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1. Introduction. In his paper [11], Peter Neumann considered in detail the cycle
structures of elements of Aut(Q), the group of all homeomorphisms of the "rational
world" Q onto itself, and further analyses of Aut(Q) and its subgroups have been given
by Mekler [9], Bruyns [1], and Truss [13]. My interest in Aut(Q) stems from its utility in
proving an at first sight rather startling (to a general topologist) result concerning /3Q, the
so-called Stone-Cech compactification of Q, namely that /3Q\Q is separable, and in fact
contains a homogeneous countable dense subspace. (A space X is "homogeneous"
provided whenever x,yeX, there is some g e Aut(X) with g(x)=y.) This is in sharp
contrast to the spaces /3r\J\r\J and jSIRMR, which are both inseparable.

From the point of view of this paper, the easiest way to think of j8Q is simply as a
compact Hausdorff space which just happens to contain a dense copy of Q. There are
many other such spaces, of course, including such apparently "nice" spaces as the interval
[0,1], but the reason we've picked upon /3<Q is that every element of Aut(Q) actually
extends to a homeomorphism of the whole of /3Q onto itself. This extension property will
be easily derived from the following well-known definition of the Stone-Cech compac-
tification of an arbitrary Tychonov space X. (A space is "Tychonov" provided it exists as
a subspace of a compact Hausdorff space, so that for example Q is Tychonov.)

EXTENSION PRINCIPLE. Let X be a Tychonov space. Then fiX is that compact
Hausdorff space such that

(a) fiX contains a dense copy of X;
and

(b) if Y is any compact Hausdorff space and f :X—> Y any continuous mapping, then
there exists a unique continuous extension fp:fSX^>Y such that the following diagram
commutes.

X -U Y

px
For a proof that (iX exists, and is essentially unique, as well as an informative review

of its structure, consult e.g. Walker's classic text [14].
It follows, of course, that Aut(Q) has a natural action on j3Q, and it is this action

with which we shall be mainly concerned. For example, we shall see that, given any point
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x of fi.Q\Q the stabiliser of x in Aut(Q) is highly transitive on <Q. It will then follow that
Aut(Q) has no countable orbit in BQ, except Q itself.

I should like to take this opportunity to express my sincerest thanks to Peter
Neumann for his helpful and stimulating correspondence concerning Aut(Q).

2. The action of Aut(Q). We begin by proving our claim that Aut(Q) acts both on
BQ and BQ\Q. In fact, we'll see that Aut(Q) and Aut(/8Q) are isomorphic in a very
natural way.

LEMMA 1. Every homeomorphism g e Aut(Q) has a unique extension gp e Aut(BQ).
Moreover, the map d:g—>gp is a group isomorphism Aut(Q)-» Aut(/3Q).

Proof. Each g in Aut(Q) can be thought of as a continuous map g:Q-> BQ, so the
extension principle implies the existence of a continuous extension g^:/3Q-»/3Q. Our
task is to show that gp is actually a homeomorphism.

This follows almost immediately, since g"1 also has a continuous extension
(g-1)^:/3O—*/3Q. Now gp ° (g"1)^, (g~1)0 ° 80 an<^ id/jo are all continuous extensions to
j8Q of the embedding id: Q-* BQ, whence they are equal, by the uniqueness clause of the
extension principle. Thus g*3 and (g"1)*3 are both bijections, and are mutual inverses,
whence our claim follows.

The uniqueness of extensions also implies that d:g^gp is well-defined, while the
equality g = #(g)|o shows that 6 is injective. Since 0 is clearly a homomorphism, we need
only show that it is also surjective.

To see this, we appeal to a result of Cech [2], that no point of BQ\Q can have a
countable neighbourhood base. Since every point of Q has such a base (because Q is a
metric space), Q must be a union of Aut(/JQ)-orbits in BQ. Thus whenever h lies in
Aut(/SQ), we have h\Qe Aut(Q), whence h = 6(h\Q), and 6 is surjective.

It follows immediately from this lemma that Aut(Q) acts naturally on BQ. To see
that Aut(Q) also acts on BQ\Q we simply note that BQ\Q is a union of Aut(/JQ)-orbits in
BQ, because Q is, and so there is a homomorphism

<p: Aut(Q)-» Aut(/3Q\Q)

given by (j>{g) : = gp\po\Q. In fact, since BQ\Q is dense in j8Q—an immediate corollary of
our next result—the map <f> is actually an injection.

The action of Aut(Q) on /SQ and BQ\Q cannot be transitive, because Aut(Q) has c
elements, while BQ and BQ\Q both have 2C elements [5,9.3]. However, the action is
"very nearly" transitive, in that each orbit of Aut(Q) is dense in its respective space, as
we now show.

Note that our proof of Lemma 1 shows that given any Tychonov space X, Aut(X)
has a natural action both on 8X and BX\X.

THEOREM 2. Let X be a Tychonov space, and suppose that H = Aut(A"). If there exists
a base B for the topology on X satisfying

(i) \/B1, B2eB,3heH such that A(flO c B2
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and
(ii)

then
(a) all H-orbits in PX\X are dense in PXXX,
(b) all H-orbits in PX are dense in PX.

Proof. If X is compact, then X = PX, so that (a) is trivial, while (b) is an immediate
consequence of (i). Suppose then that X is non-compact, and choose x e PX\X and Bx e B
with x e Mx- Let U be any non-empty open subset of PX\X, and choose V, an open
subset of X, with U U V open in PX. Since PX is compact Hausdorff, we can choose W, a
non-empty open set in PX, with I V c f ^ c l / U K Now X is dense in PX, so that
W fl AT is nonempty, and we may choose B 2 E ^ n -^(#2

 e "*)• Let h e H satisfy

Put/ i*:=(/ i%™-. Then

Since h*(x) $ V, we must have h*(x) e U. This proves (a).
To prove part (b), let Wx be any non-empty open set in f5X, and put U=Wi(~\

(PX\X) and V = Wl n X Choose any x e /3Z, and B1 e B with x e Bf .̂ As above, choose
B2eB satisfying BixcU\JV, and h satisfying h{B1)c.B2. Once again, we have

COROLLARY 3. T/tere exi$te a countable subgroup H of Aut(Q) swc/i
(a) every H-orbit in j8Q is dense,
(b) every H-orbit in /3Q\Q is dense.

In particular, then, if q e PQ\Q, there exists a countable dense homogeneous set
A, c PQ\Q, with q e A,.

Proof. We choose IB to be the collection of all proper nonempty clopen subsets of Q,
of the form

Qn(/u/)

where / and / are intervals (in 0?) with boundary (in U) contained in V2Q\{0}. Note that
IB is countable, so that we can put IB = {fin:nel^}.

Now j8Q = U {B%Q:n e N}. To see this, let {qx) be a net in Q converging to x in
, and let U c/JQ be a proper open neighbourhood of x. According to [5,16F, 16.11J,
has a base consisting of clopen sets, and so there is a proper clopen neighbourhood V

of x such that x e V = V^ c U.
Let (q') be the net (q^DV, i.e. the part of (qk) lying in V. Then q'^>x and

(q')cV r\Q. The latter is clopen in Q, and nonempty. Moreover it is proper, lest

Consequently we can find a superset B of V n Q of the desired form, i.e. with BeU,
and now x

So B satisfies condition (ii) of Theorem 2. We now choose H to satisfy condition (i).
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For each (i,;) e N x py, choose htJ e Aut(Q), satisfying

hu{B,)<zB,.

To see that such hitj exist, observe that it follows from [11, Sierpinski's Theorem] that any
two non-empty clopen subsets of <Q> are homeomorphic. Hence there are homemorphisms
from Bt to B, and from Q\B, to Q\B, which can be combined to give a suitable hitj.

We now set H = (hij\i, j e N). Since H is countably generated, it is countable, and
by Theorem 2, the //-orbits in BQ and /3<Q\Q are dense.

In particular, if q e /3QVQ, set A, = {h{q)\ h e / / } . Then A, c BQ\Q is countable,
dense, homeogeneous, and contains q.

An immediate consequence of Corollary 3 is that BQ\Q is dense in BQ, since any
//-orbit in j8Q\Q is simultaneously an //-orbit in BQ.

In fact, we could have shown the separability of BQ\Q quite differently, using the
idea of ^-weight. The proof we now give of the separability of BQ\Q and its density in
f}Q does not show that the countable dense subset of BQ\Q can be chosen to be
homogeneous, but has advantages in the scope of its application.

3. The iterated remainders of Q. The space BX\X, where A" is a Tychonov space, is
called the growth or remainder of X and is usually denoted X*. This space is itself
Tychonov, and so we can consider (X*)*, ((X*)*)*, and so on. This notation is rather
cumbersome, and so we introduce the following alternative.

Put Z<0): = X, and for each neN, define X(n+l):= (X(n))*. Both Jackson [7] and
Hussak [6] have considered those spaces for which XS"* is eventually empty for some n. In
fact, Q(n) is never empty for any n, and is "so non-empty" that <Q(n+1) is actually dense in
/3Q(n), for all neN. We prove this now. We'll need the following definition.

A space X is said to be "nowhere locally compact" provided every compact subset of
X has empty interior. In particular, the space Q is nowhere locally compact.

LEMMA 4. For neN, Q(n) is nowhere locally compact.

Proof. We proceed by induction on n. It's already known that Q(o) is nowhere locally
compact, so we assume that Q(n) is nowhere locally compact. Suppose Q(n+1) fails to be
nowhere locally compact, so that there is some non-empty open set U in Q(n+1), and
t/0"1*" is compact. Choose some open W in BQin) with U=WH Q(n+1). Now Q(n) is dense
in BQ(n), so that W D Q(n) is nonempty. Moreover, t/Q<"+1> is closed in BQ{n), so that
jy\{yQ<"+1> j s O p e n m pQ(n)^ nonempty, and lies entirely in Q(n). But now, since /3Q(n) is
compact Hausdorff, we can find some open nonempty K c ^ i / 0 * " * " with V c V^QWc
jy\{ya<"+1> g Q(«) S o y-po<"> j s a c o m p a c t subspace of Q(n) with nonempty interior. But this
contradicts our hypothesis that Q(n) is nowhere locally compact.

COROLLARY 5. For each neN, Q("+1) is dense in BQ{n).

Proof. If Q(n+1) isn't dense in /JQ(n) for some n, we can find a non-empty open set U
in j3Q(n) lying entirely in Q(n). But now U contains compact sets with nonempty interior,
so that Q(n) fails to be nowhere locally compact.
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A it-base for the topology on a space A' is a collection P of nonempty open sets in X
such that every nonempty open set in X contains a member of P. The n-weight of a space
X, n(X), is the smallest cardinal of any ^-base for X.

If X is a Tychonov space, and Y is a dense subspace of X then n{Y) = n(X). (See
e.g. [8].) Any space of countable ^-weight is separable: just pick one point from each
member of some countable jr-base; the resulting countable set is dense.

COROLLARY 6. For each neN, Q(n) is separable.

Proof. We show, by induction on n, that jr(Q(n)) is countable for each n.
Clearly w(Q) = N0. Suppose, therefore, that ^(Q(n)) = K0. Then JT(/3Q(II)) =

JZ(QM) = No, since /3Q(n) is Tychonov and Q(n) is dense in 0Q(n). But Q(n+1) is also dense
in /3Q(n\ by Corollary 5, whence «(Q("+1)) = n(PQ(n)) = Ko.

4. Aut(Q) orbits in /3<Q. Recently, John Truss ["The group of autohomeomorph-
isms of Q: subgroups of small index"—personal correspondence] has succeeded in
proving Neumann's conjecture [3] that whenever H is a subgroup of Aut(Q) with
|Aut(Q) :H\ < 2*°, then H necessarily contains the pointwise stabiliser of some finite set in
Q. This conjecture also prompted the question whether there exists a countable orbit of
Aut(Q) in /3QVQ such that if G is the stabiliser of a point in this orbit then G does not
contain the stabiliser of finitely many points in <Q>. Truss's result shows that this is not the
case, and in fact we can go further; we show that j8Q\Q contains no countable
Aut(Q)-orbits, so that the question becomes redundant. Before proving this, we shall
need the following results of Peter Bruyns [1].

Let H be a subgroup of index <2*° in Aut(Q). Then
(A) there is a finite subset Yo of Q that is invariant under H, and such that Q\Y0 is a

single //-orbit,
(B) if H is transitive on Q (i.e. if Yo is empty) then H = Aut(Q).

Consequently, as Neumann points out [personal correspondence], if we could find a
point of /3<Q whose Aut(Q)-orbit is countable, then its stabiliser in Aut(Q) would have
finite orbits in Q.

Let r : Q - > Q n ( 0 , 1) be a homeomorphism. According to the extension principle, r
has a continuous extension T ^ : / 3 Q ^ [ 0 , 1], and in fact T^/JQVQ) = [0, l]\(QD(0, 1))
[14,6.12].

THEOREM 7. Let A be any finite subset of [0,1]\(Q fl (0,1)). Then the pointwise
stabiliser of ( T ^ ) " 1 ^ ) in Aut(Q) is highly transitive on Q.

Proof. Let A := {alt . . . , an}. Putting G := Aut(Q), we have to show that G ^ - i ^ )
is m-transitive on <Q, for each m.

Let (bu . .. , bm) and (cx,.. . , cm) be two m-tuples of distinct points in Q. Then
Tp(bi) and T^(C,) do not lie in A, for each i, so that we can find irrationals ah /S,-, y,, <5,
with b( e (or,, 0,) and c, e (y,, <5,), and such that the (ah /3,) are mutually disjoint as are the
(y,, <5,), and each of the (<*,, j8,) and (y,, <5,) are disjoint from A. Putting C, = (or,-, j8,-) D Q
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and Vt = (y,, <5,) n Q, let <t> e Aut(Q) be any map which interchanges each (/, and Vh

which satisfies <£(b,) = ct f°r e a c n h a n ^ which fixes Q\(U Ut U U V/) pointwise. Any net
in j8Q converging to a point of (r^)~1(A) is eventually outside all of the clopen sets of /?Q
whose intersection with Q are (/,, Vh whence (T^) - 1(>1) is fixed pointwise by <pp, and our
claim is proven.

COROLLARY 8. There are no countable Aut(Q)-orbits in ]8Q except Q itself.

Proof. This is immediate from Theorem 7, together with Neumann's interpretation
of Bruyns' results, discussed earlier.

5. Special points and subspaces of BQ. We saw in Corollary 5 that Q("+1) is dense
in /3Q(n), for each n. It follows from the extension principle that we can find surjections

fixing Q(n+1) pointwise, and in fact/n(Q("+2)) = Q(n) [14, 6.12]. Now the spaces Q and Q*
are both real compact [5,8H], non-compact spaces, which must therefore fail to be
pseudocompact [5,5H2]. Since the continuous image of a pseudocompact space is again
pseudocompact, we see that none of the spaces Q(n) can be pseudocompact.

Frolik [4] has shown that whenever X is a non-pseudocompact Tychonov space, then
X* fails to be homogeneous. Thus, we have shown

PROPOSITION 9. None of the spaces Q(n) (n ^ 1) is homogeneous.

Since Q* isn't homogeneous, it makes sense to consider what "kinds of points" occur
in BQ and Q*.

A point x in Q* is said to be remote provided it lies in the closure of no discrete
subspace of Q* not already containing x, and is a weak P-point provided it lies in the
closure of no countable subset of Q* not already containing x. Since Q* is separable, by
Corollary 3, Q* contains no weak P-points. On the other hand Plank [12] has shown,
using the Continuum Hypothesis, that j3Q contains 2C remote points which form a dense
subspace of Q*. Since the homeomorphic image of a remote point is again remote, this
density is obvious from Corollary 3, and indeed a homogeneous countable dense subspace
of Q* exists comprising only remote points of /3Q. Using Martin's Axiom [: = MA], van
Mill [10] has shown the existence of a point x0 of <Q* which lies in the closure of no
countable nowhere dense set in j8Q not already containing x0.

We can use van Mill's result to construct two interesting subspaces of Q>*.

EXAMPLE 10.[MA]. There exists a compact subspace F of Q* with a point
x0 e FXfjto}00 not in the closure of any countable subset of F\{*0}.

To see this, enumerate Q as {qn: n € N}. Since j8Q is Hausdorff, we can find, for
each n e N, a neighbourhood Un of qn with x0 $ Un^°. Let V be any open neighbourhood
of JC0 in BQ, and define

F V \ \
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Since each Fn^° is a closed neighbourhood of x0, F is a nonempty compact subset of
By construction F misses Un for each n e N, so that F c Q*.
And since F misses Q, F contains no non-empty open subset of /JQ, i.e. Fis nowhere

dense in j8Q.
By the choice of x0, x0 is not in the closure of any countable subset of F\{;co}, since

subsets of nowhere dense sets are themselves nowhere dense.
However, x o 6 F \ { ^ o } ^ , lest x0 be a G6 in <Q*; it is shown in [2] that no such points

exist.

EXAMPLE 11. There exists a space X which is countable, homogeneous, dense-in-
itself (since dense in j8Q\Q), of countable ^-weight, T4, paracompact, Lindelof and
zero-dimensional, but nowhere first-countable.

Moreover, if [MA] is assumed, then every nowhere dense subspace of X is closed,
and hence discrete.

Proof. Let H be the group constructed in Corollary 3, and take X to be any //-orbit
in Q*. Then X is countable and homogeneous. Since X is dense in Q*, we have
n{X) = TZ{Q*) = Xo, and X is zero-dimensional, since Q* is; [5,16F, 16.11]. Since X is
countable, it's paracompact (because Lindelof and Tychonov [15, 20.8]) and so T4

[15, 20.10]. Finally, since no point of Q* is the limit of a sequence of distinct points of Q*
[14, 2.2], X is nowhere first countable.

Under [MA], we can choose X to contain the point x0 of Example 10, whence no
point x eX lies in the closure of any nowhere dense Fc.X satisfying x $ F. Thus, every
nowhere dense subset of X is closed; since subsets of nowhere dense subsets are again
nowhere dense, each nowhere dense subset of X is discrete.
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