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ABSTRACT

A model for the claim number process is considered. The claim number process
is assumed to be a weighted Poisson process with a three-parameter gamma
distribution as the structure function. Fitting of this model to several data
encountered in the literature is considered, and the model is compared with the
two-parameter gamma model giving the negative binomial distribution. Some
credibility theory formulae are also presented.
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1. INTRODUCTION

In this note we consider a model for the claim number process. Our model is a
weighted Poisson process with a three-parameter gamma distribution as a struc-
ture function. This has been considered earlier by DELAPORTE (1960), see also
KUPPER (1962). This is equivalent to the fact that the claim number process con-
sists of two independent component processes, a Poisson process and a negative
binomial process. The Poisson component may be thought of as the common
part for all risks, and the negative binomial component as the individual con-
tribution of a particular risk. This means that we can write the number of claims
in time ¢, N, as the sum of two components,

Ni= Nu+ Ny,

where Ny, has a Poisson distribution with the expected value ¢, say, and N,, has
the negative binomial distribution. We consider here the fitting of our model to
real data using the method of moments and the maximum likelihood estimation.
Unfortunately the maximum likelihood estimators for the parameters cannot be
obtained in a closed form. Hence, they are calculated via maximization of the
likelihood function numerically.

We test the hypothesis Hy: v = 0 against the one-sided alternative H,:vy > 0.
This tests the existence of the Poisson component in the model. We derive also
some credibility theory formulae for our model. The corresponding formulae for

* This paper was presented to the ASTIN Colloquium at Scheveningen, the Netherlands, September
1987.
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the two parameter model can be found in SEAL (1969). The flavour our model
gives to credibility considerations is the fact that even the best claim history, i.e.
no claims at all, does not lead to zero premium in the limit. This is due to the
existence of the background intensity which gives rise to the Poisson process.

2. DEFINITION OF THE MODEL

We assume that the claim number process N, ¢ >0, is a weighted Poisson
process, i.e., if the claim intensity is A, then the conditional process (N;|A)»o0
is a Poisson process. If the intensity A has the distribution function U, then

© n o~ ANt

(1) pn(t) = P(N, = n) = S ()")7," dU(N).
0 n.

We now assume that

) dUN) = (A —y)* "' 8% 2"’ (),

when N > v, and zero otherwise, with positive «, 8 and v. This amounts to the
fact that A has the three-parameter gamma distribution I'(«, 3, v), see JOHNSON
and Kotz (1969). From (2) it follows that the intensity has a strictly positive
lower bound vy. By substituting (2) into (1) we obtain

5Tk + o) ( B )”( t )k (v)" *e !

) p,,(z):kszo Tk! \t+8) \t+8/ (n-k)

Formula (3) exhibits p,(¢) as the convolution of a negative binomial and a
Poisson distribution.

From this or directly from (2) we may observe that the intensity A can be
written as the sum A = vy + A;, where v is a positive real number, and A, has the
usual two-parameter gamma distribution I'(a, 8). The interpretation of these
components is

v = background Poisson intensity which is common for all risks
A = additional individual intensity that varies from one risk to another.

With this interpretation we can assume that the process A, itself consists of two
mutually independent component processes Ny, and Ny, where Ny, is a Poisson
process with intensity y and Ny, is a weighted Poisson process whose intensity A,
has the distribution I'(«, 3). Then

4) N; = Ny + Ny,

where Ny ~ Po(yt) and Ny~ NB(a, 8/(t + 3)). Here ~ stands for “obeys the
distribution”, Po means the Poisson distribution and NB means the negative
binomial distribution.

The moments of N, may be obtained from the theory of doubly stochastic
Poisson processes. The stochastic intensity A has the moments

EA = % +v,  Var(A)=qafB’,  E((A—EA)’) =208’

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press


https://doi.org/10.2143/AST.18.1.2014960

ON A MODEL FOR THE CLAIM NUMBER PROCESS 59

With the help of the moments of A the moments of N, can be written as
Var(N,) = t* Var(A) + tEA
EW(N,— EN)Y)Y =t E((A — EA)?) + 312 Var(A) + (EA,
(see SNYDER 1975). By substitution we then obtain
EN, = (a|B + y)
(5) Var(N,) = (e/B*)” + (afB + Y )t
E((N,— EN)?) = QafB*)t> + BaB)t* + (afB + v)t.

These could have also been obtained by using the representation (4).

3. FITTING THE DISTRIBUTION

We say that a parameter vector («, 8,v) is feasible if all the components are
positive. Analogously we say that an estimator is feasible if all three components
are positive. We consider here three alternatives for fitting the distribution (3) to
data. For convenience we take = 1.

Method 1

We consider first the method of moments. Let the first three sample moments be
X (the sample mean), s? (the sample variance) and &3 (the third central sample
moment), the two latter calculated with weights 1/(n — 1). Equating these with the
population moments (5) we obtain

B =2(s? — X)[(x3 — 35> + 2%),
(6) &= (s’ - x)8%,

5=x-a.
Necessary and sufficient conditions for the feasibility are

sP>x, X3> 25—t

The first condition implies that the sample variance has to be larger than the
sample mean. This is due to the presence of the negative binomial part in the
model. The Poisson part gives equal variance and mean value. The second con-
dition means that the distribution has a larger third central sample moment than
a NB-distribution with the same first two moments.

Method 2

Because the use of the third moment in estimation may give undue weight on the
tail we consider here a variant of the method of moments. The idea is to fit x,
s% and po, the relative frequency of the zero class. Then we have to solve the
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system of equations

alf+y=x
N afB+vy+aff=s*

6 (¢4 _’y _
(1 + 6) ¢ =h
This leads to the solution
®) a=x-PsP-x), B=@x-st-x),

with 4 being the solution of the equation

(/\_'_'Y)z ln X —
sP—x st—

Y

¥y

The solution given in (8) and (9) is feasible if ¥ lies in the open interval (0, x) and
s* > x. We consider next the necessary and sufficient conditions for the existence
of a unique solution of (9) in this interval. For this purpose, denote

9 y=—In po+

3 x —v)? sT—x
Sf(y)=v+1In po+—————sz_)_( In 1+)_(_7 .

The solution of (9) is then equivalent to the solution of the equation f(y)=0.
Now we have

£(0)=1In po+ (&*[(s* — X))In(s*/x)
and
f(x)=x+1n po.
We also have

_ 5> - 2 o\ -1
f'(7)=1—2§—f})7(—)1n<1+5__X>+<1+S_“x) :

X—v X—v

If we denote y = (s> — X)/(x— ), #(¥) = »f"(y), then
h(y)=Qy+yH[(1+y)—2In(1 + y).

From this it is easy to see that 4(0) = O and A’ (y) > 0, when y > 0. But this means
that, if s2 > X, then f'(y) > 0 for 0 < 5 < x. Because the condition s* > x is also
necessary for & > 0, we have that the conditions

2> X, —x<1In po < (=x*/(s* = X))In(s*/x).

are necessary and sufficient for the existence of a unique feasible solution. These
mean that the zero class probability must lie between those of a Poisson distri-
bution and a negative binomial distribution with due first moments.

Method 3

Let us assume that we have the data ng, ny, ..., nx, where n; is the number of risks
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having had j claims in unit time. The maximum likelihood method gives us the
estimator (&, 3, v) which maximizes the likelihood function

k
L(a,B,v)=In [T (pi(1)"

Jj=0

j=0

& B LT(+a) yITi )}
‘E%”{“m1+ﬁ 7*“«2% T) AU DIL+B)
= no Inlfﬁ—n-y

k L TG +a) 1
+ ﬂin(v’ —— ,->,
,,Z‘o / 26 Cla) =DMy +8)

where n=ny + -+ + ni 1s the total number of observed risks. To facilitate the
maximization we denote 5 = y(I + ), and substitute (y — v)/y for 8in L. Then
the new likelihood function is

- _ K J I'(i+«) >
_ -y _ - 1 S e SN N
L{c,n,v)=naln . ny + nx ln(7)+j:§() nj n(l;) 10 = DT (@)

If we put the derivative with respect to v equal to zero we get the equation
(10) —nal(np—y)—n+nx/y=0,
or equivalently

x=v+alf.

In order to handle the partial derivatives with respect to o and 5 we denote

LT+ ) 1
W'(O{, = . . . ]
Hem) = 2 e G-
for which
: +m—1
o1 J F(i+a)lzzl 11 (e " )
da 7 (G-Dln S T(w) G-yt
and

R R (R (-i)
an%‘; (o) #1G—i)n™"
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With the help of these we have

k
L(ot,n,v)=naln ™ . Y py +nx In(y) + 25 1 In(w;(a, 7)),
ji=0
and
a r 1 1 k a -1
an j=o ~dn
(amn
9

k
L=ninn =)+ 3 o wile m s n)
(o4 J=0 a

Because of (10) our three-dimensional maximization problem has been reduced
to a two-dimensional one. This problem may be solved using an optimization
method, which makes use of the gradient given in (11).

4. TESTING THE MODEL

After having fitted the model using the maximum likelihood method we can
naturally test the goodness of fit of the model using a x>-test.

If we have a good fit, there lies the question whether v differs from zero
significantly. The case v = 0 corresponds to the pure negative binomial distribu-
tion, i.e., the Poisson background is absent. We need to test the null hypothesis
Hy : v = 0 against the alternative H; : v > 0. Under the null hypothesis the number
of claims has the negative binomial distribution. This distribution is fitted to the
data using the maximum likelihood method. Description of this method for
negative binomial distribution can be found for example in JOHNSON and KOTZz
(1969). This gives us the estimator (&, 8). If we denote by p; and p; the class i
probabilities given by the estimators (&, 3, 7) and (&, 3), respectively, then we can
form the test variable

k
(12) Y=-2 2 niln (i/pi).
i=0

For the conditions under which a likelihood ratio has the x*(1)-distribution as its
asymptotic distribution we refer to RAO (1973). In our case the value y =0 lies
on the boundary of the parameter space. Hence, the asymptotic distribution is
not x*(1) but a 50: 50 mixture of x*(1) and a distribution degenerate at origin,
as has been shown by SELF and LIANG (1987). This means that if we choose the
significance level ¢, the critical value will be the (1 — 2¢)-fractile of the x2(1)
distribution. The other conditions given by Rao are met by our distribution but
the positive-definiteness of the information matrix. The verification of this fact
seems to be a hopeless task in general. We have only shown that the determinant
of the information matrix becomes zero when o and 8 tend to infinity with their
ratio constant. This means that the results of our tests become unreliable as « or
3 becomes large. We have also verified numerically that the information matrix
is positive definite when o = 1 and (3 is finite. The applicability of our test is not
rigorously verified, and the tests to be performed later are only of guiding nature.
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5. CREDIBILITY
We now look at what some credibility theory formulae look like for our
model. We denote
pltn(5|[)= P(Nits— NIZII Ny =n),

the conditional probability of / claims in time s after having had » claims in time
t. Now we have

n )
Dinls| 1) = (” ”) (4> (—s—) Pren(t +5)pa0),

n t+s/ \t+s

(see SEAL, 1969 p. 27). For example the probability of no claims after having
had no claims in time ¢ is

B+t N\ s
s|y={——) e ™.
pojo(s | 1) <B+t+s
The conditional expectation of the intensity A after » claims in time ¢ is
n+ 1 pu+ 1 (,)
t pu(t)

n+1

2 Thk+a)(y(B+ )" X [((n+ 1~ k)k?)
_n+1 k=0

PR Tl 0B+ ) (= K

EA|n, 1) =

Further the conditional density of A after » claims in time ¢ can after some
manipulation be written as

(B+ 0"\ = )" 'e”BTVED A" po(t)
I'(@) n!' pa(t)

for N> v. The first factor here is the density function of the distribution
I'(a, B + t,v). Especially after claim-free time 7 we have

(AINi=0)~T(a,8+1,7)

dx,

dUA | n, 1) =

so that
E(Ni+s— N, | N =0) = (01/(6 + 1)+ y)s
Var(Niss — Ni | Ne=0) = as?[(B + 1)* + (f(B + t) + y)s.
Further, if we let ¢ tend to infinity, then
E(N1+3 - N/ | N[ = 0) hd 'YS

Var(N1+_g - N[ ‘ N[ = 0) g ’YS.
Equivalently we can write that

EA[N=0)=af(B+1)+v—~

Var(A| N, =0)=af(B+t)> =0,
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as t1o. This means that (A| N, = 0) — v in probability, so that a claimless risk
will approach a risk with pure Poisson claim process. This means also that the
credibility premium would converge to v and not to zero. Similar to the preceding
results, various results concerning the bonus class systems can be presented in a
computable form in our case.

6. FITTING THE MODEL TO REAL DATA

In this section we consider the fitting of our model to some data that can be found
in the actuarial literature. We calculate the maximum likelihood estimates for o
and § in the case when v = 0, and for «, 3 and v in the general case. To get started
we solve v from (9) using v = x/2 as the first guess. Then we use this v together
with o and § obtained from (8) as the initial guess for the calculation of the
maximum likelihood estimation. These estimates were computed using the
Davidon—Fletcher—Powell method, see RAO (1978). Also (12) we compute in
order to perform the likelihood ratio test.

Our first fit is to the TROBLIGER (1961) data. Trobliger fitted to his data a
model in which the risks were classified into two classes “the good’ and “the
bad”. The fit was good with x?(1) =0.44. These data give x = 0.14421976,
5% =0.1638699 and po = 0.872949. If the negative binomial distribution is fitted,
then & = 1.117895, B = 7.751332, and if our model is fitted, then & = 0.2766328,
B =3.7597937 and 4 = 0.07064318. The frequencies of different classes for our
model and the negative binomial distribution together with the observed frequen-
cies are given in Table 1.

If the three last classes and the class “ > 7" are joined together, the x2(1)-value
for goodness of fit test of our model is 0.0042. This extremely low value is due
to the fact that three parameters were fitted. The likelihood ratio test has now
the x?(1)-value 3.93 which exceeds the critical value 2.706 at the 0, 95-level.
Hence, the hypothesis Ho: vy = 0 is rejected. We now have the estimate 0.071 for
the background intensity. This may be compared with the mean intensity
X =0.144 and the “good” intensity 0.109 in Trobliger’s model. The estimated
background intensity is 49% of the estimated mean intensity and 66% of the
estimated “good” value.

WILLMOT (1988) has fitted an extended negative binomial distribution to this
data. The x? value was 0.0282 which indicates a very good fit.

TABLE 1
No. of claims Observed Our model NB
0 20592 20591.87 20596.76
1 2651 2651.45 2631.03
2 297 296.42 318.37
3 41 41.12 37.81
4 7 6.70 4.45
5 0 1.18 0.52
6 1 0.21 0.06
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We look also at another example a little closer. THYRION (1960) fitted also a
three-parameter model of weighted Poisson type. This model has a reasonable fit.
The estimation was not maximum likelihood, and so no x2-test is available. The
estimated parameters are X =0.2143537, s*=0.2889314 and po = 0.82866505.
The estimated negative binomial parameters are «=0.7015122 and B=
3.2726858. The estimated parameters of our model are & = 0.2006137, 8=
1.6665135 and ¥ = 0.09397439. The calculated and observed frequencies are
collected in Table 2.

If the three last classes and the class “>8"” are joined together, the goodness
of fit test for our model has the x2(2) value 4.12. This is below the 90%-value
4.605 so that our model cannot be rejected. The likelihood ratio test has the test-
value 9.53, which exceeds even the 0.995-level. The hypothesis Hy: vy = 0 is then
rejected. The estimator for the background intensity v = 0.094 is about 44% of
the estimated mean intensity x.

We have considered several other data from traffic insurance. We shall review
them here only briefly to save space. LEMAIRE (1979) gives data to which already
the negative binomial distribution fits well. Hence the hypothesis Ho: vy = 0 is not
rejected. In spite of this the maximum likelihood estimator for the background
intensity is 40% of the estimated mean intensity x. DELAPORTE (1962) gives
data, which has the tail shorter than the fitted negative binomial distribution has.
Hence, our model leads to a negative value for the background intensity, and can-
not be fitted to this data. PESONEN (1962) has data to which already the negative
binomial model fits well, and the hypothesis of zero background intensity is not
rejected. Again, however, the estimated background intensity is a large percent-
age, 60%, of the estimated mean intensity x. MUFF (1972) gives two sets of data,
A and B. The data A lead to a similar situation as that of Delaporte, and the
data B similar to those of Pesonen and Lemaire. Finally BUHLMANN (1970) gives
data for which the null hypothesis of zero background intensity is rejected with
a high x2-value. On the other hand 7 is as low as 0.37 ¥. GOSSIEUX and LEMAIRE
(1981) have also considered the same data and they have found that the best fit
among four distributions was given by a mixture of two Poisson distributions.

As a conclusion we must admit that the model presented here is not a general
solution to the problem of determining the claim number distribution. If the data
have a long tail then this model is worth considering. If the tail is short then the

TABLE 2
No. of claims Observed QOur model NB
0 7840 7837.40 7847.01
1 1317 1326.16 1288.36
2 239 222.76 256.53
3 42 52.68 54.07
4 14 15.08 11.71
5 4 4.66 2.58
6 4 1.50 0.57
7 1 0.50 0.13

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press


https://doi.org/10.2143/AST.18.1.2014960

66 RUOHONEN

bad fit of the negative binomial distribution cannot be corrected using this model
with positive yv. However, the knowledge we have of fitting this model indicates
that in most of the cases the background intensity is somewhere around the half
of the mean, approximately between 0.4x and 0.6x. Additionally this model can
be used to build up a bonus—malus system with some definite lower boundary for
the premium.

7. ADDITIONAL TOPICS

Several Years’ Data

Let the same portfolio be observed during a period of several years. Let us
assume that our model is the true one. Let the a;, 8, and v, be the parameters
o, 3 and v, if 7 is selected to be the time unit. Equating the first three moments
for the number of claims in time ¢ calculated using time units i and ¢, repectively,
we obtain

o=y, BIZBI/I’ Ye=ty1.

This means that if our model is the true one, then the observed values of «, 18,
and +,/t should be fairly constant during the observation period.

Two Portfolios

Let us join two portfolios which have the distribution (3) for the number of
claims with parameters «;, 3; and v,,i= 1,2, respectively. Let the sizes of the
portfolios be in ratio p/(1 — p). Let, further,

_ 1, if the risk is from the portfolio 1
X7 0, if the risk is from the portfolio 2.

Then for a randomly chosen risk we have

Ni= Nux+ Na(1 = x)=(Niix + Nape (1 = x))
+ (Ni2ex + Naze(1 = x)) = Ny + N

where Ny, is the number of claims in time ¢ in portfolio / due to the component
Jasin (4). Then N, is divided into two components the first of which is a mixture
of two Poisson distributions and the second a mixture of two negative binomial
distributions. Hence, the combined portfolio no longer has the claim number
distribution (3). In spite of this we tried this model for two composite data. We
pooled Bithimann’s data with Trobliger’s data, I, and then with Lemaire’s data,
I1. The fit was excellent in both cases, and the null hypothesis of zero background
intensity was rejected with great significance. The interesting feature is that the
parameters obtained are close to those of Biihlmann’s, and are not near the linear
combinations of the original parameters. This can be seen in Table 3. For
example the linear combination of the y-parameters in the Biihlmann-Lemaire
case would give 0.04887 against the obtained 0.05708.
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TABLE 3

Data X s? @ B 3 9fx

Bithimann 15514 17932 .40015 4.068 .05679 0.37

Trobliger .14422 .16387 .27663 3.760 .07064 0.49
mixture | 15334 17679 37838 4.018 05918 0.39
Lemaire .10108 10745 .58881 9.641 .04001 0.40
mixture [ 12965 14615 31966 4.405 .05708 0.44

As a last example we joined together the data of Lemaire, Thyrion, Pesonen,
Trobliger and Biihlmann and considered how our model fits with these
heterogeneous data. The fitted NB-distribution had a x? (3)-value 61.14, which
means poor fit. When our model was fitted, the x? (2)-value was 5.18, which
means a moderate fit. The likelihood ratio test value was 47, 55 which is a highly
significant value. The estimated background intensity was v = 0.0654328, which
is 49% of the estimated mean.

A more detailed exposition of methods and results of this paper is found in a
technical report RUOHONEN (1983).

ACKNOWLEDGEMENT

[ should like to thank K. Loimaranta for many inspiring conversations and
critical comments concerning this work. I should also like to thank Dr. B. Sundt
and Dr. G. Willmot for pointing out errors in the original manuscript.

REFERENCES

BUHLMANN, H. (1970) Mathematical Methods in Risk Theory. Springer-Verlag, Berlin.

DEIAPORTE, P. (1960) Un probleme de tarification de P’assurance accidents d’automobiles examiné
par la statistique mathématique. Transactions of the International Actuarial Congress, Subject
Bl.

Det apORTE, P. (1962) Sur Vefficacité des critéres de tarification de "assurance contre les accidents
d’automobiles. ASTIN Bulletin 2 (1), 84-95.

GossIEUX, A. and LEMAIRE, J. (1981) Methodes d’ajustement de distribution de sinistres. Bulletin of
the Association of Swiss Actuaries 81, 87-95.

JouNsoN, N. 1. and Kotz, S. (1969) Discrete Distributions. Houghton Mifflin, Boston.

Kuprper, J. (1962) Wahrscheinlichkeitstheoretische Modelle in der Schadenversicherung. B/l. Deuts.
Gesell. Versich. Math. Band V. Heft 4, 451-503.

LEMAIRE, J. (1979) How to define a bonus—malus system with an exponential utility function.
ASTIN Bulletin 10 (3), 274-282. '

Mcutt, M. (1972) The influence of the franchise on the number of claims in motor insurance. ASTIN
Bulletin 6 (3), 191—-194.

PesoneN, E. (1962) A numerical method of finding a suitable bonus scale. ASTIN Bulletin 2(1),
102-108.

Rao, C. R. (1973) Linear Statistical Inference and its Applications. Wiley, New York.

RA0, S. S. (1978) Optimization Theory and Applications. Wiley Eastern, New Delhi.

RUOHONEN, M. (1983) Fitting a convolution of Poisson and negative binomial distributions on data.
Rep. Inst. Appl. Math. Univ. Turku No. 118.

SeaL, H. L. (1969) Stochastic Theory of a Risk Business. Wiley, New York.

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press


https://doi.org/10.2143/AST.18.1.2014960

68 RUOHONEN

Stir, S. G. and LiaNng, K.-Y. (1987) Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Associa-
tion 82 (398), 605-610.

SNYDER, D. L. (1975) Random Point Processes. Wiley, New York.

THYRION, P. (1960) Contribution a I’étude du bonus pour non sinistre en assurence automobile.
ASTIN Bulletin 1 (3), 142-162.

TROBLIGER, A. (1961) Mathematische Untersuchungen zur Beitragsriickgewihr in der Kraftfahrver-
sicherung. Bl. Deuts. Gesell. Versich. Math. 5, 327--348.

Wiiamort, G. (1988) Sundt and Jewell’s family of discrete distributions. ASTIN Bulletin 18 (1),
17-29.

MATTI RUOHONEN
The Sampo Group, P.O. Box 216, SF-20101 Turku, Finland.

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press


https://doi.org/10.2143/AST.18.1.2014960



