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ON CERTAIN SEMIGROUPS ARISING FROM RADICALS OF
MATRIX RINGS

by A. D. SANDS

(Received 1st March, 1984)

By a ring we shall mean an associative ring not necessarily containing an identity
element. The fundamental definitions and properties of radicals may be found in
Divinsky [2]. Similarly we refer to Howie [3] for the semigroup concepts.

If R is a ring Mn(R) will denote the ring of nxn matrices with entries from R. For
many important radicals a it has been shown that <x(Mn(R)) = Mn(a(R)) for all rings R
and all positive integers n. However this is not the case for all radicals a. Associated
with each radical a we define a set of positive integers S(a) by

S(tx) = {neN\a(Mn{R)) = Mn(a(R)) for all rings R}.

Here, and throughout, N denotes the multiplicative semigroup of positive integers. The
aim of this note is to classify the sets S(a) which arise in this way. Clearly 1 eS(a) for all
radicals a.

We use the following conventions and notations for matrix rings. We identify
Mm(Mn(R)) with Mmn(R) in the obvious way. If 6 is a homomorphism from a ring R to
a ring S we shall say that the homomorphism from Mn(R) to Mn(S) defined by 8([riJ']) =
[0(rij)ij] is induced by 9. We note that if A is an ideal of R then Mn(A) is an ideal of
Mn(R) and, from the above, that Mn(R/A)^Mn(R)/Mn(A). It is known that not every
ideal of Mn(R) need be of the form Mn(A), A an ideal of R. It has been shown by Sands
[4] that every prime ideal of Mn(R) has the form Mn{A) where A is a prime ideal of R
and by Snider [5] that, for every radical a, a{Mn(R)) = Mn(A) for some ideal A of R.

Theorem 1. Let T be a non-empty subset of N. Then there exists a radical a such that
S(a) = T if and only if for all m, neN whenever any two from m, n, mn belong to T so also
does the remaining one.

Proof. First assume that a radical a exists such that S(a) = T. Let m,neT. Then

*(Mmn(R)) = «(MJMn(R)) = Mm(a(Mn(R))) = MJMMm = MmMR)) for all rings R.
Therefore mneT. Now let m,neN and assume m,mneT. By the result of Snider [5], for
any ring R there exists an ideal A of R such that a(Mn(R)) = Mn(A). Then, since me T,
a(Mm(Mn(R))) = Mm(Mn(A)). Since mneT, a(Mmn(K)) = Mmn(a(K)). It follows that a(R) = A
and so that n e T.

Conversely let T be a non-empty subset of N satisfying the given property. We need
to construct a radical a such that S(<x) = T. Let F be a field. Let a be the upper radical
generated by the class W of rings, where ^={Mn(F)\neT}. Note that Fetf, since
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n,nleT implies 1 e T. Since <€ consists of simple rings with 1, a is a special radical and
for each ring R we have a(R) = n / l i , where the intersection is taken over all ideals At of
R such that R/AjeW (see Divinsky [2, Ch. 7]). Let At be such an ideal and let
R/At^Mn(F), where neT. Let meT. Then Mm(R)/Mm(Ai)^Mm(R/Ai)^Mmn(F)e^.
Conversely let B be an ideal of Mm{R) such that Mm(R)/Be<£. Since Mm(R)/B is a
simple ring B is a prime ideal of Mm(R). It follows from Sands [4] that there is a prime
ideal A in R such that B = Mm(A). Then Mm(R)/B = Mm{R)/Mm(A)^Mm(R/A) and, as
this ring is in (€, it is isomorphic to Mk(F) for some keT. Thus Mm(i?/>1) is a simple
ring satisfying the minimum condition on one-sided ideals. It follows easily that R/A is
a simple ring also satisfying this minimum condition. By the Wedderburn-Artin
Theorem there is an integer q and a division ring D such that R/A^Mq(D). Then
Mm(R/A) = Mmq(D)^Mk(F). By the uniqueness part of the Wedderburn-Artin Theorem
we have DsF and mq = k. Since k,meT it follows that qeT. Therefore R/Ae<<?. Hence
a(Mm(R)) = nMm(Ai) = Mm(nAi) = Mm(a(R)), where the intersections are taken over all
ideals A, of R such that K/Xj e# . It follows that meS(a) and so TsS(a). Now let m$ T.
Since Mm(F) is a simple ring which is not in <&, no image of Mm(F) is in #, and
a(Mm(F)) = Mm(F). Since Fe f , a(F) = 0. It follows that <x(Mm(F))^Mm(a(F)). Therefore
m £ S(a). Thus 5(a) = T, as required.

We recall [3, p. 55] that a subset T of a semigroup S is left unitary in S if a = bx,
a,beT, xeS imply xeT. Right unitary is defined analogously and unitary is used to
mean both left and right unitary. So we wish to describe the unitary subsemigroups of
N. Before considering this problem we obtain some more general results. We consider
especially the use of subsemigroups and of semigroups which can be embedded in a
group.

Theorem 2. Every subsemigroup of a semigroup S is unitary in S if and only if S is a
torsion group.

Proof. If S is a torsion group then every subsemigroup of S is a subgroup of S. It is
clear that every subgroup of a group is unitary.

Conversely let every subsemigroup of S be unitary in S. Let aeS. Let T={a"eS\n^.2}.
Since-T is a subsemigroup and a2, a3eT it follows that aeX Therefore there exists n ^ l
with an + l = a. Let a" — e. Then e2 = e and ae = ea = a. Now let beS. As above there exists
m^ 1 such that bm + 1 =b and bm=f satisfies/2 =/, bf=fb = b. Let U be the subsemigroup
of S generated by efe. Then (efe)2 = efefe and efe both in U implies feeU;
efe,feeU imply eeU; fe, eeU imply feU. Therefore there exist p,q^l with e =
(efe)p, f = (efef. Hence e = e" = (efe)pq = f = f. It follows that e is a neutral element
for S and that S is a torsion group.

In the proof of Theorem 2 we have used the fact that U is both left and right unitary.
If we restrict our attention to left unitary only we obtain a more general class of
semigroups.

Theorem 3. Every subsemigroup of a semigroup S is left unitary if and only if S is a
direct product of a torsion group and a right zero semigroup.
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Proof. Let S = GxE where G is a torsion group and £ is a right zero semigroup.
We recall that multiplication is defined in £ by bd = d for all b, deE. Let T be a
subsemigroup of S. Let (a,b)eT, (x,y)eS, (c,d)eT be such that (a,b)(x,y)=(c,d~). Then
ax = c and by — d. It follows that x = a~lc = akc for some positive integer fc and that
y = d. Then (x, y) = (akc, d) — (a, b)k(c, d)eT. Hence every subsemigroup of S is left unitary.

Conversely let S be a semigroup such that every subsemigroup of S is left unitary. Let
E denote the set of idempotents of S. As in the proof of Theorem 2 it follows that given
aeS there exists an integer n ^ l such that an+l = a and an = e is an idempotent with
ae = ea = a. Thus the set E is not empty. For each feE let

Let beS be such that bf = b. Since the subsemigroup generated by b is left unitary there
is a positive integer m such that bm = f and fb = bm + i = bf = b. It follows that beSf. In
particular we have Sf^Sf. If b is idempotent then bm = f implies b = f; thus f is the
only idempotent of Sf and some positive power of each element of Sf is equal to / It
follows that Sf is a torsion group. If /, geE and aeSfnSg then some positive power of
a is equal to g and so geSf. It follows that / = g and so for distinct f, geE we have
SfnSa = 0.

Let /, geE then (gf)f=gf and so g / eS , . Hence fgf=gf and so (gf)2=g2f=gf
Thus g / is an idempotent in Sy. Hence gf=f and £ is a right zero semigroup.

Choose e e E. Considering the mapping n from Se x E to S given by /z(a, / ) = a / for
each aeSe and / e £ . Let (b,g)eSexE. Then n((a, f)(b,g)) = abfg = abg = aebg = afebg =
afbg = n(a,f)n(b,g). Thus /z is a homomorphism. Let seS. Then seSf for some / e £
and seeSe^Se. Then n(se,f) = sef=sf = s. Thus /z is surjective. Finally [i(a, f) = n(b,g)
implies af = bgeSf nSg which implies / = g and also afe = bge = ae = be — a = b. Thus ^
is injective. It follows that S is isomorphic to the direct product of a torsion group and
a right zero semigroup.

The direct product of a group and a right zero semigroup is known as a right group.
Further properties of right groups may be found in Clifford and Preston [1, Section
1.11]. Since a finite direct product of torsion groups is a torsion group and a direct
product of right zero semigroups is a right zero semigroup it follows that a finite direct
product of semigroups such that every subsemigroup is left unitary again has this
property.

In the special case where G is the identity group S is a right zero semigroup. In this
case every non-empty subset of S is a semigroup and so every subset of S is left unitary.
The converse also holds. For if a, b are in S and a^b then, if {a,ab} is left unitary, we
must have ab = b. If a^a2 then ai = aa1 = a2 and also ai = a2a = a. Hence a = a2. Thus S
is a right zero semigroup.

There are dual results for semigroups in which every subsemigroup or every subset is
right unitary. In particular every subset of a semigroup is unitary if and only if the
semigroup S is both a left and a right zero semigroup, i.e. S has one element only.

Theorem 4. Let a semigroup S be contained in a group G. If H is a subgroup of G
such that H nS^0 then H nS is unitary in S. If G is an abelian group then any unitary
subsemigroup of S has the form H nSfor some subgroup H of G.
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Proof. Let S be contained in G and let T = HnS^0, where H is a subgroup of G.
Let ax = b where a, beT and xeS. Then x = a~1b and xeH since a, beH. Thus
xeH nS = T. Similarly ya = b implies y e T, where a, beT, yeS. Thus T is unitary.

Now let the group G be abelian and let T be any unitary subsemigroup of S. Let H
be the subgroup of G generated by T. Then T s / / nS . Let heH nS. Since G is abelian
there exist elements a, beT with h = ab~i. Then a = hb. It follows that (ieT. Therefore
T = H n S .

It is clear that the second part of Theorem 4 also holds trivially in the class of torsion
groups. We do not know for which other classes of groups it holds. That it does not
hold in the class of all groups is shown by the following example.

Let ¥2 be the free group on two generators, say a and b. Let S be the subsemigroup
of F2 generated by a, ab, ab2; let T be the subsemigroup of S generated by a, ab. Clearly
T^S since ab2$T. Let ux = v where u, veT, xeS. Since products of a, ab, ab2 are
already in reduced form it is clear that b2 cannot occur in x since it does not occur in v.
Therefore xeT. Similarly yu = v implies yeT, Hence T is unitary in S. The subgroup of
F2 generated by T is F2 itself. Thus there is no subgroup H of F2 with H nS=T.

We recall a well-known property of the additive group Q/Z of rationals modulo 1. If
g is a non-identity element of any abelian group G then, since Q/Z contains elements of
all finite orders, there is a non-zero homomorphism from the cyclic subgroup generated
by g to Q/Z. Since Q/Z is divisible this homomorphism will extend to a homomorphism
0 from G to Q/Z such that 0(g)=^O. For any abelian group G we denote the
homomorphism group Horn (G, Q/Z) by G*.

Theorem 5. Let S be a subsemigroup of an abelian group G with 1 e S. Then T is a
unitary subsemigroup of S if and only if there exists a subset A* of G* such that

T={xeS\e(x) = 0 for all 9eA*}.

Proof. Let A* be a subset of G* and let T be defined as above. Clearly 1 e T; thus T
is non-empty. If a, beT then 0(ab) = 0(a) + 0(*) = O, for all 6eA*. It follows that abeT
and so T is a subsemigroup of S. Now let ax=b, where a,beT and xeS. Let Be A*.
Then 0(ax) = 6{a) + 0(x) = 0 + 6{x) = 6(b) = 0. Therefore 0(x) = O. Thus xeT and T is
unitary in S.

Conversely let T be a unitary subsemigroup of S. Let A* = {6eG*\9(t) = 0 for all
teT}. Let K = {geG\6(g) = 0 for all OeA*}. Let H be the subgroup of G generated by
T. Since each heH may be expressed as h = ab~l with a,beT it follows that Hc.K. Let
geK. If g$H then gH is a non-identity element of G/H. Thus there is a homomorphism
from G/H to Q/Z mapping gH to some non-zero image. This gives rise to a
homomorphism 0 from G to Q/Z such that Hske r0 and 0(g)=£O. Then 0(t) = O for all
t e T and so OeA*, which contradicts geK. It follows that H = K. By Theorem 4,
T=HnS. Thus

T = K n S = {xeS|0(x)=O for all 0e/4*}.

We now return to the case of the multiplicative semigroup N of positive integers. The
group generated by N is the multiplicative group Q+ of all positive rationals. Q+ is a
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free abelian group with free generating set Pj, j e N, where p} is the jth prime. Thus any
9eQ% determines a sequence {r,-} of rationals mod 1 where 6{pi) = rj and conversely
any such sequence determines an element of Q% in this way. Hence Q% is the
unrestricted direct product of countably many copies of Q/Z.

From Theorem 4 it follows that T is a unitary subsemigroup of N if and only if
T=HnN for some subgroup H of Q + . We should note that different subgroups H
may give rise to the same subsemigroup T. For example if m > 1 and n > 1 are
relatively prime integers and H(m/ri) is the cyclic subgroup generated by m/n then
H(m/n)r\N = {l}.

From Theorem 5 it follows that T is a unitary subsemigroup of N if and only if there
exists a family {rtJ}, ieI,jeN, of sequences of rationals such that

T={neN\n = npjJ and Y,rijeje^- for each iel}.

We may assume 0^r , j< l . There is a largest such family of rationals for any such T,
namely the family of all such sequences. It may not be possible to choose a smallest
family. For example let T be the semigroup of all odd integers in N. Clearly T is
unitary in N. Taking Pi=2 any family of sequences of rationals (l/m,0,0,...) determines
T where m ranges over any unbounded set of non-zero integers. The complete family
has typical member (q, 0,0,...) where q ranges over all rationals but no minimal family
exists.

Unitary subsemigroups of N are obtained in this manner from homomorphisms of
<Q+ into any abelian group G. For example the semigroup T of odd integers may be
obtained more easily by considering homomorphisms from Q + into Z, the additive
group of all integers. In the previous notation it then arises from the single sequence
(1,0,0,...). However Q/Z is the smallest abelian group which will give rise to every
unitary subsemigroup of N. To see this we recall that Q/Z is the direct sum, taken over
all primes q, of the quasi-cyclic groups Z(q°°). Z(q°°) is generated by the rationals, mod
1, an = l/q", n=l ,2 , . . . , which satisfy qa1 =0,...,qan + l=an, Since Q + is a free
abelian group with countably many generators every countably generated abelian group
is an image. Thus the groups Z(q°°) are homomorphic images of Q + . In order to see
that these groups are needed to obtain unitary subsemigroups, we need to find such a
homomorphism for which the kernel is generated by integers. To do this let Aq =
{Pi>/>iP2>P2P3>--->PrP?+i'---}- Let H be the subgroup of Q+ generated by Aq and let
S = H n N. One should note that S contains but is not equal to the subsemigroup of N
generated by Aq, since, for example, pq2 ={p\)l{PiP\)q belongs to S but clearly not to
this subsemigroup. It is easy to see that the primes Pi,p2,Ps,... do not belong to H and
so Q + /H is generated by the elements gr = p(

r~
i)r+iH,r= 1,2,..., which are not equal

to 1. These satisfy g? = l, gq
2=gl,...,g

q
r + l=gr,.... Thus Q + /H is the group Z ( O in

multiplicative form. Now any non-zero image of Z(qco) is isomorphic to Z(q°°). Suppose
that G is an abelian group which contains no subgroup isomorphic to Z(^c0). Let A be a
family of homomorphisms from Q+ to G which send each neS to 0. Then, if 6e A, since
Aqc.keT6 we have Hskerft Therefore the image of 9 is an image of Q+/H^Z(qm).
Since G contains no subgroup isomorphic to Z(<jf°°) it follows that the image of 6 is 0.
Therefore the subsemigroup determined by A is N and S cannot arise in this way. Thus
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any group G giving rise to all unitary subsemigroups of N must contain all quasi-cyclic
groups. Q/Z is the smallest such group.
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