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Abstract

A new numerical method is applied to the problem of inviscid irrotational flow past a
semi-infinite stern-like body of general shape. Both smooth-detachment and stagnant-
detachment flows are considered, in the context of varying the geometry of the stern to
generate very small waves, with the eventual aim of eliminating waves altogether. The
results of this work confirm previously published results for the smooth-detachment case,
but cast doubt on the existence of waveless solutions for stagnant detachment.

1. Introduction

The energy contained in the surface waves generated by a moving ship is an important
component of the overall drag on a ship. In two dimensions, the waves far behind
a moving ship can be thought of, at least in a linear sense, as the superposition of
separate bow and stern waves (see Tuck [3]). These waves will interfere destructively
if they are out of phase by 180°, which will occur at special values of the length-based
Froude number Fr, = U/(gL)'/?, where U is the speed of the ship, g is gravity and
L is the ship’s length. This qualitative result holds for many finite two-dimensional
bodies, and is not restricted to ships. A pressure distribution (modelling a hovercraft)
of finite length also generates no waves far downstream at special length-based Froude
numbers [7].

The current work is concerned with the wavemaking of an isolated stern of finite
draft D, the length L being assumed sufficiently great so that the effect of the bow can
be ignored. In particular, can the shape of the stern be modified so that there are no
waves in the flow far downstream? Such a flow would be doubly useful since, owing
to the quadratic nature of the nonlinearity, the flow could also be reversed to yield a
splashless bow flow [3].
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Stern-like flows such as those described above have been considered before.
Vanden-Broeck and Tuck [6] studied the two-dimensional flow past a semi-infinite
stern-like body with a stagnation point where the free surface meets the body. In that
paper, the semi-infinite body ends with a straight section at an arbitrary inclination.
Vanden-Broeck and Tuck used divergent series summation techniques and numer-
ical methods to obtain free surface profiles and relationships between the draft-based
Froude number Fr = U/(gD)"/? and the steepness of the downstream waves. More
general stern geometries were examined by Vanden-Broeck and Tuck [4], with the
explicit aim of finding sterns that generate no downstream waves. All the work men-
tioned above is for steady flow, unlike that of Yeung [8] who found numerical solutions
for the start-up flow behind a semi-infinite stern-like body of arbitrary geometry.

Another possible flow configuration (other than the above type including a stag-
nation point) has the free surface detaching smoothly from the body at an idealised
transom. In this case, the slope of the free surface matches that of the body, and
the body is effectively “planing”. Vanden-Broeck [5] analytically and numerically
studied the flow past a semi-infinite flat plate with smooth detachment, and found that
flows of this type existed only for sufficiently large draft-based Froude numbers. All
these solutions possessed waves, although the magnitude of the waves decreased as
the draft-based Froude number increased.

A different approach to seeking waveless solutions was used by Madurasinghe and
Tuck [2] and Madurasinghe [1]. In those papers, the waveless nature of the solution
is specified a priori, and a geometrical parameter is determined automatically as part
of the solution, so as to guarantee this waveless property. The solutions presented in
those papers will be discussed later in the context of the present results.

The approach taken in the present work is to calculate the free-surface profile
(including waves) behind a general stern-like body, and then to adjust geometrical
parameters to seek waveless solutions. This allows the nature of the solutions in the
parametric neighbourhood of any waveless solutions to be examined.

FIGURE 1. Definition sketch for the two flow configurations. (a) Smooth detachment. (b) Stagnant
detachment.
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2. Formulation

Consider the steady two-dimensional irrotational flow of an incompressible inviscid
fluid past a semi-infinite stern-like body. The geometries of the two types of flow
examined in this paper are sketched in Figure 1. For the first type, the slope of the free
surface at the point of attachment matches that of the body (Figure 1(a)), while the
second type has a stagnation point at attachment (Figure 1(b)). Suppose that the ship
has a flat horizontal bottom y = — D except for some finite region close to the stern,
and that far from the free surface, the flow is a horizontal uniform stream of speed U.

Let the dimensional velocity potential be denoted by ¢’ and the dimensional stream
function by ¥’. Suppose, without loss of generality, that the free surface and the body
are given by ¢’ = 0, and that ¢’ = 0 at the point of attachment. Denote the value of ¢’
at the point where the the body becomes horizontal (see figure 1) by — K. Following
Tuck & Vanden-Broeck [4], the system is nondimensionalised using the length scale
U/K and the velocity scale U.

Let u — iv be the (nondimensional) complex velocity field associated with the
complex potential f = ¢ + iy. The function 2 = t — {8 is defined by

ﬂ = exp(tr —i6) ()
dz

and is thus an analytic function of f in the half plane ¢ < 0. The quantity 6 can
be identified as the angle of the local fluid velocity vector to the horizontal, and 7 as
the logarithm of the magnitude of this velocity. The flow problem is solved in the
inverse sense by finding €2 as a function of f in the half plane v < 0. The dynamic
free surface condition is that the pressure is constant there, and hence by Bernoulli’s
equation

1
Yy + 5‘12 = constant on ¥ =0, @

where y = gK/U? is a nondimensional gravity. Differentiating (2) tangentially, that
is, with respect to ¢, and noting that g = exp(r), yields

Yot + —=—e =0. 3)

From (1), dy/3d¢ = e~ " sin¢, and since Q(f) is an analytical function in the half-
plane ¥ < 0, the value of T on the free surface can be related to 6 there via a Hilbert

transform L (% 600,0)
0.0=1f 2y @
TJ o @— ¢
where the integral is of Cauchy principal value form. Thus (3) can be written
: 19 3 [F6(p,0)
- — ————dp ) =0. 5
ys‘""’+3a¢e"p(nJ[_w¢—¢ "’) )
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Integrating from the attachment point ¢ = O yields a nonlinear singular integral

equation
4 3 f* 6
0=3y [ sinotprdy + Fg)exp (— f —(i”)—dso) . ©)
0 o ¢—¢
which applies on the free surface v = 0, ¢ > 0. The function F (¢) given by
3 [° Op)
F(¢) = exp (— J[ —"’d«)) : %
7Jae—¢

is a known function of ¢, since ©(¢), ¢ < 0, is presumed known, and gy is the fluid
speed at the point of attachment at ¢ = 0. For the flow with a stagnation point at
attachment, go = 0.

The aim here is to find some form for ®(p) in —1 < ¢ < 0 (and thus F(¢) in
¢ > 0) for which the solution of (6) has no waves, or at least very small waves, as
¢ — +oo. If there are no waves, then 8 — 0 as ¢ — +o0 and a limit exists for
large ¢ in (6). This limit yields an integral constraint that must hold for any waveless
solution, namely

0= 1+3y/ sin9(go)d(p—-q3. 8)
0

3. Numerical method

The unknown function in (6) is 8(¢) for ¢ > 0. In the smooth-detachment case,
the detachment velocity g, is also not known, but can be written in terms of 9 via

1 [*6(9)
Do=exp{ T —(p—dfp -

The equation for 6 is discretised by introducing the set of points ¢, .. ., ¢y with the
associated unknowns 6; = 6(¢;),i = 1,..., N. The ¢; must be chosen so that the
important behaviour of 4 is resolved. If 8, = 6 (0™) then for both flows, (6 —6,) o< /¢
as ¢ — 0%, so near ¢ = 0, the ¢, are chosen to be

& = itA¢y, i=1,...,M,

where A¢, is the smallest step size and M is to be determined. For large ¢, 6 is in
general wavelike and the (linear theory) wavenumber is y. To resolve these waves,
A¢; = ¢; — ¢;_, is not permitted to increase beyond an upper limit A¢y,,; determined
by the minimum number of mesh points per wavelength. Thus M is given by

1 Adm
M"[2+2A¢o]’
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and ¢; for i > M is simply given by ¢; = ¢;_; + A¢y, that is, a uniform grid.
The cut-off point ¢ is determined by stipulating the number of waves within the
computational domain, typically four or more. In the simulations described below,
A¢, = 0.005, and there are about 30 points per wavelength far from the stern.

With the discretisation now in place, (6) is now forced to hold at ¢ = ¢; for
i =1,...,N—1, which yields N — 1 nonlinear equations for the N unknowns 6;,
i = 1,..., N. The Nthequation is obtained by writing 6y as a quadratic extrapolation
of Oy_3,0n_; and By_,. In (6), F (¢) can be calculated exactly from the assumed form
of ©(p) for ¢ < 0 and so it only remains to describe how the integrals in (6) are
approximated numerically. Some care must be exercised in formulating the numerical
approximation of the integrals in (6). The solution method adopted here for the
system of nonlinear equations is an iterative process which starts with an initial guess
and with the assumption that the system is locally linear. The next guess in the
iteration is calculated by inverting a numerically calculated Jacobian which in turn
is calculated by finite differences. If the system were exactly linear then this would
be a one-step solution method going straight from the initial guess to the (numerical)
solution. The numerical stability of the inversion of the Jacobian is guaranteed if
it is diagonally dominant, and it is with this constraint in mind that the numerical
scheme is formulated. A further consideration is that the scheme should be accurate,
so high-order integration (involving quadratic interpolations) is used rather than, for
example, the trapezoidal rule.

Dealing with f:‘ sin 8d g first, this integral can be written as

& [ &
/ sinfdy = f sinfde + / sin 6dg.
0 0 di-1

The second integral on the right hand side of the above equation is calculated by
approximating sin@ over (¢;_;, ¢;) by a parabola passing through sin6;_,, siné;
and sing;,; and integrating the resulting quadratic exactly from ¢,;_; to ¢;. Thus
f:‘ sinfdg is calculated sequentially. The use of the extra point ¢;., which lies
outside the range of integration was found to be necessary to ensure stability and
accuracy of the overall method. If sin @ was linearly interpolated over (sin 6;_,, sin6;)
then the. scheme was very diffusive with any waves present decaying with distance
from the detachment point unless many points (over 100 per wavelength) were used.
If sin @ was approximated by a parabola through sin6;_,, sin6;_; and sin; (that is,
using only the interior points), then the resulting numerically calculated Jacobian was
not diagonally dominant.

The Hilbert transform integral includes a singular point at ¢ = ¢;. The integral
can be written as

=] 0 bi-1 0 Pi+1 0 L 2]
—d(p:/ —-—d(p+f —d +f —dy.
jg o — 0 ¢ — ¢ P— i ¢ tin P — D
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The first and last integrals on the right hand side of the above equation are nonsingular
and can be calculated accurately by assuming that 8 is piecewise linear. The remaining
integral contains the singular behaviour. To evaluate this integral, 8 over the range
(¢i—1, i) is approximated by the parabola passing through 6;_;, 6; and 6,,,. The
resulting integral can be calculated exactly and is simply a linear combination of 6;_;,
0; and 6;,,.

The resulting system of nonlinear equations is solved using a modified Powell
hybrid method, as implemented in the NAG library subroutine COSNBF. In practice,
|6] is much less than 1 (typically less than 0.1) and thus the system of equations
is close to linear, and hence the nonlinear equation solver converges quite rapidly.
Acceptable grid-scale independence is achieved if there are more than 25 mesh points
per wavelength and A¢y < 0.01. The effect of the truncation at ¢ is only felt within
one wavelength of the truncation.

Having obtained 6(¢) for ¢ > 0, the body and free surface in (x, y) space can be
obtained by integrating the equations

dx

— = e "cosb,

a¢ ©)
ay .

—— = e "sinf

¢

from ¢ = —1. To perform this integration numerically, the body (-1 < ¢ < 0) is
discretised uniformly. The body angle ® is known while 7 needs to be calculated
using a mixture of numerical and exact methods. More specifically,

1 0
== ———d
i £l 2 ¢| f ¢ — ¢1 e

The first integral on the right-hand side of the above equation can be calculated exactly,
while the second can be calculated using the methods already outlined. Once these
integrals have been calculated, the right-hand sides of (9) are known functions of ¢,
and it only remains to carry out a sequential integration to obtain the (x, y) data. The
integration is carried out over one interval from ¢; to ¢;., by assuming that the right
hand side is a parabola passing through the known values at ¢;_,, ¢; and ¢,;,. This
method is used everywhere except for the first step from ¢ = —1, where a linear
form is used, and near values of ¢ where the right hand side contains an integrable
singularity. In the latter case, Taylor series expansions of x and y near the critical
value of ¢ are used to integrate up to and beyond this value of ¢. This special treatment
near critical values of ¢ is necessary to ensure that there is grid-scale independence.
The (x, y) data provides a check of the numerical results since the elevation of the
attachment point above the undisturbed free surface is given by h = (1 — ¢2)/2y.

Also, the linear theory wave-number is  which provides a further check of the results.
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FIGURE 2. Steepness vs. draft-based Froude number for a rectangular stern, for both smooth (dashed)
and stagnant (solid) attachment.

4. Smooth-detachment results

The numerical scheme is tested first on the simple case ®@(y) = 0 for ¢ < 0
that is, for a flat plate. This flat-plate problem with smooth detachment has been
considered by Vanden-Broeck [5], who obtained an analytical relationship between
the Froude number and the steepness of the waves (peak-to-trough height divided
by the wavelength) far downstream from the stern. This degenerate stern geometry
differs from others in that the Froude number, which is normally an output, can be
specified a priori. In fact, in this special case only, ¥ can be set to unity without
loss of generality and the Froude number will then be determined by specifying the
detachment velocity with Fr = (2/(g2 — 1))"/2. Thus ¢, > 1 for real valued Fr or
for ships with positive draft. Figure 2 shows (dashed curve) numerical results for the
steepness versus Fr using the current method. These results agree quite well with the
results of Vanden-Broeck [5]. Note that there are no solutions for Fr < 2.26, and that
the steepness of the downstream waves vanishes as Fr — oo. In fact, for large Fr,
the steepness is proportional to Fr~2. For all finite Fr above the critical value for the
existence of solutions, there are waves of nonzero steepness present.

Of greater practical interest are those sterns that can generate solutions that have
no waves far downstream. Such waveless solutions can be generated by a double-flap
stern given by (see [2])

O = B -l<p<-b
1O -b<g<0,

again with smooth detachment. In this case, the Froude number cannot be specified a
priori, and is an output of the calculations. Figure 3 shows a contour plot of Fr and the
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FIGURE 3. Contour plot of Fr (dashed contours, positive numbers) and log(steepness) (solid contours,
negative numbers) in the (y, ©) plane, showing the “valley” of small-wave solutions. The solid square
point lying in that valley is a waveless solution of Madurasinghe and Tuck [2].

logarithm of the steepness, as the angle ©, of the trailing edge and y are varied. The
first flap angle ©y is held fixed at /6, and b = 0.25. The filled square is a waveless
solution found by Madurasinghe and Tuck, and lies in the narrow valley of solutions
with waves of small steepness. The current method cannot calculate accurately the
genuinely waveless solutions, but an examination of the solutions either side of the
minimum (Figure 4) shows that the generated waves are almost out of phase, which is
a necessary condition for the existence of a solution with no waves. The solutions are
not exactly out of phase, since, for the waves to be visible, they can not be too close
neighbours of the waveless solution. The current results are consistent with those of
Madurasinghe and Tuck.

5. Stagnant attachment results

5.1. Rectangular stern Again, the numerical method of this paper is applied to the
rectangular stern with @ () = 7 /2 for —1 < ¢ < 0. The attachment point (¢ = 0)
is now assumed to be a stagnation point, which leads to the free surface and the stern
being at right angles there (see [1]) and in fact, 8 (¢) o« /¢ as ¢ — 0*. This geometry
has been considered by Vanden-Broeck and Tuck [6], where they also consider the
more general case of sterns with ®(p) = B, a constant, for —1 < ¢ < 0. Yeung [8]
considered the unsteady development of the flow behind a rectangular stern, with the
flow initially being at rest and accelerating smoothly to a steady velocity. For this
geometry, there is a one-to-one relationship between the draft-based Froude number
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FIGURE 4. Neighbouring solutions from the previous figure showing the change in phase either side
of the waveless solution.

and the input parameter y. Figure 2 shows (solid curve) a plot of the steepness of the
far downstream waves and the draft-based Froude number using the current method.
The results are in good agreement with those of Vanden-Broeck, and confirm that
there exists a flow of this type with waves for all Fr. However, as Fr — 0, the
wave amplitude becomes exponentially small [6]. Note also that for all Fr > 0, the
downstream waves have a nonzero steepness, and hence the flow cannot be reversed
to yield a splashless bow flow at any Froude number.

5.2. Bulbous sterns The results of this section are confined to the family of stern
shapes considered by Tuck & Vanden-Broeck [4] and Madurasinghe [1]. Tuck and
Vanden-Broeck used an approach similar to the current paper where they found solu-
tions for general sterns in this family that included waves, then manually adjusted
a geometrical parameter of the stern until the resulting solution appeared to have
no waves. Madurasinghe used a different approach, leaving one of the geometrical
parameters free and specifying a wave-free solution a priori. Thus, his method would
never find any solutions with waves. The stern shapes are members of the family

m/2 -b<¢p <0
O=1 A@+D@+b)+3(@+1)/1-b) -1<¢p<-b (10)
0 ¢ < —1.

This stem consists of a vertical straight line segment and a rounded section joining it
smoothly to the horizontal bottom. Setting A < 0 yields bulbous sterns. Both Tuck
and Vanden-Broeck [4] and Madurasinghe [1] found choices of A and b for which
the resulting free surface was apparently waveless at special values of y. The stern
geometries in these cases were all bulbous in nature. Figure S is a graph of the stern
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FIGURE 5. Stern and free surface profile of Tuck and Vanden-Broeck [4], recalculated using the
method of this paper.

and free surface for b = 0.2, A = —14.01 and y = 1, which corresponds to Figure 6
of Tuck and Vanden-Broeck [4] but now calculated using the current method. The
results of the two separate calculations are in good agreement. The free surface would
at first sight appear to be waveless, but on a closer examination of the numerical data,
there are very small waves present and they have a steepness of 1.5 x 1073, The
draft-based Froude number corresponding to this plot is Fr = 0.74, for which (see
Figure 2, solid curve) a rectangular stern like that considered by Vanden-Broeck [5]
would also generate waves of steepness 1.5 x 1072, Thus it would appear that not
only has the bulb not eliminated the waves, it has not even had a significant impact on
the wave amplitude associated with a rectangular stern at the same Froude number.
The results of [4] show that wave steepness can be reduced at fixed y, but the present
results show that this is at the expense of reducing the Froude number.

A similar observation holds for the stern geometries considered by Maduras-
inghe [1]. In that paper, Madurasinghe identified curves in the (y, A) plane for
fixed b along which the sterns apparently generate no waves. Again, a close re-
examination of the results along these curves using the current method reveals that
there are waves present, but they have a very small magnitude. Figure 6 shows con-
tours of the Froude number and the logarithm of the steepness of the waves in the
(v, A) plane calculated using the current method. Superimposed on this plot is the
“C;” curve of Madurasinghe [1] and the filled square is the small-wave solution of
Tuck and Vanden-Broeck [4]. It is clear from this figure that increasing y decreases
the steepness, as does decreasing A (that is, making A more negative). A striking
feature of this figure is that the steepness and Froude number contours are nearly
parallel. That is, as long as the Froude number is kept constant, the steepness would
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FIGURE 6. Contour plot of Fr (dashed contours, positive numbers) and log(steepness) (solid contours,
negative numbers) in the (y, A) plane, showing also the C, (short-dash line) “waveless" solutions of
Madurasinghe [1] and the (solid square point) “waveless” solution of Tuck and Vanden-Broeck [4].

appear to be almost independent of the stern’s shape. Thus the small-wave solutions
occur in a region of parameter space where all sterns make small waves, and the
steepness of the waves made by all such sterns is essentially the same as that made by
a rectangular stern at the same draft-based Froude number.

5.3. Bodies with smaller waves The family of sterns considered in the previous
section allowed only strictly backward-pointing bulbs; that is, the ship lay entirely
above the upstream draft. In this section, a more general family is considered that
allows downward and even forward-pointing bulbs. These bodies consist of straight
line segments connected by rounded corners. The family of stern shapes is given by

r@] —1<(p<¢1
O+ @ -T2 g <y<s
o =1 ©, b1 <0 < (11)
O+ (12— 02" 4 o<
¢y — @3
| /2 o1 < <.

Thus this family is continuous on (—1, 0), and hence the corresponding stern will
have no sharp comers except at ¢ = —1. There are a total of six parameters that need
to be specified in the above family.

Figure 7 shows a contour plot of the logarithm of the steepness and the draft-
based Froude number, as the geometry and y are varied. The vertical axis in this
plot corresponds to shifting the trailing edge (the (¢s, ¢4) section). In this figure,
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FIGURE 7. Contour plot of Fr (dashed contours, positive numbers) and log(steepness) (solid contours,
negative numbers) in the (¥, @gun) plane, with @y = 0and O, = 7.

6 =-9 ¢ = -8, ¢ = daum ~ .05 & = Paum +.05,0, =0and ©, =
and hence all sterns corresponding to this plot have backward-pointing bulbs with
no downward component. This figure is similar to those of the previous section,
in that the steepness and Fr contour lines are largely parallel, supporting the earlier
conclusion that backward-pointing bulbs have little effect on wave steepness.

Figure 8 shows again a contour plot of the logarithm of the steepness and the draft-
based Froude number as the geometry and y are varied. In this figure, ®, = —m/2
and ©, = 0 with the other parameters being the same as for Figure 7, and so all sterns
of this plot have a downward-pointing bulb of varying width. The first thing to notice
about this plot is that, unlike that of the previous figure with the backward-pointing
bulb, the contour lines of the Froude number and the steepness are not parallel. This
means that the changing geometry is having some effect on the downstream wave
steepness. Figure 9 shows the stern and free surface profile for Fr = 3.15 and the
corresponding free surface profile for a rectangular stern at the same Froude number.
At this Fr, a rectangular stern generates waves with steepness 0.0855, whereas the
stern with the downward-pointing bulb (which is quite huge and unrealistic, extending
as it does to a depth more than 12 times the draft) yields waves with steepness 0.0119.
It is clear that the addition of the downward-pointing bulb has had a dramatic effect
on the downstream wave steepness, reducing it by a factor of 7.2, although it has still
not eliminated the waves entirely.
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FIGURE 8. Contour plot of Fr (dashed contours, positive numbers) and log(steepness) (solid contours,
negative numbers) in the (¥, @aum) plane, with @ = —n /2 and ©; = 0.

With 'bulb’
Without ‘bulb’

FIGURE 9. Comparison between the waves generated by a rectangular stern of draft D, and the (7
times smaller) waves generated at the same Froude number Fr = 3.15 (based on D) by a stem with a
large rectangular downward projection at its aft end, of dimensions approximately length 20D by depth
12.5D.

6. Summary and conclusions

This paper has reported the results of a new numerical method for calculating the
free surface profile behind a semi-infinite stern-like body with an arbitrarily shaped
section where the body ends. When the flow detaches smoothly from the body at a
transom, the current results confirm the existence of special stern geometries which
generate no waves. For those flows that rise to a stagnation point at detachment, the
current results confirm the results (with waves) for rectangular stems, but contradict
the existence of previously published waveless solutions. More than that, the results
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suggest that (conventional) backward-pointing bulbs, previously thought to have be-
neficial effects on reducing wave steepness, in fact have no significant effect at all on
the amplitude of the downstream waves, when compared for example with a bulb-less
rectangular stern at the same draft-based Froude number. However, some members
of another family that allows (unrealistically large) downward-pointing bulbs, while
not eliminating waves entirely, do significantly reduce the magnitude of far down-
stream waves. A possible physical reason for the theoretical success of the downward
bulbs in reducing wave height is that this very large appendage is acting like a two-
dimensional ship in its own right, with a length L (L = 20D in Figure 9) capable of
yielding its own “bow-stern” wave cancellation, and that the nonzero but small draft
D far upstream is not playing a very important role in determining the free surface
behaviour behind the ship.
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