. Let ν be its unique
ergodic invariant measure, that is, Mσ (X) = {ν}. Hence, for every n ≥ 1 the Markov
approximation XM

n of X is an uncountable shift of finite type. In particular, for every
n ≥ 1 the simplex Mσ (XM

n ) contains infinitely many periodic ergodic invariant mea-
sures (measures concentrated on periodic orbits). Now assume that X is d̄M-stable, so
d̄H
M(Mσ (XM

n ),Mσ (X)) → 0 as n → ∞. It follows that limn→∞ d̄M(μ
per
n , ν) = 0 for

any choice of periodic ergodic measures μ
per
n ∈Mσ (XM

n ). In particular, one may take
measures on periodic points whose primary periods tend to infinity. A measure that is a
d̄M-limit of such a sequence of periodic measures must be isomorphic to a Haar measure
on some odometer (this result is implicit in [40] and follows directly from [2, Theorem
1.7]; it does not need the invertibility assumption).

Remark 3.11. (Some open questions) The results in the present section do not
provide a complete picture of connections between the notions of d̄M-stability and
d̄-approachability. For example, we were unable to answer the following questions. First,
can a non-trivial periodic orbit be d̄M-stable shift space? Second, can a strictly ergodic
infinite shift space be d̄M-stable? Third, is every d̄M-stable system topologically mixing
on its measure center? Finally, can a shift space X such that X+ �= X be d̄M-stable?

4. Comparing d̄H
M with d̄H

If (Z, ρ) is a bounded complete metric space, then so is (CL(Z), ρH) (see [18, §2.15]).
Hence, the Hausdorff metric d̄H

M induced on CL(Mσ (A ∞)) by d̄M is complete and the
Cauchy condition provides a criterion for convergence of a sequence (Mσ (Xk))

∞
k=1, where

Xk ⊆ A ∞ is a shift space for every k ≥ 1. But even if we know that (Mσ (Xk))
∞
k=1

converges in d̄M to some M ∈ CL(Mσ (A ∞), d̄M), it is not clear if there exists a shift
space X ⊆ A ∞ such thatM =Mσ (X). We provide an example showing that this need
not be the case at the end of this section. But first we demonstrate that shift spaces X and Y
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with the d̄-shadowing property are d̄H close if and only if they are d̄H
M close. On the other

hand, without the d̄-shadowing property the inequality in (5) can be strict. We use a variant
of Oxtoby’s construction of non-uniquely ergodic minimal Toeplitz subshift to show that
for every δ > 0 there are shift spaces X and Y such that d̄H

M(Mσ (X),Mσ (Y )) < δ but
d̄H(X, Y ) > 1 − δ. Finally, we show that if the measure center of a shift space X has the
d̄-shadowing property, then so also does X.

THEOREM 4.1. If X and Y are shift spaces over A with the d̄-shadowing property such
that

d̄H
M(Mσ (X),Mσ (Y )) < ε2

for some ε > 0, then d̄H(X, Y ) < 7ε.

Proof. Fix x ∈ X. Use d̄-shadowing of Y to find s ∈ N such that for every sequence
{w(j)}∞j=1 of words in B(Y ) with |w(j)| ≥ s for every j ≥ 1, there exists y ∈ Y such that

d̄(w(1)w(2)w(3) . . . , y) < ε. (6)

Pick m such that s < mε. By [9, Theorem 3.4] we find l ≥ m such that x can be
decomposed into an infinite concatenation of blocks, that is, we can write

x = A(1)B(1)A(2)B(2) · · · , (7)

and the blocks A(1), A(2), . . . and B(1), B(2), . . . satisfy the following properties.
• For every i ≥ 1 we have m ≤ |B(i)| ≤ l.
• For every i ≥ 1 there exists an ergodic measure μ(i) ∈Mσ e(X) such that

d∗(B(i), μ(i)) =
∞∑

k=1

2−k
∑

w∈Ak

| freq(w, B(i)) − μ(i)([w])| <
ε

2s
, (8)

where

freq(w, B(i)) =
⎧⎨
⎩

|{1≤j≤|B(i)|−l+1 : B
(i)
[j ,j+l)

=w}|
|B(i)| if |w| = l ≤ |B(i)|,

0 otherwise.
(9)

• The set of coordinates of x which belong to the block A(i) in (7) for some i ≥ 1 has
upper Banach density smaller than ε. In particular, we have

lim sup
n→∞

|A(1)| + · · · |A(n)|
|A(1)B(1)| + · · · + |A(n)B(n)| < ε. (10)

We now use the assumption d̄H
M(Mσ (X),Mσ (Y )) < ε2 and for every i ≥ 1 we find an

ergodic measure ν(i) ∈Mσ (Y ) such that

d̄M(μ(i), ν(i)) < ε2. (11)

Following Shields [41], for every μ, ν ∈Mσ (A ∞) and n ≥ 1 we define Jn = Jn(μ, ν)

to be the set of measures λn on An × An endowed with the powerset σ -algebra such that
for every u, w ∈ An we have μ[u] = λn({u} × An) and ν[w] = λn(A

n × {w}). For α > 0
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we let �n(α) = {(u, w) ∈ A n × A n : dHam(u, w) ≤ α}. Finally, for μ, ν ∈Mσ (A ∞) we
write

d∗
n(μ, ν) = max

λn∈Jn(μ,ν)
min{α > 0 : λn(�n(α) ≥ 1 − α}.

By [41, §I.9], in particular [41, Lemma I.9.12], we see that d̄M(μ(i), ν(i)) < ε2 implies
that for every n ≥ 1 we have d∗

n(μ(i), ν(i)) < ε. Hence, for every n ≥ 1 and i ≥ 1 there
exists λ

(i)
n ∈ Jn(μ

(i), ν(i))) such that λ
(i)
n (�n(ε)) > 1 − ε. Consider the set

G(i)
n = {u ∈ Bn(X) : there exists w ∈ Bn(Y ) with λ(i)

n ({(u, w)} ∩ �n(ε)) > 0}.

It follows that for every u ∈ G
(i)
n we can pick w

(i)
n (u) such that dHam(u, w

(i)
n (u)) < ε and

λ
(i)
n ({(u, w

(i)
n (u))}) > 0. In particular, ν(i)[w(i)

n (u)] > 0 and hence w
(i)
n (u) ∈ Bn(Y ). In

addition, we clearly have

λ(i)
n (�n(ε)) = λ(i)

n (�n(ε) ∩ (G(i)
n × An)) > 1 − ε.

By an abuse of notation, for i ≥ 1 and n ≥ 1, by
⋃

G
(i)
n we will understand

⋃{[u] :
u ∈ G

(i)
n }.

It follows that for every n ≥ 1 and i ≥ 1 we have

μ(i)

( ⋃
G(i)

n

)
= λ(i)

n (G(i)
n × A n) ≥ λ(i)

n (�n(ε) ∩ G(i)
n × A n) > 1 − ε. (12)

For each i ≥ 1 we take n = s and consider G
(i)
s ⊆ Bs(X). Note that (12) implies that

μ(i)(
⋃

G
(i)
s ) > 1 − ε. In analogy with (9), we define freq(G

(i)
s , B(i)) to be number of

coordinates in B(i) where some word from G
(i)
s appears in B(i) divided by the length of

B(i), that is,

freq(G(i)
s , B(i)) = |{1 ≤ j ≤ |B(i)| − s + 1 : B

(i)
[j ,j+s) ∈ G

(i)
s }|

|B(i)| .

We easily see that

freq(G(i)
s , B(i)) =

∑
w∈G

(i)
s

freq(w, B(i)).

Let P be the set of coordinates in B(i) covered by occurrences of words from G
(i)
s in B(i),

that is,

P = {1 ≤ p ≤ |B(i)| : there exists 1 ≤ j ≤ |B(i)| − s + 1 with B
(i)
[j ,j+s) ∈ G(i)

s and

j ≤ p < j + s}.
We clearly have

freq(G(i)
s , B(i)) ≤ |P |

|B(i)| . (13)
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Furthermore,∣∣∣∣μ(i)

( ⋃
G(i)

s

)
− freq(G(i)

s , B(i))

∣∣∣∣ ≤
∑

w∈G
(i)
s

| freq(w, B(i)) − μ(i)([w])|. (14)

Using d∗(B(i), μ(i)) < ε/2s (cf. (8)), we obtain∑
w∈G

(i)
s

| freq(w, B(i)) − μ(i)([w])| ≤
∑

w∈As

| freq(w, B(i)) − μ(i)([w])| (15)

≤ 2sd∗(B(i), μ(i)) < ε. (16)

Combining (14) and (15), we get∣∣∣∣μ
( ⋃

G(i)
s

)
− freq(G(i)

s , B(i))

∣∣∣∣ ≤ ε. (17)

Combining (12) and (17), we see that

1 − 2ε ≤ |P |
|B(i)| .

It follows that there exists a decomposition of B(i) such that

B(i) = v(i,1)u(i,1)v(i,2)u(i,2) · · · v(i,κ(i))u(i,κ(i))v(i,κ(i)+1), (18)

where κ(i) is some (large) positive integer, u(i,j) ∈ G
(i)
s , and v(i,j) ∈ B(X) \ G

(i)
s . Fur-

thermore,

|v(i,1)| + |v(i,2)| + · · · + |v(i,κ(i))| + |v(i,κ(i)+1)|
|B(i)| ≤ |B(i)| − |P |

|B(i)| ≤ 2ε. (19)

(Actually, (19) tells us that v(i,j) is an empty word for many js.)
We claim that if for each i ≥ 1 we find blocks ŵ(i,j) ∈ B(Y ) (j = 1, . . . , κ(i)) with

|ŵ(i,j)| ≥ s for each j and these blocks satisfy

|A(i)B(i)| = |ŵ(i,1) · · · ŵ(i,κ(i))| (20)

and

dHam(A(i)B(i), ŵ(i,1) · · · ŵ(i,κ(i))) ≤ |A(i)| + 2ε|B(i)| + |v(i,1)| + · · · + |v(i,κ(i)+1)| + s

|A(i)B(i)| ,

(21)

then the proof will be complete. Indeed, assume that for each i ≥ 1 we have found blocks
ŵ(i,1), . . . , ŵ(i,κ(i)) satisfying (20) and (21), each of them of length at least s. We set ŷ to
be infinite concatenation of ŵ(i,1), . . . , ŵ(i,κ(i)), where i = 1, 2, . . . , that is,

ŷ = ŵ(1,1) · · · ŵ(1,κ(1))ŵ(2,1) · · · ŵ(2,κ(2)) · · · · · · · · · ŵ(i,1) · · · ŵ(i,κ(i)) · · · .

By (7), (10), (19), (20), and (21) such ŷ satisfies

d̄(x, ŷ) ≤ 6ε. (22)
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Note that for every i ≥ 1 and for every 1 ≤ j ≤ κ(i) we have ŵ(i,j) ∈ B(Y ) and
|ŵ(i,j)| ≥ s, so the d̄-shadowing property guarantees there is y ∈ Y with

d̄(y, ŷ) < ε. (23)

By (22) and (23) we have d̄(x, y) < 7ε as needed.
It remains to find appropriate ŵ(i,1), . . . , ŵ(i,κ(i)) for each i ≥ 1. To this end we

fix i ≥ 1 and for each 2 ≤ j ≤ κ(i) we take u(i,j) in equation (18) to find w(i,j) =
w(i,j)(u(i,j)) ∈ Bs(Y ) with dHam(u(i,j), w(i,j)) ≤ ε. Now, for j = 1 we set t (i) = |A(i)| +
|v(i,1)| + |w(i,1)| + |v(i,2)| ≥ s and we pick any ŵ(i,1) ∈ Bt (i)(Y ). For 2 ≤ j ≤ κ(i) we
simply extend each w(i,j) to a word ŵ(i,j) = w(i,j)v̂(i,j+1) ∈ B|w(i,j)|+|v(i,j+1)|(Y ), where
|v̂(i,j+1)| = |v(i,j+1)|. We clearly have |ŵ(i,j)| ≥ |w(i,j)| = s and

dHam(ŵ(i,j), u(i,j)v(i,j+1)) ≤ |v(i,j+1)| + ε|w(i,j)|
|ŵ(i,j)| .

It is now straightforward to see that the blocks ŵ(i,1), . . . , ŵ(i,κ(i)) satisfy (20) and (21).
To finish the proof, reverse the roles of X and Y.

4.1. Examples. In this subsection, we explore what happens if we abandon the assump-
tion of d̄-shadowing. First, we prove Proposition 4.2 showing that the d̄H

M limit of a
sequence of simplices of invariant measures need not be a simplex of all invariant measures
of some subshift. In particular, the shift spaces Xk consisting of a single periodic orbit that
have been constructed in the course of the proof of Proposition 4.2 do not converge in
d̄H-distance to a shift space, as their convergence to a shift X would imply that the limit of
the corresponding simplices would beMσ (X); see [23].

PROPOSITION 4.2. For every alphabet A there exists a sequence of transitive finite shifts
(Xk)

∞
k=1 such that for some ergodic fully supported measure μ ∈Mσ e(A ∞) we have

d̄H
M(Mσ (Xk), {μ}) → 0 as k → ∞.

In particular, there does not exist a shift space X such that {μ} =Mσ (X).

Proof. We order the non-empty words over A into a sequence (Wk)
∞
k=0. Let (δk)

∞
k=1 be a

sequence of positive reals such that
∞∑

k=1

δk <
1
2

. (24)

We inductively define words (Vk)
∞
k=0 by

V0 = W0

Vk+1 = V
ak+1
k Wk+11bk+1 for k ≥ 0,

in such a way that bk+1 ≥ 0 is the smallest number such that |Wk+1|1bk+1 is a multiple of
|Vk| and ak+1 ≥ 1 is chosen so that the following inequality holds true:

|Wk+1| + bk+1

|Vk+1| < δk+1. (25)
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This implies that ck = |Vk+1|/|Vk| is a positive integer. For k ≥ 1, let x(k) = V ∞
k ∈ A ∞

be a periodic point, Xk be its orbit, and μk be the unique ergodic measure of the shift
space Xk .

Note that μk[Wk] ≥ 1/|Vk| > 0, and for every n > k we have

μn[Wk] ≥ 1
|Vk| ((1 − δk+1)(1 − δk+2) · · · (1 − δn)) > 0, (26)

because the infinite product (1 − δk+1)(1 − δk+2) · · · (1 − δn) · · · converges to a
non-zero limit by (24). We constructed the words Vk in such a way that |Vk+1| is a
multiple of |Vk| and that V

ak+1
k is a prefix of Vk+1 for every k ≥ 0; hence, using (25), we

see that for every k ≥ q we have

d̄(x(k+1), x(k)) = dHam(V
ak+1
k Wk+11bk+1 , V

ck

k ) ≤ δk+1.

It follows that x(k) is a Cauchy sequence in the d̄ pseudometric. Since d̄ is a complete
pseudometric the sequence x(k) converges, so there is x ∈ A ∞ such that

lim
k→∞ d̄(x, x(k)) = 0.

This point x must then be generic for an ergodic shift-invariant measure μ such that μ is
the d̄M-limit of the measures μk . Since d̄M-convergence implies weak∗ convergence, the
portmanteau theorem and (26) imply that

μ[Wk] = lim
n→∞ μn[Wk] ≥ 1

|Vk|
∞∏

n=1

(1 − δn) > 0.

Since μ[Wk] > 0 for every k ≥ 0, the only subshift X such that μ ∈Mσ (X) is the full
shift. On the other hand, Mσ (Xk) = {μk} and d̄H

M(Mσ (Xk), {μ}) = d̄(μk , μ) → 0 as
k → ∞. We see that Mσ (Xk) = {μk} converges to {μ} in d̄H

M but there is no subshift
X of A ∞ such thatMσ (X) = {μ}.

Our next goal is to show an example of a sequence (Xk)
∞
k=1 of shift spaces such that the

d̄H
M-limit of simplicesMσ (Xk) exists and is a simplex of invariant measures of some shift

space X, but the shift spaces Xk do not converge to X with respect to the d̄H pseudometric.
To find our examples we will adapt the construction of one-sided Oxtoby sequences. The

original Oxtoby sequence generates a minimal non-uniquely ergodic Toeplitz subshift; see
[7, 36, 43]. As parameters of this construction we need a sequence of positive integers
(pk)

∞
k=0.

Definition 4.3. Let p = (pk)
∞
k=0 be a sequence of positive integers such that p0 = 1, and

for each k ≥ 0 we have that pk divides pk+1 and pk+1/pk ≥ 3. Let M0 = ∅, and for k ≥ 1
define Mk = ([−pk , pk) + pk+1N) ∩ N. Note that for every i ∈ N there exists a unique
k = k(i) ≥ 1 such that i ∈ Mk \ ⋃k−1

�=0 M�. We define the Oxtoby sequence with the scale
p to be a binary sequence x(p) ∈ {0, 1}∞ such that x(p)i = k(i) mod 2.

https://doi.org/10.1017/etds.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.43


Minimal and proximal d̄-stable and d̄-approachable shifts 413

By Lemma 3.2 in [43], if x(p) ∈ {0, 1}∞ is an Oxtoby sequence with scale p satisfying
∞∑

k=0

pk

pk+1
< ∞,

then the orbit closure of x(p) in {0, 1}∞ is a minimal shift space X(p) with exactly two
ergodic invariant measures.

PROPOSITION 4.4. If p = (pk)k∈N is a sequence of positive integers satisfying
∞∑

k=1

2pk

pk+1
< δ, (27)

for some 0 < δ < 1
2 , then the minimal shift X(p) obtained as the orbit closure of the

Oxtoby sequence with scale p satisfies

d̄H(X(p), {0∞, 1∞}) > 1 − δ and d̄H
M(Mσ (X(p)),Mσ ({0∞, 1∞})) < δ.

Proof. Fix 0 < δ < 1 and a sequence of positive integers p as above. For simplicity we
write x for the Oxtoby sequence x(p) defined taking p as its scale and X for the associated
minimal subshift X(p) (see Definition 4.3). By Lemma 3.2 in [43],Mσ e(X) = {μ′, ν′}.
Let (Mk)

∞
k=1 be a sequence of sets as in Definition 4.3. Fix k ≥ 1 and consider the prefix

x[0,pk+1). Since pk+1 is a multiple of p� for every � ≤ k, using the structure of the sets Mk

for k ≥ � we get that

|M� ∩ [0, pk+1)| = pk+1

p�+1
· 2p�.

Hence,

|(⋃k
�=0 M�) ∩ [0, pk+1)|

pk+1
≤

k∑
�=0

2p�

p�+1
≤ δ.

But for every i ∈ [0, pk+1) \ ⋃k
�=0 M� we have xi = k + 1 mod 2. In other words, the

Oxtoby sequence is constant for all indices i in [0, pk+1) \ ⋃k
�=0 M� with the constant

depending only on the parity of k. Since

|([0, pk+1) ∩ N \ ⋃k
�=0 M�)|

pk+1
≥ 1 − δ,

we see that for both α = 0 and α = 1 we have

lim sup
k→∞

|{0 ≤ i < pk+1 : xi = α}|
pk+1

≥ 1 − δ.

Hence, for some invariant measure μ, ν ∈Mσ (X) we have μ([0]) > 1 − δ and
ν([1]) > 1 − δ. By ergodic decomposition, these measures are convex combinations of
the ergodic measures μ′ and ν′. This implies that for one ergodic measure, say μ′, we have
μ′([0]) > 1 − δ, while for the other one we have ν′([1]) > 1 − δ.

A generic point for μ′ has density of 1 at most δ, so it is at most δ far
away from 0∞. Hence, d̄M(μ′, δ0∞) < δ. Similarly, d̄M(ν′, δ1∞) < δ. Therefore, the
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d̄H
M-distance between sets of ergodic measures on X and {0∞, 1∞} is bounded by δ.

By [23, Lemma 14] (see (5) in the introduction) we have d̄H
M(Mσ (X(p)),

Mσ ({0∞, 1∞})) = d̄H
M(Mσ e(X(p)),Mσ e({0∞, 1∞})) < δ. On the other hand, by the

above calculations, we see that the Oxtoby sequence x satisfies d̄(x, 1∞) > 1 − δ and
d̄(x, 0∞) > 1 − δ, which means that d̄H(X(p), {0∞, 1∞}) > 1 − δ.

COROLLARY 4.5. There exists a sequence (Xk)
∞
k=1 of minimal shift spaces such that

for some shift space X we have d̄H
M(Mσ (Xn),Mσ (X)) → 0 while d̄H(Xn, X) → 1 as

n → ∞.

Proof. One can take X = {0∞, 1∞} and the sequence of minimal shift spaces Xn

generated by Oxtoby sequences x(n) constructed in the previous proposition for a sequence
of δs going to zero.

4.2. On d̄-shadowing on the measure center of X. Let us recall that the measure center
X+ of a shift space X is the smallest subshift of X containing supports of all invariant
measures on X, that is, X+ is the smallest closed set such that μ(X+) = 1 for every
μ ∈Mσ (X).

Fix a word u over A with |u| ≥ k. Given a word w over A, we define γw(u) to be the
number of occurrences of w in u, that is,

γw(u) = |{1 ≤ j ≤ |u| − k + 1 | ujuj+1 · · · uj+k−1 = w}|.
Furthermore, for n ∈ N with n ≥ |w| we set �w(n) to be largest number of occurrences of
w among all words u of length n, that is,

�w(n) = max{γw(u) | u ∈ Bn(X)}.
It is a straightforward consequence of the definition that �w(uv) ≤ �w(u) + �w(v) +
|w| − 1 for every u, v, w ∈ A∗. Thus,

�w(n + m) ≤ �w(n) + �w(m) + |w| − 1 (28)

for all n, m.
We define the maximum limiting frequency of w in X as

�X(w) = lim
n→∞

1
n
�w(n). (29)

The existence of the limit follows from the subadditivity of the function �′
w(n) = �w(n) +

|w| − 1 and the fact that the difference between ratios �w(n)/n and �′
w(n)/n goes to zero.

It is known that

�X(w) = max
μ∈Mσ (X)

μ[w] = max
ν∈Mσ e(X)

ν[w]; (30)

see [15, Ch. 3]. This means that w ∈ B(X) \ B(X+) if and only if �X(w) = 0, that is,
for every ε > 0 there exists N ∈ N such that for all n ≥ N and for all u ∈ Bn(X) we have
γw(u) ≤ nε.

THEOREM 4.6. If X+ has the d̄-shadowing property then so does X.
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Proof. Fix ε > 0. For ε/3 we use the d̄-shadowing property of X+ to find N1 such that
for any sequence of words {a(j)}∞j=1 in B(X+) with |a(j)| ≥ N1 there exists x ∈ X+ such
that d̄(x, a(1)a(2) · · · ) < ε/3.

Now fix m ≥ N1. For w /∈ Bm(X+) let Nw > 0 be such that for all n ≥ Nw and for all
u ∈ Bn(X) we have

γw(u) ≤ nε

|A|m3m
. (31)

Set N0 = maxw∈Bm(X) Nw. We take N ∈ N such that m/N < ε/6 and N ≥ max{N0, N1}.
Let us take any j ≥ 1 and any w(j) ∈ B(X) such that |w(j)| ≥ N . Each w(j) can be

written as a concatenation of finite blocks as follows:

w(j) = u
(j)

1 u
(j)

2 · · · u
(j)

k(j)−1u
(j)

k(j),

where |u(j)
i | = m for 1 ≤ i < k(j) and m ≤ |u(j)

k(j)| < 2m. Using (31), we see that for

1 ≤ i ≤ k(j) − 1 the number of u
(j)
i which are not in Bm(X+) is bounded from above

by ε|w(j)|/3m.
For each j ≥ 1, we create w̄(j) by replacing each u

(j)
i /∈ B(X+) by some word

v̄ ∈ Bm(X+) for 1 ≤ i < k(j) and replacing u
(j)

k(j) by some word v̄(j) ∈ B(X+) with

|uk(j)| = |v̄(j)| if u
(j)

k(j) /∈ B(X+). Therefore, we have

d̄(w̄(1)w̄(2) . . . , w(1)w(2) · · · ) <
mε

3m
+ 2ε

6
= 2ε

3
. (32)

Notice that for each j ≥ 1 the word w̄(j) is a concatenation of words from B(X+) whose
lengths are greater than or equal to m, so the same applies to w̄(1)w̄(2) · · · . Now we use
the d̄-shadowing property of X+ and we find x ∈ X+ ⊆ X such that

d̄(x, w̄(1)w̄(2) · · · ) <
ε

3
. (33)

It follows from (32) and (33) that d̄(x, w(1)w(2) · · · ) < ε, which concludes the proof.

5. d̄-approachable examples of proximal and minimal shift spaces
Before presenting the details of our constructions, we first recall the necessary background.

An (oriented) A-labeled (multi)graph is a triple G = (V , E, τ), where V is the (finite)
set of vertices, E ⊂ V × V is the edge set, and τ : E → A is the label map. For each
e ∈ E we write i(e), t (e) ∈ V , to denote, respectively, the initial vertex and the terminal
vertex of e. We say that a sequence (finite or infinite) consisting of � ∈ N0 ∪ {∞} edges
e1, e2, . . . in E is a path of length � in G if for every i < � we have that t (ei) = i(ei+1). A
path e1, e2, . . . , e� is closed if t (e�) = i(e1).

Given an oriented A-labeled graph G = (V , E, τ), we define the shift XG ⊆ A ∞ by
reading off labels of all infinite paths in G. In other words, XG is the set of all x ∈ A ∞
such that xi = τ(ei+1) for each i ≥ 0 for some path e1, e2, . . . in G. We say that X is a sofic
shift if there exists a labeled graph G = (V , E, τ) such that X is presented by G, meaning
that X = XG. Every shift of finite type is sofic. A sofic shift is transitive if and only if it
can be presented by a (strongly) connected graph (each pair of vertices can be connected
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FIGURE 1. Two graphs (left) whose coupling (right) is disconnected. The first graph has no safe symbol.

by a path); see [32, Proposition 3.3.11]. A sofic shift is topologically mixing if and only if
it can be presented by a (strongly) connected aperiodic graph, that is, the graph with two
closed paths of coprime lengths.

To prove the properties of shift spaces resulting from our constructions we will use the
following result, which is a direct corollary of a combination of Theorem 6 and Corollary
17 in [23].

THEOREM 5.1. Let (Xn)
∞
n=1 be a decreasing sequence of mixing sofic shift spaces over A

such that
∞∑

n=1

d̄H(Xn, Xn+1) < ∞.

Then X = ⋂∞
n=1 Xn is a d̄-approachable and chain-mixing shift space such that

d̄H
M(Mσ e(Xn),Mσ e(X)) → 0 as n → ∞. In particular, X satisfies σ(X) = X and has

the d̄-shadowing property.

Let us recall that [23, Corollary 17] is stated using the lower density. We do not need
such flexibility here, so we stated our result in terms of the d̄-pseudodistance.

In fact, we would like to apply Theorem 5.1 to a sequence of mixing sofic shifts that
is not decreasing. A natural way to apply Theorem 5.1 is to replace the sequence of sofic
shifts (Xn)

∞
n=1 with the decreasing sequence of shift spaces (Yn)

∞
n=1, where Yn := X1 ∩

· · · ∩ Xn for n ∈ N. It is easy to see that the shift Yn thus defined is also sofic for n ∈ N.
Indeed, if for m = 1, 2, . . . , n a labeled graph Gm = (Vm, Em, τm) presents the sofic shift
space Xm, then Yn is a sofic shift presented by the graph G = (V , E, τ), where V =∏

1≤k≤n Vk and there is an edge from (v1, . . . , vn) ∈ V to (v′
1, . . . , v′

n) ∈ V with label
� ∈ A if and only if for every 1 ≤ k ≤ n in the graph Gk there is an edge from vk to
v′
k labeled with �. We say that the graph G = (V , E, τ) is the coupling of graphs Gk ,

1 ≤ k ≤ n. Unfortunately, Yn need not be mixing even if the shift spaces X1, . . . , Xn are.
The problem is that strong connectedness of the graphs Gk for 1 ≤ k ≤ n need not ensure
strong connectedness of their coupling G. Hence, the induced sofic shift Yn need not be
transitive and its ergodic measures need not be dense. Indeed, Figure 1 shows two graphs
whose coupling is a sofic shift that is not transitive and whose ergodic measures are not
dense in the set of all invariant measures. The same situation occurs for the sofic shifts
represented in Figure 2.

However, under mild additional assumptions we can ensure that the sofic shifts Yn

are transitive. Let X be a sofic shift over the alphabet A and pick a labeled graph
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FIGURE 2. Two graphs whose periods are not coprime (above) and their coupling (below).

G = (V , E, τ) presenting X. We call a symbol b ∈ A a safe symbol for X if for every edge
e ∈ E that goes from a vertex v ∈ V to a vertex v′ ∈ V , there is an edge e′ ∈ E from v to v′
with label τ(e′) = b. The period of a graph G = (V , E) is the greatest common divisor of
the lengths of all cycles. Every sofic shift also has a period, which is the greatest common
divisor of periods of its presentations through labeled graphs. A graph is aperiodic if it
has period 1. Every sofic shift with period 1 has an aperiodic presentation. We will use a
standard fact from graph theory, stating that if G = (V , E) is a strongly connected graph
with period m then the set of lengths of paths between any pair of vertices u, v ∈ V is the
set-theoretic difference of an infinite arithmetic progression with step m and a finite set.

Note that the two shifts in Figure 1 are aperiodic but lack a common safe symbol, while
the two shifts in Figure 2 share a safe symbol 0 but have positive periods 8 and 2. Hence,
neither assumption in the following proposition can be removed.

PROPOSITION 5.2. If Gk = (Vk , Ek , τk) for 1 ≤ k ≤ n are strongly connected labeled
graphs with a common safe symbol and pairwise coprime periods, then their coupling
G is strongly connected.
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Proof. Let (v1, v2, . . . , vk) and (v′
1, v′

2, . . . , v′
n) be any two vertices in G. For any

1 ≤ k ≤ n, there exists a walk from vk to v′
k in the graph Gk . Let �k denote the length

of one such walk and let mk denote the period of G. For all sufficiently large j ∈ N0 there
exists a walk of length jmk + �k from vk to v′

k . Since the graphs under consideration have
a common safe symbol b, we may additionally assume that the edges in the aforementioned
paths are all labeled with b. Since the integers mk are coprime, there exist infinitely many
integers � such that � ≡ �k mod mk for each 1 ≤ k ≤ n. Consequently, we can find �0 such
that for each 1 ≤ k ≤ n there exists in Gk a walk from vk to v′

k of length �0, consisting
only of edges labeled with b. This walk induces a walk of length �0 from (v1, v2, . . . , vk)

to (v′
1, v′

2, . . . , v′
n) in G.

COROLLARY 5.3. Let n ∈ N. If Xk , for 1 ≤ k ≤ n, are transitive sofic shifts with
a common safe symbol and pairwise coprime periods, then Y = X1 ∩ · · · ∩ Xn is a
non-empty transitive sofic shift with a safe symbol. Furthermore, if for each 1 ≤ k ≤ n

the shift space Xk is topologically mixing, then Y is also topologically mixing.

5.1. A d̄-approachable proximal shift space. We will construct a d̄-approachable and
topologically mixing proximal shift. Furthermore, our example is hereditary and has
positive topological entropy, hence its ergodic measures are entropy dense and its simplex
of invariant measures is the Poulsen simplex. Assume that A ⊂N0. A shift space X ⊆ A ∞
is hereditary if for every x ∈ X and y ∈ A ∞ with yi ≤ xi for all i ≥ 0 we have y ∈ X. The
hereditary closure X̃ of a shift space X is the smallest hereditary shift containing X. That
is, X̃ consists of all y ∈ A ∞ such that there exists x = (xi)i≥0 ∈ X with yi ≤ xi for all
i ≥ 0. For more on hereditary shifts, see [29]. For some special properties of the simplex
of invariant measures of hereditary shifts, see Remark 5.6 below. Recall that a hereditary
shift space X is proximal if for every N > 0 and x ∈ X the word 0N appears with bounded
gaps in x (see the discussion of the Theorem B and the proof of Proposition 3.3 in [10]).

Example 5.4. For n ∈ N we consider a sofic shift Zn presented by a labeled graph
Gn = (Vn, En, τn) where Vn = {v0, v1, . . . , v10n−1} and edges and their labels are as
follows:
• for every 0 ≤ k < 10n, there is an edge from vk to vk+1 with label 0, where v10n = v0;
• for every 1 ≤ k ≤ 10n − 2n, there is an edge from vk to vk+1 with label 1;
• there is an edge from 10n − 2n to 10n − 2n + 2 with label 0.
Let Z = ⋂∞

n=1 Zn. Then for each n ≥ 1 we have Zn+1 �⊂ Zn and Zn �⊂ Zn+1. Figure 3
shows the graph with n = 1.

PROPOSITION 5.5. The shift space Z defined in Example 5.4 is hereditary, topologically
mixing, proximal, has positive topological entropy, and the ergodic measuresMσ e(Z) are
entropy dense inMσ (Z).

Proof. Since all Zn are hereditary, 0 is their common safe symbol and the shift Z is
hereditary as well. Furthermore, it contains a sequence where 1s appear with positive
density, hence Z has positive entropy. For every k ∈ N, in the graph Gk presenting Zk

in Example 5.4 there are two closed walks of coprime lengths 10k and 10k − 1, whence
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FIGURE 3. The graph from Example 5.4 with n = 1.

Gk is aperiodic. By Corollary 5.3, for each n ∈ N the intersection Yn := Z1 ∩ · · · ∩ Zn

is a topologically mixing sofic shift. In particular, the ergodic measures of Yn are entropy
dense [12]. By Corollary 5.1, in order to conclude that the ergodic measures on Z are
entropy dense inMσ (Z), it suffices to check that

∞∑
n=1

d̄H(Yn, Yn+1) < ∞.

Fix n ∈ N. To bound d̄H(Yn, Yn+1), consider x ∈ Yn. Define y ∈ {0, 1}∞ by

yj =
{

xj if j mod 10n+1 ∈ [0, 10n+1 − 2n+1),

0 if j mod 10n+1 ∈ [10n+1 − 2n+1, 10n+1).

It is clear that y ∈ Zn+1. Since Yn is hereditary and x ∈ Yn, we see that y belongs
to Yn as well. Thus, y ∈ Yn ∩ Zn+1 = Yn+1. Furthermore, d̄(x, y) ≤ ( 1

5 )n+1, and hence
d̄H(Yn, Yn+1) ≤ ( 1

5 )n+1. This completes the proof of entropy density of ergodic measure.
Finally, we prove topological mixing for Z. Bearing in mind that Z and Zn (n ∈ N) are

hereditary, in order to show that Z is topologically mixing it is enough to show that for
each u, v ∈ B(Zn) there exists M ∈ N such that for all m ≥ M and all n ∈ N we have
u0mv ∈ B(Zn) (hence u0mv ∈ B(Z)).

Fix u, v, and denote i = |u| and j = |v|. Let N ∈ N be such that 10n > i + j + 2(2n − 2),
for all n ≥ N . Fix n ≥ N . By the pigeonhole principle, for each m ∈ N there exists
t ∈ N such that [t , t + i) mod 10n ⊂ [0, 10n − 2n) and [t + i + m, t + i + m + j) mod
10n ⊂ [0, 10n − 2n). By the definition of Zn, starting a path in the corresponding graph
from vt and ending in vt+i+m+j , we can read u0mv along the path, so the word belongs
to Bi+m+j (Zn). We have just proved that for all n ≥ N and all m ∈ N, u0mv ∈ B(Zn). It
remains to discuss the case when n ≤ N .

Since for each n ∈ N the system Zn is mixing, there exists Mn ∈ N such that u0mv ∈
B(Zn) for all m ≥ Mn. Set M as the maximum of Mn, n ≤ N . Then for m ≥ M , u0mv ∈
B(Zn) for all n ≤ N . But we have already proved the same conclusion for n ≥ N too. This
concludes the proof of topological mixing of Z.
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Since Z is hereditary, to prove that it is proximal it is enough to show that for every
N > 0 and x ∈ Z the word 0N appears with bounded gaps in z (see [10]). But every z ∈ Z

must belong to Yn for every n ≥ 1, so arbitrarily long blocks of 0s appear syndetically (i.e.,
with bounded gaps).

Remark 5.6. Since Z is hereditary and proximal, some of the results from [23, 29] apply:
Z is distributionally chaotic of type 2 [29, Theorem 23], but not of type 1 [29, Theorem
23] (cf. also [33]). Moreover, for each t > 0, the set of all ergodic invariant measures on Z
with entropy not exceeding t is arcwise connected with respect to the d̄-metric on the set
of all invariant measures [23, Theorem 6].

5.2. A d̄-approachable minimal shift space. We will construct a minimal shift space
which is d̄-approximable by a descending sequence of mixing sofic shifts. The sofic shift
Xn in the sequence will be generated by a finite code Bn ⊂ {0, 1}+. The parameters of the
construction are an initial finite non-empty set of words B1 and a sequence of positive
integers (t (n))∞n=1. We assume that t (n) ≥ 2 for every n. We will impose some more
conditions on the t (n) and B1 later.

Assume we have defined the family of words Bn for some n ≥ 1. Write k(n) for
the cardinality of Bn. Enumerate the elements of Bn as β

(n)
1 , . . . , β

(n)
k(n), and let τ(n) =

β
(n)
1 · · · β

(n)
k(n) denote their concatenation. Let s(n) (respectively, �(n)) be the length of the

shortest (respectively, the longest) word in Bn. Words belonging to Bn+1 are constructed
as follows. First we concatenate t (n) arbitrarily chosen words from Bn. Then we add the
suffix τ(n):

Bn+1 = {b1b2 · · · bt(n)τ (n) : bi ∈ Bn for 1 ≤ i ≤ t (n)}.
By the construction, �(n) < τ(n) < s(n + 1) for every n ≥ 1 and so s(n) ↗ ∞ as

n → ∞. Moreover, every word from Bn is a subword of every word from Bn+1.
Recursively,

u is a subword of v, for every u ∈ Bn, v ∈ Bm, n ≤ m. (34)

For n ≥ 1, let Xn be the coded shift generated by the code Bn. That is, Xn consists of
all concatenations of words from Bn together with their shifts. Since Bn is finite, the shift
Xn is transitive and sofic. It follows from (34) that Xn+1 ⊆ Xn. Hence, X = ⋂∞

n=1 Xn is
a non-empty shift space.

PROPOSITION 5.7. The shift X constructed above is minimal.

Proof. If |B1| = 1, then X is an orbit of a periodic point. Let us assume that |B1| > 1, so
|Bn| > 1 for every n. We need to prove that if u ∈ B(X) = ⋂∞

n=1 B(Xn) and x ∈ X, then
u appears in x. Fix x ∈ X and u ∈ B(X). Take n large enough to imply |u| < s(n). Since
B(X) ⊆ B(Xn), we see that u must appear in some x′ ∈ Xn. As all words in Bn are longer
than u and x′ is a shift (possibly trivial) of an infinite concatenation of words from Bn, we
conclude that u is a subword of some ū ∈ B(Xn) which is the concatenation of two words
v, w in Bn (one of them might be empty). By the definition of the Bn, every concatenation
vw for words v and w from Bn appears in some word from Bn+1, therefore vw and, in
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particular, u is a subword of a word w′ ∈ Bn+1. Hence, condition (34) ensures that u is a
subword of all words from Bn+2. But x ∈ Xn+2, so it is a shifted infinite concatenation of
words from Bn+2. In particular, some word from Bn+2 appears in x, and so does u.

From now on, we set B1 = {0, 11}. For this choice of B1 a simple inductive argument
shows that for each n ≥ 1, the set of lengths of all words in Bn is an interval:

for every m with s(n) ≤ m ≤ �(n), there exists u ∈ Bn with |u| = m. (35)

PROPOSITION 5.8. For every n ≥ 1 the coded system Xn is a mixing sofic shift.

Proof. Any coded system generated by a finite sequence of words is sofic. In the
corresponding graphs, every word in Bn is represented by a cycle, and all these cycles
have a common vertex. In particular, the graph presenting Xn is strongly irreducible and
Xn is transitive. In addition, it follows from (35) that there are two words in Bn with
coprime lengths, so the graph is aperiodic, thus Xn is mixing and has the specification
property.

In the rest of the section, it will be convenient to control the ratio s(n)/�(n). Because of
the identities

s(n + 1) = t (n)s(n) + |τ(n)|,
�(n + 1) = t (n)�(n) + |τ(n)|,

we get that the ratio is increasing and

s(n)

�(n)
≥ 1

2
, n ≥ 1.

On the other hand, we can ensure that

s(n)

�(n)
<

2
3

, n ≥ 1 (36)

by satisfying the equivalent condition (the equivalence follows from the inductive
definition of s(n) and �(n) mentioned above)

t (n) >
|τ(n)|

2�(n) − 3s(n)
, n ≥ 1. (37)

Since |τ(n)|, �(n) and s(n) are determined by t (i), 1 ≤ i < n, we have enough freedom to
construct the sequence t (n) satisfying condition (37) in an inductive way.

PROPOSITION 5.9. Let ε > 0 and t (n) be such a sequence that satisfies condition (37)
and

t (n) >
|τ(n)| + 3�(n)

s(n)ε2−n
, n ≥ 1. (38)

Then
∞∑

n=1

d̄H(Xn, Xn+1) < ε. (39)
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Proof. Put εn = ε2−n. We will show that d̄H(Xn, Xn+1) < εn for all n ≥ 1, which directly
implies (39). Fix n ≥ 1 and y ∈ Xn. Our goal is to find z ∈ Xn+1 such that d̄(y, z) < εn.
Since d̄ is shift invariant, without loss of generality we assume that y is a concatenation of
blocks from Bn, that is, we have

y = b1b2b3 . . . where bj ∈ Bn for j = 1, 2, . . . .

We will construct z inductively. First, we note that the word

w = b1b2b3 · · · bt(n)τ (n)

belongs to Bn+1. Let j ≥ t (n) be the index with

|b1b2 · · · bj | ≤ |w| < |b1b2 · · · bj+1|,
and let a be the suffix of bj+1 such that |b1b2 · · · bjbj+1| = |w| + |a|. We observe
that there exist words b′

1, b′
2, b′

3 ∈ Bn ∪ {λ} such that |b′
1b

′
2b

′
3| = |abj+2bj+3|. Indeed, if

2s(n) ≤ |abj+2bj+3| ≤ 2�(n) then it follows from (35) that we can find b′
1, b′

2 ∈ Bn and
b′

3 = λ with the required total length. Likewise, if 3s(n) ≤ |abj+2bj+3| ≤ 3�(n) then we
can apply the same argument with b′

1, b′
2, b′

3 ∈ Bn. Since |a| < �(n) and 3s(n) < 2�(n)

(we assumed (37), which is equivalent to (36)), these two cases cover all possibilities.
For i ≥ 3, define b′

i = bj+i and let y′ = b′
1b

′
2b

′
3 . . . . Then y and wy′ differ only on

the positions where τ(n)b′
1b

′
2b

′
3 appears in wy′, that is, at most on positions between

|w| − |τ(n)| and |w| + 3�(n). Let us point out that y ′ is again a concatenation of blocks
from Bn, even in the case when b′

3 is the empty word. Hence, we can apply the same
reasoning to y′, y′′, y′′′ and so on, to obtain the word z = ww′w′′ · · · . Here, we adopt the
convention that y′′, w′ are constructed from y′ in the same way as y′, w were constructed
from y, and accordingly for further steps in the construction.

Since w, w′, w′′ ∈ Bn+1, we have z ∈ Xn+1. Note that for each i ≥ 0 we have
s(n)t (n) + τ(n) ≤ |w(i)| ≤ �(n)t (n) + τ(n), and consequently

d̄(y, z) ≤ lim sup
i→∞

iτ (n) + 3i�(n)

|w| + |w′| + · · · |w(i−1)| ≤ τ(n) + 3�(n)

τ(n) + s(n)t (n)
< εn.

In the last inequality we use condition (38), which is stronger.
Hence, z has all of the required properties.

PROPOSITION 5.10. Let the sequence t (n), n ≥ 1, satisfy (36) and

t (n) ≥ �(n)

�(n) − s(n)
for all n ≥ 1; (40)

t (n) ≥ 2s(n) + 2�(n) + 3|τ(n)|
�(n)

for all n ≥ 1. (41)

Then X is mixing.

Proof. We need to show that for all u, v ∈ B(X) there exists M such that for each m ≥ M

there exists a word w with |w| = m such that uwv ∈ B(X). Note that we can freely replace
u, v with any other words u′, v′ ∈ B(X) which contain u, v as subwords. Hence (repeating
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an argument from the proof of Proposition 5.7), we may assume that u, v ∈ Bn for some
n ≥ 1. Proceeding by induction on m, we will prove the following statement.

Claim. For all m ≥ 0, for all n ≥ 1 such that 2s(n) ≤ m, for all u, v ∈ B(X), there exists
w with |w| = m and uwv ∈ B(X).

We may assume that the claim above has been proved for all m′ < m. We consider three
cases depending on the magnitude of m.

Case 1. Suppose first that 2s(n) ≤ m ≤ (t (n) − 2)�(n). Note that for each j ≥ 2 it
follows from (36) that

(j + 1)s(n) ≤ 3
2
j · 2

3
�(n) = j�(n).

As a consequence, the intervals [js(n), j�(n)] for 2 ≤ j ≤ t (n) − 2 fully cover the
interval [2s(n), (t (n) − 2)�(n)]. Hence, we can find j with 2 ≤ j ≤ t (n) − 2 such that
js(n) ≤ m ≤ j�(n). It follows from (35) that there exists a word w with |w| = m of
the form w = b1b2 · · · bj with b1, b2, . . . , bj ∈ Bn. Thus, uwv is a prefix of Bn+1

(specifically, of any word of the form ub1b2 · · · bjvb′
1b2 · · · biτ (n), where i = t (n) −

j − 2 and b′
1, b′

2, . . . , b′
i ∈ Bn). It follows that uwv ∈ B(X).

Case 2. Suppose next that (t (n) − 2)�(n) < m ≤ (2t (n) − 2)�(n) + |τ(n)|. Then by
(41) we have m ≥ 2s(n) + |τ(n)|. Arguing similarly as in the first case, we can find a word
w with |w| = m of the form

w = b1b2 · · · bj τ (n)b′
1b

′
2 · · · b′

k ,

where 1 ≤ j , k ≤ t (n) − 1 and b1, b2, . . . , bj , b′
1, b′

2, . . . , b′
k ∈ Bn. Thus, uwv is a

subword of the concatenation c1c2 of two words c1, c2 ∈ Bn+1. Hence, uwv is a subword
of a word in Bn+2 and thus uwv ∈ B(X).

Case 3. Suppose finally that m > (t(n) − 2)�(n) + τ(n). Put

u′ = b1b2 · · · bt(n)−1uτ(n) ∈ Bn+1,

v′ = b′
2b

′
3 · · · b′

t (n)τ (n) ∈ Bn+1,

where b1, b2, . . . , bt(n)−1, b′
2, b′

3, b′
t (n) ∈ Bn are arbitrary. Put also n′ = n + 1 and

m′ = m − |τ(n)|. By (40) we have

m′ ≥ 2(t (n)s(n) + |τ(n)|) = 2s(n′).

Hence, by the inductive assumption, there exists a word w′ with |w′| = m such that
u′w′v′ ∈ B(X). It remains to observe that uwv is a subword of u′w′v′, where w = τ(n)w

has length |w| = |τ(n)| + |w′| = m.

THEOREM 5.11. There exists a sequence of positive integers (t (n))∞n=1 such that X is
minimal, mixing, and has positive entropy and d̄-shadowing property. In particular, the
shift space X has an entropy-dense and uncountable set of ergodic measures.

Proof. Since X1 is a mixing sofic shift it has topological entropy h > 0. By the uniform
continuity of the entropy function with respect to d̄M-distance, there is ε > 0 such that for
every μ, μ′ ∈Mσ ({0, 1}∞) with d̄M(μ, μ′) < ε we have |h(μ) − h(μ′)| < h/3. Fix this ε.
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All the conditions (37), (38) with respect to ε specified above, (40) and (41) can be
satisfied simultaneously by one sequence t (n), n ≥ 1. Indeed, it is enough to construct
the sequence inductively and take t (n) large enough with respect to right-hand sides
of the conditions which all depend only on the previously taken t (i), i < n. Such a
sequence then satisfies all assumptions of Propositions 5.9 and 5.10. Hence, X is mixing
and d̄-approachable from above by mixing sofic shifts. In particular, the shift has an
entropy-dense set of ergodic measure and is d̄-shadowing.

Now it suffices to find two invariant measures on X with different entropies. By the
variational principle, there is an ergodic invariant measure ν1 on X1 with entropy h. Since
X1 contains a periodic point, there is also an ergodic invariant measure ν2 on X1 of entropy
zero. The inequality d̄H

M(Mσ e(Xn),Mσ e(X)) < ε/2 ensures that there is an invariant
measure ν′

1 on X that is ε-close to ν1 in d̄M-distance and so h/3-close to ν1 in entropy.
By the same argument, there is an invariant measure ν′

2 on X that is h/3-close to ν2 in
entropy. Since the difference between h(ν1) and h(ν2) equals h, the measures ν′

1 and ν′
2

have different entropy and, in particular, are distinct.
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