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Abstract

In this paper we investigate the zeros of the Estermann zeta function E(s; k/`, α) =
∑∞

n=1σα(n)
exp(2πink/`)n−s as a function of a complex variable s, where k and ` are coprime integers and σα(n) =∑

d|ndα is the generalized divisor function with a fixed complex number α. In particular, we study the
question on how the zeros of E(s; k/`, α) depend on the parameters k/` and α. It turns out that for some
zeros there is a continuous dependency whereas for other zeros there is not.
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1. Introduction

Let s = σ + it ∈C. For n ∈N and α ∈C, we define the generalized divisor function by

σα(n) =
∑
d|n

dα.

Then, for σ > max{1 +<α, 1} and λ ∈R, the Estermann zeta function is given by the
Dirichlet series

E(s; λ, α) =

∞∑
n=1

σα(n)
ns

exp(2πinλ). (1.1)

In some respects the Estermann zeta function behaves pretty much like the classical
Lerch zeta function which, for σ > 1, is given by

L(λ, β, s) =

∞∑
n=0

exp(2πinλ)
(n + β)s

, (1.2)

where λ and β are real parameters satisfying 0 < β ≤ 1. Illustrating this relationship,
in Section 2 we shall recall some well-known results on the distribution of zeros of
the Estermann zeta function. However, our main aim in this note is to investigate the
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dependency of zeros of the Estermann zeta function with respect to its parameters
λ and α. It will turn out that for some zeros the dependency is not ‘continuous’
in a certain sense which will be specified below. In contrast, for the Lerch zeta
function, it is known that all the zeros of L(λ, β, s) depend continuously on 0 < λ < 1
and on 0 < β < 1 (see [4, Lemma 7]). It should be noted that Balanzario and Sánchez-
Ortiz [1] used the trajectories of the zeros of some special Dirichlet series depending
on a certain parameter for calculating new zeros of the Davenport–Heilbronn zeta
function. Moreover, in [6] the trajectories of zeros of the Hurwitz zeta function
ζ(s, β) = L(1, β, s) have been used for a classification of the nontrivial zeros of the
Riemann zeta function.

Let us first explain the meaning of continuous dependency of a zero with respect
to some parameter which runs through an interval or a dense subset of an interval.
Let I be an interval in R, and let S be a dense subset of I. Suppose that a function
f1(s) = f (s, α) is analytic in s for each α ∈ S and assume that s = ρ0 is a zero of
multiplicity m of f (s, α0), where α0 ∈ S . We say that the zero ρ0 is S -continuous at
α0 if, for every sufficiently small open disk D with center at ρ0 in which the function
f (s, α0) has no other zeros except for ρ0, there exists a δ = δ(D) > 0 such that each
function f (s, α′), where α′ ∈ (α0 − δ, α0 + δ) ∩ S , has exactly m zeros (counted with
multiplicities) in the disk D.

Note that if the zero ρ0 of multiplicity m = 1 is S -continuous at α0, then there exists
a neighborhood of α0 and some function ρ = ρ(α), α ∈ S , which is continuous at α0

and, in addition, satisfies the relation f (ρ(α), α) = 0.
Our first theorem deals with the dependency of zeros of E(s; λ, α) with respect to α

when the parameter λ is fixed.

T 1.1. Each zero of E(s; λ, α) is S -continuous at every value of the parameter
α ∈ S = (−1, 0).

Furthermore, we shall also consider the continuity properties of E(s; λ, α) with
respect to λ. Here we may assume that a :=<α ≤ 0 which implies the absolute
convergence of the Dirichlet series for E(s; λ, α) in the half-plane σ > 1 and, in
particular, the uniform convergence for σ ≥ 1 + ε independent of λ, where ε is an
arbitrary positive real number. Hence E(s; λ, α) is continuous with respect to λ ∈R
whenever σ > 1.

T 1.2. Each zero of E(s; λ, α) in the half plane <(s) > 1 is R-continuous at
every λ ∈R.

For positive integers m and n, we define

Qm,n =

{m2q
r

: (mnq)2 ≡ 1 mod r, q ∈ Z, r ∈N
}
. (1.3)

In particular,

Q1,1 =

{q
r

: q2 ≡ 1 mod r, q ∈ Z, r ∈N
}
.
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By Proposition 3.2 below, each set Qm,n is a dense subset of Q. In the next section we
will see that for λ ∈Q and α ∈C the function E(s; λ, α) has an analytic continuation
to a meromorphic function on C. We now state the main theorem of this paper.

T 1.3. Let m and n be positive integers. Suppose that E(ρ; λ, α) = 0, where
λ ∈Q, −1 < α ≤ 0 and <ρ < α. Then the zero ρ is not Q-continuous at λ ∈Q.
However, for λ ∈Qm,n, the zero ρ is Qm,n-continuous at λ.

The motivation behind the set Qm,n is explained in Section 3 (see also Remark 4).
Direct calculations with Mathematica, using formula (2.1), show that there exist zeros
which satisfy the assumptions of Theorems 1.2 and 1.3. The question whether the
zeros located in the strip α ≤ σ ≤ 1 depend continuously on λ remains open.

Further, we are interested in a horizontal distribution of zeros of the Estermann zeta
function. Assuming the Riemann hypothesis, the nontrivial zeros of the function

E(s; 1, α) = ζ(s)ζ(s − α) (1.4)

lie on the lines σ = 1
2 and σ = 1

2 + a. We conjecture that the example (1.4) is typical in
the sense that a positive proportion of the nontrivial zeros is clustered around the two
lines mentioned above. Towards this hypothesis we prove Theorem 1.4 below.

Throughout this paper, k ∈ Z and ` ∈N are two relatively prime integers. Denote
by N(T ; k/`, α) the number of nontrivial zeros ρ = β + iγ of E(s; k/`, α) (counted with
multiplicities) satisfying |γ| ≤ T . Let N(σ, T ; k/`, α) be the number of nontrivial zeros
ρ of E(s; k/`, α) with β > σ and |γ| ≤ T . The next result shows that at most 1

2 + ε of
the nontrivial zeros of E(s; k/`, α) lie to the right of the line σ = 1

2 + εa.

T 1.4. Let a =<α < 0 and let 0 < ε < 1
2 . If 1

2 + εa ≤ σ < 1
2 then

lim
T→∞

N
(
σ, T ; k

`
, α

)
N
(
T ; k

`
, α

) ≤ 1
2

+ ε.

This paper is organized as follows. In the following section we will recall some
basic facts about the analytic properties of the Estermann zeta function and the
distribution of its zeros. Section 3 is devoted to the properties of the set Qm,n. In
Section 4 the proofs of Theorems 1.1, 1.2 and 1.3 will be presented. Finally, in
Section 5 we give the proof of Theorem 1.4.

2. Background on Estermann’s zeta function

For λ = k/`, where k and ` are coprime integers, one finds the representation (see
Kiuchi [7, formula (2.4)])

E
(
s;

k
`
, α

)
= `α−s

∑̀
h=1

exp
(
2πi

hk
`

)
L
(
1,

h
`
, s − α

)
L
(hk
`
, 1, s

)
, (2.1)
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where L(λ, β, s) stands for the Lerch zeta function given above by (1.2). Thus
E(s; k/`, α) can be analytically continued to a meromorphic function, which is regular
in the whole complex plane up to two simple poles at s = 1 and at s = 1 + α if α , 0,
or up to one double pole at s = 1 if α = 0 (see [8]). In view of the functional equation
for the Lerch zeta function using (2.1) one easily finds that

E
(
s;

k
`
, α

)
=

1
π

(
`

2π

)1+α−2s

Γ(1 − s)Γ(1 + α − s)

×

(
cos

(
πα

2

)
E
(
1 + α − s;

k
`
, α

)
− cos

(
πs −

πα

2

)
E
(
1 + α − s; −

k
`
, α

))
, (2.2)

where k is defined by the congruence kk ≡ 1 mod ` and the inequality 0 < k ≤ `. For an
irrational number λ, analytic continuation of E(s; λ, α) is an open problem. For α = 0,
the zeta function E(s; k/`, α) was introduced by Estermann [3] and for α ∈ (−1, 0] by
Kiuchi [7]. Since σα(n) is an analytic function in α, the results above hold by analytic
continuation for any complex number α.

Before we study the zeros of the Estermann zeta function with respect to its
parameters α and λ, let us recall some results obtained in [10]. Since σα(n) =

nασ−α(n),

E
(
s,

k
`
, α

)
= E

(
s − α,

k
`
, −α

)
.

Therefore, in the following we may assume that a =<α ≤ 0. Let us denote the zeros
of E(s; k/`, α) by ρ = β + iγ. As in the case of the Lerch zeta function, we have to
distinguish between trivial and nontrivial zeros of E(s; k/`, α). It is easy to show that

E
(
s;

k
`
, α

)
, 0 for σ > 3. (2.3)

By the functional equation (2.2) and the nonvanishing of the gamma function,
E(s; k/`, α) vanishes if and only if

cos
(
πα

2

)
E
(
1 + α − s;

k
`
, α

)
= cos

(
πs −

πα

2

)
E
(
1 + α − s; −

k
`
, α

)
.

In view of (2.3) it follows that for σ < −2 + a the function E(s; k/`, α) can only have
zeros close to the negative real axis. Thus we call the zeros ρ of E(s; k/`, α) with
β < −2 + a trivial. However, we are interested in the nontrivial zeros of E(s; k/`, α).
By the above and the zero-free region (2.3) the nontrivial zeros must lie in the vertical
strip

−2 + a ≤ σ ≤ 3.

In [10] the asymptotic formula for the number of nontrivial zeros

N
(
T ;

k
`
, α

)
= 2

T
π

log
`T
2πe

+ O(log T ) (2.4)
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was proved. Since the main term does not depend on k and α, this already indicates
the existence of zeros which do not depend on k/` continuously. Furthermore, it was
shown that

1

N(T ; k
`
, α)

∑
ρ nontrivial
|γ|≤T

β =
a + 1

2
+ O(T−1).

Therefore, the mean value of the real parts of the nontrivial zeros of E(s; k/`, α) exists
and equals (a + 1)/2. This result can be compared to our Theorem 1.4.

3. Properties of the set Qm,n

To prove our main result (Theorem 1.3) we will use the functional equation (2.2).
In order to apply this functional equation we shall investigate the properties of the
function g : Q→ (0, 1), defined by

g
(k
`

)
=

k
`
.

(Recall that k is defined by the congruence kk ≡ 1 mod `, where 0 < k ≤ `.) As we will
see later, the function g behaves very chaotically. This implies the discontinuity of the
zero trajectories. On the other hand, we will show that the function g, if restricted to
the set (0, m2/n2) ∩Qm,n, is continuous. This will lead to continuous zero trajectories.
More precisely, let us define

gm,n : Qm,n→ (0, 1) where gm,n

(k
`

)
=

k
`
.

The aim of this section is to prove the following proposition.

P 3.1. The function g is everywhere discontinuous. Moreover, for any
neighborhood Va of a rational number a, the image g(Va ∩Q) is everywhere dense
in the interval (0, 1). Furthermore,

gm,n(x) =
n2

m2
x (3.1)

for each x ∈ (0, m2/n2) ∩Qm,n and

gm,n(x) −
n2

m2
x ∈ Z

for x ∈Qm,n.

For us it will be important that the function exp(2πikgm,n(x)), where k is a fixed
integer, is continuous on Qm,n. The question whether there are other dense subsets
of rational numbers on which the function exp(2πikg(x)) is continuous remains open.
Proposition 3.1 will be derived from the following proposition.

P 3.2. For any m, n ∈N the set Qm,n defined in (1.3) is everywhere dense
in R.
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To prove Proposition 3.2 the following lemma will be crucial.

L 3.3. Let u and v be two positive integers satisfying gcd(u, v) = 1. Then the set
of rational numbers k/`, where k is an integer and ` is a positive integer satisfying u|k,
v|` and k2 ≡ 1 mod `, is everywhere dense in R.

P. Clearly, the set of rational numbers us/vr, where s ∈ Z, r ∈N are such that
gcd(us, vr) = 1, is everywhere dense in R. Fix any pair s, r satisfying gcd(us, vr) = 1.
We will show that k ∈ Z and ` ∈N, where u|k, v|`, k2 ≡ 1 mod `, can be chosen such
that the quotient k/` is arbitrarily close to us/vr. Since us and vr are relatively prime,
there is an integer g satisfying

us(ug + 1) ≡ −1 mod vr. (3.2)

We select
` := vr(N − 2)N (3.3)

and
k := (usN + 1)(N − 2) + 1, (3.4)

where
N := vrun + ug + 1

with some n ∈N. Clearly, N→∞ as n→∞. By (3.3) and (3.4), k/`→ us/vr as
n→∞.

In order to prove the congruence k2 ≡ 1 mod ` we first observe that

usN + 1 = us(vrun + ug + 1) + 1 = u2svrn + us(ug + 1) + 1

is divisible by vr, by (3.2). Hence, by (3.4), k − 1 is divisible by vr(N − 2). Also,

k + 1 = (usN + 1)(N − 2) + 2 = usN2 + N(1 − 2us)

is divisible by N. From (3.3), we conclude that ` divides the product (k + 1)(k − 1) =

k2 − 1.
Finally, by (3.3), we have v|`. Since N ≡ 1 mod u, by (3.4),

k ≡ N − 1 ≡ 0 mod u.

Thus u|k. This completes the proof of the lemma. �

P  P 3.2. Note that

n
m

Qm,n =

{ n
m

a : a ∈Qm,n

}
=

{mnq
r

: (mnq)2 ≡ 1 mod r, q ∈ Z, r ∈N
}
.

By Lemma 3.3 with v = 1, ` = r, u = mn, k = mnq, the set n/mQm,n is everywhere dense
in R, hence so is Qm,n. �
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P  P 3.1. Fix k/` ∈Qm,n. We will first show that

gm,n

(k
`

)
−

n2

m2

k
`
∈ Z. (3.5)

By the definition of the set Qm,n, the number k/` can be written as

k
`

=
m2q

r
,

where m2q ≡ n2q mod r. Hence r divides the difference m2q − n2q. Using this and

gm,n

(k
`

)
−

n2

m2

k
`

= gm,n

(m2q
r

)
−

n2q
r

=
m2q

r
−

n2q
r

we obtain (3.5).
Note that if x ∈ (0, (m2/n2)) ∩Qm,n then 0 < n2/m2x ≤ 1. Thus, from the

formula (3.5) and the definition of gm,n, we derive (3.1).
The remaining statements of Proposition 3.1 follow from Proposition 3.2 in view of

the equality gm,n(k/`) = g(k/`), where k/` ∈Qm,n. �

4. Proofs of Theorems 1.1–1.3

The proofs below will use the following lemma.

L 4.1. Let f (ρ, α0) = 0, where the function f1(s) = f (s, α) is analytic for each
α ∈ S (S is a dense subset of an interval in R) and does not vanish identically
at α = α0. Suppose that there is a neighborhood Vρ of ρ such that the function
f2(α) = f (s, α), α ∈ S , is continuous at α = α0 for each s ∈ Vρ. Then the zero ρ is
S -continuous at α0.

P. Let D be a disk with center at ρ such that D ⊂ Vρ and f1(s) , 0 on the boundary
∂D for α = α0. The function f (s, α) is continuous at α = α0 uniformly in s ∈ D. Thus
there is a constant δ = δ(D) > 0 such that

| f (s, α0) − f (s, α)| < | f (s, α0)|

for s ∈ ∂D and α ∈ (α0 − δ, α0 + δ) ∩ S . Now Lemma 4.1 follows by Rouché’s theorem
and the definition of the continuity of zero with respect to the parameter α. �

P  T 1.1. From the representation (2.1) of the Estermann zeta function
in terms of the Lerch zeta function it follows that E(s; λ, α) is continuous in α. Hence,
the theorem follows immediately from Lemma 4.1. �

P  T 1.2. The proof follows immediately from the comment before the
statement of this theorem combined with Lemma 4.1. �

https://doi.org/10.1017/S1446788712000419 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000419


[8] Zeros of the Estermann zeta function 45

The following bound is useful is what follows.

L 4.2. For x ≥ 1, ∣∣∣∣∣∑
n≤x

σ0(n) − x log x
∣∣∣∣∣ ≤ γx + 2,

where γ is Euler’s constant.

P. Note that ∣∣∣∣∣ ∑
1≤n≤X

1
n
− log x − γ

∣∣∣∣∣ ≤ 2
X

(see, for example, [2, Section 6.3]). Then Lemma 4.2 follows from the identity∑
n≤x

σ0(n) =
∑
n≤x

[ [x]
n

]
=

∑
n≤x

[ x
n

]
=

∑
n≤x

x
n
−

∑
n≤x

{ x
n

}
. �

P  T 1.3. In this proof the parameter α is fixed. Let λ0 ∈Q, ρ0 = β0 + iγ0,
β0 < α, and let E(ρ0; λ0, α) = 0. Actually we will prove a stronger result, namely, that
the zero ρ0 is not

⋃
(m,n)∈N2 Qm,n-continuous at λ0. For this it suffices to show that

there exists an open disk D ⊂C with center at ρ0 such that for every open interval I
containing λ0 there is a rational number k j

` j
∈
⋃

(m,n)∈N2 (Qm,n ∩ I) satisfying

E
(
s;

k j

` j
, α

)
, 0

for s ∈ D. Using the functional equation (2.2) and the properties of function g,
described in Section 3, we will show that this is indeed the case.

In view of (2.2) let us define f : R3
→C by

f (σ, t, x) = cos
(
πα

2

)
E(1 + α − (σ + it); x, α)

− cos
(
π(σ + it) −

πα

2

)
E(1 + α − (σ + it); −x, α).

Forσ < α, the function f is continuous at any point (σ, t, x). Therefore if f (σ′, t′, x′) ,
0, then there is an open set V ⊂R3 containing (σ′, t′, x′) such that f (σ, t, x) , 0 for
(σ, t, x) ∈ V .

Suppose that there exists λ1 ∈Q for which

f (β0, γ0, λ1) , 0. (4.1)

We will show that that the zero ρ0 is not Q-continuous at λ0 if condition (4.1) is
satisfied. It follows from the functional equation (2.2) that E(ρ; k/`, α) = 0 if and only
if f (σ, t, k/`) = 0. By Proposition 3.1, there is a sequence { k j

` j
}, j = 1, 2, . . . , tending to

λ0, such that {k j/` j} tends to λ1. Hence, for the zero ρ0 of the Estermann zeta function,
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there exists an open disk D ⊂C with center at ρ0 such that for every open interval I
containing λ0 there is a rational number k j/` j ∈ I satisfying

E
(
s;

k j

` j
, α

)
=

1
π

(
`n

2π

)1+α−2s

Γ(1 − s)Γ(1 + α − s) f
(
σ, t,

k j

` j

)
, 0

for s ∈ D.
To finish the proof of the first part of the theorem we will verify condition (4.1). For

this we will show that, for any σ < α and any t, the function f3(x) = f (σ, t, x) is not
identically zero. If s , −2m and s , −2m + α, where m = 1, 2, . . . , then

f (0) = ζ(1 + α − s)ζ(1 − s)
(
cos

(
πα

2

)
− cos

(
πs −

πα

2

))
, 0.

On the other hand, for s = −2m or s = −2m + α,

f (x) = 2i cos
(
πα

2

)
=(E(1 + α − s; x, α)).

We next prove that =(E(1 + α − σ; 1/4, α)) , 0 for σ ≤ −2. Indeed, observe that

=(E(1 + α − σ; 1/4, α)) =

∞∑
n=1

σα(n) sin
( πn

2

)
n1+α−σ

≥ 1 −
2
32
−

2
72
−

2
112
−

∞∑
n=13

σ0(n)
n2
≥ 0.07,

because

1 −
2
32
−

2
72
−

2
112
≥ 0.72

and, by Lemma 4.2,

∞∑
n=13

σ0(n)
n2

= 2
∫ ∞

13

D(x) dx
x3

≤ 2
∫ ∞

13

x log x + γx + 2
x3

dx ≤ 0.65,

where D(x) :=
∑

n≤x σ0(n). This proves the first part of Theorem 1.3.
The second part of Theorem 1.3 follows from Lemma 4.1 in view of the continuity

(in λ) of the function (2π/`)1+α−2sE(s; λ, α) when λ runs through the set Qm,n (see
Proposition 3.1, the functional equation (2.2), and the expression of the Estermann
zeta function by the Dirichlet series (1.1)). This completes the proof of the theorem. �

R. Evidently, E(s; λ + 1, α) = E(s; λ, α) for λ ∈Q. Suppose that λ ∈Qm,n.
Using (1.3) one can verify that λ + 1 ∈Qm,n if and only if m = 1. From this point
of view the sets Q1,n are the most natural sets in the context of our problem.
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5. Proof of Theorem 1.4

To prove Theorem 1.4 we will express the number of zeros of the Estermann zeta
function by a mean value of the Estermann zeta function (see formula (5.3) below).
Hence the following lemma will be useful.

L 5.1. Let a ≤ 0. For 1
2 + a < σ < 1

2 , as T →∞,∫ T

−T

∣∣∣∣∣E(σ + it;
k
`
, α)

∣∣∣∣∣2 dt� T 2(1−σ).

P. In [5] it was shown that

E
(
s;

k
`
, α

)
= Λ(s; α)L(s, χ0)L(s − α, χ0) +

1
ϕ(`)

∑
χ mod `
χ,χ0

τ(χ)χ(k)L(s, χ)L(s − α, χ),

where the summation is over all characters χ mod ` different from the principle
character χ0, the associated Gauss sum is denoted by τ(χ), and

Λ(s; α) :=


2` − `1−s − `s

`s(` − 1)(1 − `−s)2
if α = 0,

` − `1+α+s − `1+2α + `1+2α−s − `s + `α+s

`s(` − 1)(1 − `α)(1 − `−s)(1 − `α−s)
if α , 0.

Using this representation we find that∫ T

−T

∣∣∣∣∣E(
σ + it;

k
`
, α

)∣∣∣∣∣2 dt�
∑

ψ,χ mod `

∫ T

1
|L(σ + it, ψ)L(σ − a + i(t − =α), χ)|2 dt,

where the summation is over all characters modulo ` and the implied constant depends
on ` and a. Applying the Cauchy–Schwarz inequality,∫ T

−T

∣∣∣∣∣E(
σ + it;

k
`
, α

)∣∣∣∣∣2dt

�
∑

ψ mod `

(∫ T

1
|L(σ + it, ψ)|4dt

) 1
2

×
∑

χ mod `

(∫ T

1
|L(σ − a + i(t − =α), χ)|4dt

) 1
2

. (5.1)

Recall the functional equation for Dirichlet L-functions associated to primitive
characters,

L(s, χ) = ∆(s, χ)L(1 − s, χ)

with

∆(s, χ) :=
τ(χ)

iδ
√
`

(
`

π

) 1
2−s Γ( 1+δ−s

2 )

Γ( s+δ
2 )

,
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where δ := 1
2 (1 − χ(−1)) and τ(χ) is the Gauss sum attached to χ. By Stirling’s

formula, ∆(σ + it, χ)� t
1
2−σ as t→∞. Hence, for σ ≤ 1

2 , we find that∫ T

1
|L(σ + it, χ)|4 dt� T 4( 1

2−σ)
∫ T

1
|L(1 − σ, χ)|4 dt (5.2)

for any primitive character χ mod `. However, every nonprimitive character χ mod `
is induced by some primitive character χ1 mod `1 with `1 | ` and

L(s, χ) = L(s, χ1)
∏
p|`

(
1 −

χ1(p)
ps

)
.

Hence (5.2) holds for nonprimitive characters too. Using the generalized Carlson
mean-square estimate from [11, Theorem 2.4] applied to L(s, χ)2, we thus find that∫ T

1
|L(σ + it, χ)|4 dt� T 1+4( 1

2−σ)

for σ < 1
2 .

By the same argument we can bound the other integral appearing in (5.1) by T .
Thus the mean square of E(σ + it; k/`, α) is bounded from above by T 2(1−σ). This
proves the lemma. �

We are now in a position to prove Theorem 1.4.

P  T 1.4. Let δ > 0 and let 1
2 + a < u < 1

2 . By arguments similar to those
in [10], an application of Littlewood’s lemma (see [9] or [12]) yields

δN
(
u + δ, T ;

k
`
, α

)
≤

∑
β>u
|γ|≤T

(β − u)

=
1

2π

∫ T

−T
log

∣∣∣∣∣E(
u + it;

k
`
, α

)∣∣∣∣∣ dt + O(log T ). (5.3)

By Jensen’s inequality,

1
2π

∫ T

−T
log

∣∣∣∣∣E(
u + it;

k
`
, α

)∣∣∣∣∣ dt ≤
T
2π

log
( 1
2T

∫ T

−T

∣∣∣∣∣E(
u + it;

k
`
, α

)∣∣∣∣∣2 dt
)
.

In view of Lemma 5.1

1
2π

∫ T

−T
log

∣∣∣∣∣E(
u + it;

k
`
, α

)∣∣∣∣∣ dt ≤
1 − 2u

2π
T log T + O(T ).

This, (5.3) and (2.4) give

lim
T→∞

N
(
u + δ, T ; k

`
, α

)
N(T ; k

`
, α)

≤
1 − 2u

4δ
.

Note that the inequalities

1 − 2u
4δ

≤
1
2

+ ε and u + δ ≥
1
2
− 2εδ
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are equivalent. We choose u > 1
2 + a and δ = −(1 − ε)a. Then, for 0 < ε < 1

2 ,

u + δ > 1
2 + εa ≥ 1

2 + 2ε(1 − ε)a = 1
2 − 2εδ.

Now with σ = u + δ the assertion of the theorem follows. �

References
[1] E. P. Balanzario and J. Sánchez-Ortiz, ‘Zeros of the Davenport–Heilbronn counterexample’, Math.

Comp. 76 (2007), 2045–2049.
[2] K. Chandrasekharan, Introduction to Analytic Number Theory (Springer, Berlin, 1968).
[3] T. Estermann, ‘On the representation of a number as the sum of two products’, Proc. Lond. Math.

Soc. 31 (1930), 123–133.
[4] R. Garunkštis et al., ‘On zeros of the Lerch zeta-function. II’, in: Probability Theory and

Mathematical Statistics: Proceedings of the Seventh Vilnius Conf. (1998), (ed. B. Grigelionis)
(TEV/Vilnius, VSP/Utrecht„ 1999), 267–276.
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