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We present a novel robust control scheme that deals with multi-body spacecraft attitude

tracking problems. The control scheme consists of a radial basis function network (RBFN)

and a robust controller. By using the finite time convergence property of the terminal sliding

mode (TSM), we derive a new online learning algorithm for updating all the parameters of

the RBFN that ensures the RBFN has fast approximation for the parameter uncertainties

and external disturbances. We design a robust controller to compensate RBFN

approximation errors and realise the anticipative stability and performance properties. We

can also achieve closed-loop system stability using Lyapunov stability theory.

No detailed knowledge of the non-linear dynamics of the spacecraft is required at any point

in the entire design process, and the proposed robust scheme is simple and effective and can

be applied to more complex systems. Simulation results demonstrate the good tracking

characteristics of the proposed control scheme in the presence of inertial uncertainties and

external disturbances.

1. Introduction

Modern spacecraft require their attitude-control systems to provide attitude manoeuvers,

tracking and high accuracy pointing in the presence of disturbances and uncertainties.
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Because of the properties of the inherent attitude dynamics, attitude tracking is a complex

task. In recent decades, several control methods have been developed to treat this kind of

problem. Zhang and Cao (2004) used the momentum conservation equation to propose a

coordinated attitude control law for a tracking and data relay satellite. Matthew (1999)

used Lyapunov stability theory to develop a Lyapunov tracking controller. However, they

did not consider the mass parameter uncertainties and external disturbances. Vadali (1986)

designed a sliding-mode controller based on sliding-mode control theory, which converged

state trajectories to a sliding mode, though it was restricted to a simple linear spacecraft

model.

Wu and Chen (1999) and Yang and Sun (2002) developed a mixed H2/H control

method to address the spacecraft attitude tracking problem under parameter perturbation

and external disturbances. However, it is difficult to apply the robust control design

method to more complex models, such as multi-body spacecraft. Liang et al. (2011 )

presented a robust decentralised coordinated attitude control law for formation flying with

external disturbances. The feasibility of applying the feedback linearisation technique to

the spacecraft attitude control problem was also discussed in Sheen and Bishop (1994a).

A controller for attitude control based on linearisation by coordinate transformation

and non-linear feedback was presented in Bang et al. (2004) for large-angle rotational

manoeuvers of spacecraft systems. However, the feedback linearisation technique requires

a detailed knowledge of the non-linear dynamics. To alleviate this shortcoming, adaptive

control has been applied to estimate the unknown or time-varying mass parameters.

In conjunction with feedback linearisation, Sheen and Bishop (1994b) proposed a direct

adaptive control law. However, the adaptive control law exhibited parameter drift and bad

transient behaviours, which occurred when there was a large initial parameter estimation

error (Slotine and Li 1991; Efrati 1997).

Neural networks have been shown to be the most promising technique for designing a

robust, adaptive and intelligent control system. Their learning feature and powerful ability

to approximate non-linear functions have been used in various applications such as pattern

recognition, system identification and non-linear system modelling (Sibai et al. 2011;

George 2011). In particular, neural networks have been successfully applied to many

control systems, such as space platform-based manipulators, fighter aircraft, and complex

spacecraft (Pazelli et al. 2011; Akpan and Hassapis 2011; Li et al. 2001; Nayeri et al. 2004).

The recently developed terminal sliding mode control (TSM) enables convergence to the

desired state in finite time (Feng et al. 2002; Yu and Man 2002; Yu et al. 1999). This

technique has been used successfully in some control designs, such as robotic manipulators

(Feng et al. 2002) and mobile target tracking (Stonier and Stonier 2004). The physical

interpretation of finite time convergence lies in the fact that the TSM convergence rate

grows exponentially when the state is near equilibrium.

In the current paper, we consider the non-linear dynamics of a multi-body spacecraft

system and design a robust control scheme based on a radial basis function network

(RBFN) and TSM. We begin by using the available information of the system, such as

some nominal parameters, to weaken the non-linearity of the dynamics of the system.

An RBFN controller is then designed to compensate the parameter uncertainties and

external disturbances. We also develop an online fast learning algorithm for RBFN based
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Fig. 1. (Colour online) Model of multi-body spacecraft.

on TSM. Finally, we propose a robust controller to compensate the RBFN approximation

error and make the closed-loop system stable along the desired trajectory. No detailed

knowledge of the non-linear plant dynamics is required at any point in the entire design

process, and the proposed robust scheme is simple and effective and can be applied to

more complex systems.

1.1. Organisation of the paper

Section 2 gives a brief description of the multi-body spacecraft system considered. In

Section 3, we review the inverse system method and design a robust control scheme. In

Section 4, we present and discuss the simulation results, and in Section 5, we give our

conclusions. Finally, the Appendices contain definitions of the TSM controller and GCD

learning algorithm, and a glossary of symbols used.

2. Model of a multi-body spacecraft with mobile antenna

In the current paper, we consider a multi-body spacecraft, with one large mobile antenna

rotating along the axis and using reaction wheels for attitude control. The coordinate

systems are shown in Figure 1. The inertial reference frame OXY Z , which is fixed to the

centre of the Earth, is used to determine the orbital position of the spacecraft. The orbital

reference frame OoXoYoZo, which is fixed to the mass centre of the whole spacecraft,

rotates about the axis Yo. The axes of the reference frame are chosen so that the roll axis

Xo is in the flight direction, the pitch axis Yo is perpendicular to the orbital plane and the

yaw axis Zo points towards the Earth. If we consider the spacecraft moving in the orbital
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plane (OoXoZo), the dynamic equation of the multi-body spacecraft is given by

M(x)ẍ + Q(x, ẋ) = Tc + d(t) (1)

where

x =
[
θ1 θ2

]T
Tb = −Jwω

′
w

Tc =

[
Tb

Ta

]

M(x) =

[
JC J∗

BA

J∗
AB J∗

a

]

Q(x, ẋ) =

[
QIr + QDr

QIar + QDar

]

JC = Jb + Jw + JD + Ja + ma(2ρArA sin θ2 + r2A + ρ2
A) − M(ρ2

Cx + ρ2
Cz)

J∗
BA = Ja + marAρA sin θ2 − maρA(ρCz cos θ2 + ρCx sin θ2)

J∗
AB = Ja + marAρA sin θ2 − maρA(ρCz cos θ2 + ρCx sin θ2)

J∗
a = Ja − λ1maρ

2
A

λ1 =
ma

M

λ2 =
md

M

ρCx = λ1 (rA+ρAsin(θ2)) +λ2ρD

ρCz = λ1ρA cos (θ2)

QIr = (1 + ρA)rAmaθ̇2θ̇1 cos θ2 + marAθ̇
2
2 cos θ2

QDr = maρA(ρCx cos θ2 − ρCz sin θ2)θ̇
2
1

− (mdρD + marA)
[
(2θ̇1θ̇2 + θ̇2

2)λ1ρA cos θ2 + θ̇2
1ρCz

]
QDar = (ρCx cos θ2 − ρCz sin θ2)maρAθ̇

2
1

QIar = −marAρAθ̇
2
1 cos θ2.

3. A robust attitude tracking controller using RBFN and TSM

In this section we will review the inverse system method (ISM) (Hirschorn 1979) and

design a robust control scheme based on RBFN and TSM.

3.1. The inverse system method (ISM))

The inverse system method is a commonly used control scheme for non-linear systems.

The basic idea can be explained as follows (Hirschorn 1979). Consider a non-linear system

ẋ = f(x, u)

y = h(x, u).
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Suppose the map from system input u(t) to the system output y(t) is Ξ, so

y = Ξ ◦ u. (2)

Now suppose there is another non-linear system, and the map from the system input ϕ(t)

to the output u(t) is Ξ̂α, so

u = Ξ̂α ◦ ϕ. (3)

If there exists an α-order derivative of y and Ξ̂α satisfying

ϕ(t) = yα(t)

and Equation (3), respectively, then the non-linear system Ξ̂α is called the α-order integral

inverse system of the non-linear system Ξ. We can generally realise Ξ̂α by a feedback

method. Substituting Equation (3) into Equation (2), we obtain a pseudo-linear system

ΞPL given by

y = ΞPL ◦ ϕ. (4)

The relation between the input and output of the pseudo-linear system ΞPL can be simply

expressed by s−α. This means that the control of the non-linear system can be reasonably

simplified as the control of an α-order linear system. Hence, using linear control theory,

such as LQ-optimal control theory, linear robust control theory or PID control theory,

the feedback law can be designed to realise the anticipative stability and performance

properties.

Now, neglecting external disturbances d(t), the order integral inverse system of

Equation (1) is

Tc = M(x)δ + Q(x, ẋ) (5)

where δ is an auxiliary input to be determined. Substituting Equation (5) into Equation (1),

we get

ẍ = δ. (6)

In order to have the output x follow a specified trajectory, δ in Equation (6) is set to be

δ = ẍd + k1(ẋd − ẋ) + k2(xd − x) (7)

where xd is the desired output trajectory and k1 and k2 are some positive constants.

Substituting Equation (7) into Equation (5), we obtain the ISM controller given by

Tc = M [ẍd + k1(ẋd − ẋ) + k2(xd − x)] + Q. (8)

The configuration of the ISM controller is shown in Figure 2. Combining Equations (8)

and (1) gives the following error dynamics:

ë + k1ė + k2e = 0 (9)

where e = xd − x is the output error.

Equation (9) shows that the tracking error vanishes asymptotically, and the output tends

to the desired trajectory. However, in practical spacecraft systems, some perturbations in

system parameters are inevitable because of the flexible structure, unmodelled dynamics,

fuel slosh disturbance and the change of the orientation of solar arrays on the spacecraft.
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Fig. 2. Implementation of the ISM control scheme.

With perturbations of system parameters, the ISM control design cannot guarantee the

performance specified by Equation (9). Moreover, the stability of the controlled system

may be destroyed.

Now consider the following equivalent form of Equation (1):

ẍ = M−1
0 (Tc − Q0) − Δ (10)

where the subscript 0 denotes the nominal parameter and Δ denotes the parametric

uncertainty and external disturbances. In the next section we will use Equation (10)

as the starting point for our proposed robust control scheme based on RBFN and

TSM.

3.2. A robust control scheme based on RBFN and TSM (TSM–RBFN RC)

Yu et al. (2000) proposed a fast TSM that combines the finite time convergence property

of a terminal attractor and the exponential convergence property of linear systems.

In general, neural networks (NN) are efficient for approximating highly non-linear

functions within a desired accuracy (Park and Sandberg 1991; Funahashi 1998; Hornik

et al. 1989). In order to achieve fast attitude tracking manoeuvers in the presence of mass

parameter uncertainties and disturbances, we propose a robust control scheme combining

the excellent properties of TSM and NN in the form

TC = M0 (uNN + urb + ẍd) + Q0 (11)

where uNN is used to compensate for the model error Δ in Equation (10). The term urb
is a robust controller based on TSM that compensates for NN approximation errors and

realises the anticipative stability and performance properties. Moreover, through the ISM

scheme, the TSM–RBFN robust control system Equation (11) makes effective use of the

available information in Equation (1), such as M0 and Q0, to weaken the non-linearity of

the system described by Equation (1). Obviously, we need to design uNN . The configuration

of the TSM–RBFN robust control system is shown in Figure 3. Substituting Equation (11)

into Equation (10), we get an equivalent expression for the error dynamics in the

form

ë + uNN + urb − Δ = 0. (12)
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Fig. 3. Implementation of the ISM control scheme.

3.2.1. RBFN approximation and an online learning algorithm based on TSM

3.2.1.1. RBFN architecture

The neural scheme in Equation (11) is an RBFN consisting of a three layer processing

structure. There are ni input nodes, nk hidden nodes and nj output nodes. It can be

represented in the following form:

y =

nk∑
k=1

wkφk(ck, σk, ξ)

= WTΦ(c, σ, ξ)

(13)

where:

— ξ = eT ∈ Rni×1 is the RBFN’s inputs;

— y is the output of RBFN;

— wk and σk ∈ R1×1 are the hidden-to-output layer interconnection weight, the width

and centre of the Gaussian functions, respectively, which are the adjustable RBFN

parameters;

— the active function used in the RBFN is chosen to be the Gaussian functions

φk = exp(−‖e − ck‖2
/σ2

k );

— the vector representations of wk , σk , ck and φk are respectively:

W ∈ Rnk×nj

σ ∈ Rnk×1

c =
[
cT1 , c

T
2 , · · · cTnk

]T ∈ Rnk×1

Φ(e) =
[
φ1, φ2, · · · , φnk

]T ∈ Rnk×1.

3.2.1.2. RBFN approximation

Using the results reported in Girosi and Poggio (1990) and Poggio and Girosi (1990), the

model error in Equation (10) can be approximated by an RBFN through on-line learning:

Δ = W ∗TΦ(c∗, σ∗, ξ) + ε (14)
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where W ∗, c∗ and σ∗ are, respectively, the optimal parameter vectors (matrices) of W , c

and σ in RBFN. For simplicity, we will write Φ∗ as an abbreviation for Φ(c∗, σ∗, ξ) from

now on. The approximation error is

ε
Δ
= (ε1, · · · ,εi)T.

From approximation theory, εi is uniformly bounded by εi � γ∗
i , where γ∗

i is any positive

number.

The NN controller uNN in Equation (11) is assumed to take the form

uNN = ŴTΦ(ĉ, σ̂, ξ) (15)

where Ŵ , ĉ, σ̂ and Φ̂ are estimates of the optimal parameter vectors (matrices). For

simplicity, we will write Φ̂ as an abbreviation for Φ(ĉ, σ̂, ξ) from now on. The first partial

derivatives of the function Φ̂ with respect to its arguments are given by

Φ̂c
Δ
=

∂Φ̂

∂ĉT

∣∣∣∣∣
(ĉ,σ̂)

=

⎡
⎢⎢⎢⎢⎢⎣

∂φ̂1

∂ĉ1
0 · · · 0

0 ∂φ̂2

∂ĉ2
· · · 0

...
...

. . .
...

0 0 · · · ∂φ̂nk

∂ĉnk

⎤
⎥⎥⎥⎥⎥⎦

∈ Rnk×nk

Φ̂σ
Δ
=

∂Φ̂

∂σ̂T

∣∣∣∣∣
(ĉ,σ̂)

=

⎡
⎢⎢⎢⎢⎢⎣

∂φ̂1

∂σ̂1
0 · · · 0

0 ∂φ̂2

∂σ̂2
· · · 0

...
...

. . .
...

0 0 · · · ∂φ̂nk

∂σ̂nk

⎤
⎥⎥⎥⎥⎥⎦

∈ Rnk×nk

where

∂φ̂k

∂ĉk
= 2

(e − ĉk)

σ̂2
k

φ̂k ∈ Rni×1

∂φ̂k

∂σ̂k
= 2

‖e − ĉk‖
σ̂3
k

φ̂k ∈ R1×1.

The Taylor series expansion of the optimal function Φ∗ in Equation (14) about the

approximation is (Nardi 2000)

Φ∗ = Φ̂ + Φ̂T
c c̃ + Φ̂T

σ σ̃ + O2(c̃, σ̃)

where

c̃
Δ
= c∗ − ĉ ∈ R(nk×ni)×1

σ̃
Δ
= σ∗ − σ̂ ∈ Rni×1

O2 ∈ Rni×1.

We now define

W̃ = W ∗ − Ŵ
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and consider the difference between the output of the online approximation and the

optimal neural network. It can be shown that the following holds:

W ∗TΦ∗ − ŴT Φ̂ + ε = W ∗T
[
Φ̂ + Φ̂T

c c̃ + Φ̂T
σ σ̃ + O2(c̃, σ̃)

]
− ŴT Φ̂ + ε

= W̃T Φ̂ + ŴT Φ̂T
c c̃ + ŴT Φ̂T

σ σ̃ + Er

(16)

where

Er
Δ
= (̄ε1, · · · , ε̄i)T = W̃T (Φ̂T

c c̃ + Φ̂T
σ σ̃) + W ∗TO2(c̃, σ̃) + ε

is the higher order term. From the results in Nardi (2000), Er is bounded by the inequality

(17) where vi is a positive number:

|̄εi| < vi. (17)

3.2.1.3. Online learning algorithm based on TSM (TSM–OLA)

We use an online learning algorithm, which guarantees that the NN controller can deal

with unexpected situations quite well. In practical online applications, the algorithm must

have a high convergence speed. However, a simple standard gradient descent learning

algorithm can be very slow when the approximation error is very small. In order to

increase the convergence speed, we propose an online learning algorithm based on TSM

(TSM–OLA) as follows. The TSM (Yu et al. 2000) can be described by

S
Δ
= (s1, · · · , si)T = ė + αe + βeγ (18)

where

α = diag(a1 · · · ai )
β = diag(b1 · · · bi )

are the design matrices (ai > 0, bi > 0 ) and γ
Δ
= q/p, where p and q, with q < p, are

positive odd integers. The TSM–OLA can then be described by

˙̂
W = η1 Φ̂ · ST (19)

˙̂Tc = η2 S
T · ŴT · Φ̂T

c (20)

˙̂σT = η3 S
T · ŴT · Φ̂T

σ (21)

where η1, η2 and η3 are positive constants. In the TSM–OLA, the introduction of the non-

linear item diag(eγ) amplifies the approximation error’s contribution to the convergence

rate in the vicinity of e = 0.

Because the real implementation has to be carried out in a discrete-time framework,

the TSM–OLA can be converted into a discrete form:

Ŵ (t + 1) = Ŵ (t) + η1 Φ̂(t) · S(t)T + μ1

(
Ŵ (t) − Ŵ (t − 1)

)

ĉ(t + 1)T = ĉ(t)T + η2 S(t)T · Ŵ (t)T · Φ̂c(t)
T + μ2

(
ĉ(t)T − ĉ(t − 1)T

)
σ̂(t + 1)T = σ̂(t)T + η3 S(t)T · Ŵ (t)T · Φ̂σ(t)

T + μ3

(
σ̂(t)T − σ̂(t − 1)T

)
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where

0 � μi < 1 (i = 1, 2, 3)

is a fixed gain and (
Ŵ (t) − Ŵ (t − 1)

)
(
ĉ(t)T − ĉ(t − 1)T

)
(
σ̂(t)T − σ̂(t − 1)T

)
are the momentum terms, which tend to damp oscillations in the parameter vector and

keep the parameter vector moving in the correct direction.

3.2.2. Robust control scheme and stability analysis

3.2.2.1. Robust control scheme

Using the results in Section 3.2.1, we can obtain the TSM–RBFN robust control system as

follows. Consider the multi-body spacecraft dynamics represented by Equation (1). If the

TSM–RBFN robust control system is given by Equation (11), where the NN controller

is given by Equation (15), the robust controller is given by Equation (22) and the TSM–

OLA of the TSM–RBFN robust control system is given by Equations (19)–(21), then the

closed-loop system is Lyapunov stable and the tracking error will converge to zero in

finite time. We have

urb = αė + γβ diag(eγ−1)ė + υ sign(S) (22)

where

υ = diag(v1, v2),

is the bound of ε̄i, which satisfies the inequality (17) for i = 1, 2.

3.2.2.2. Stability analysis

We choose the following Lyapunov function candidate:

V =
1

2
STS +

1

2η1
tr

(
W̃T W̃

)
+

1

2η2
c̃T c̃ +

1

2η3
σ̃T σ̃, (23)

where tr (·) is the trace operator. Differentiating Equation (23) along the trajectories of

Equation (12), we get

V̇ = ST Ṡ − 1

η1
tr

(
W̃T ˙̂

W
)

− 1

η2

˙̂cT c̃ − 1

η3

˙̂σT σ̃. (24)

The first derivative of Equation (18) is

Ṡ = ë + αė + γβdiag(eγ−1)ė. (25)
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Substituting Equation (25) into Equation (24), and using Equations (12), (14), (15), (16)

and (22), we get

V̇ = ST
(
W̃T Φ̂ + ŴT Φ̂T

c c̃ + ŴT Φ̂T
σ σ̃ + Er − υ sign(S)

)

− 1

η1
tr

(
W̃T ˙̂

W
)

− 1

η2

˙̂c
T
c̃ − 1

η3

˙̂σ
T
σ̃

= tr

[
W̃T

(
p

q
Φ̂ · ST · B · diag(ėp/q−1) − 1

η1

˙̂
W

)]

+

(
p

q
ST · B · diag(ėp/q−1) · ŴT · Φ̂T

c − 1

η2

˙̂c
T
)
c̃

+

(
p

q
ST · B · diag(ėp/q−1) · ŴT · Φ̂T

σ − 1

η3

˙̂σ
T
)
σ̃

+ ST (Er − υ sign(S)).

(26)

If
˙̂
W , ˙̂cT and ˙̂σT are given by Equations (19), (20) and (21), respectively, Equation (26)

can be rewritten as

V̇ = −ST (υ sign(S) − Er)

� −
2∑

i=1

(κi |si|) < 0 for si �= 0
(27)

where

κi = vi − |̄ε| > 0.

Equation (27) means that the FTSM manifold si (i = 1,2) converges to zero. On the other

hand, in the TSM si = 0 (i = 1,2), and the system state will reach zero in finite time

(Yu et al. 2000).

Remark 3.1. In order to eliminate chattering, the signum function of Equation (22) is

often replaced by a continuous saturation function

sat(si, ε) =

{ si/ε if |si| < ε

sign(si) if |si| � ε
(i = 1, 2)

where ε > 0 is the width of the boundary layer. Equation (22) can now be rewritten to

give

urb = αė + γβ diag(eγ−1)ė + υ · sat(S, ε)

where

sat(S, ε) = [sat(s1, ε), sat(s2, ε)]
T.

Remark 3.2. There exists a possible singularity in the TSM–RBFN robust controller as

e → 0. Since e = 0 only approaches along a sliding mode, we observe that for a general

choice of γ, we have

ė = −αe − βdiag(eγ) (28)
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Table 1. Parameter values for the model (international units)

Parameter Jw JD Ja

Value 0.0796 30.0 40.0

Parameter ρA ρD rA

Value 0.25 0.40 0.60

Parameter md M ma

Value 0.50 261.4 10.0

.

while sliding, and that the component in Equation (22) is

γβ diag(eγ−1)ė → −γβ
(
αeγ + βe2γ−1

)
. (29)

Consequently, there will be a singularity in Equation (22) unless γ is chosen so that 2γ > 1.

To satisfy this requirement, we set γ = 3/5 for the following examples.

4. Simulation results

Numerical simulations were performed to assess the closed-loop stability performance of

the proposed TSM–RBFN robust control system in the presence of inertial uncertainties

and external disturbances. We used Simulink as the simulation environment for our

simulations and ODE45 to perform the numerical integration. Relative and absolute

error tolerances were uniformly set to be 1e-6 throughout the simulations. The initial

values θ10 and θ20 of θ1 and θ2 were set to 0.001, and the nominal value of Jb was set to

50.00.

During the simulation, the inertia of the the main body was changed as follows. The

actual inertia Jb begins with 120% of the nominal values at t = 0 second and the inertia

is gradually increased to 140% of the nominal values from 0 second to 10 seconds. The

inertia is then suddenly decreased to 100% of the nominal values at 10 seconds. The

decreased inertia is constant until t = 15 seconds at which the inertia is suddenly increased

to 160% of the nominal values. This increased value is then maintained until the end of

simulation. The model parameters are summarised in Table 1.

The external disturbance torque is given by

d(t) =

[
0.10sin(10t)

0.05sin(10t)

]
.

In addition, the parameters of the TSM–RBFN robust control system were set to the

values given in Table 2.

All the parameters of the TSM–RBFN robust control system were chosen to achieve

the best control performance in the simulation. The choice of network size is not an

easy task and corresponds to the usual model order determination problem (Lin and

Wai 1998; Passino 2004). The RBFN was set to have two, ten and two neurons at the

input, hidden and output layers, respectively. Each of the centres and the width of the
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Table 2. Parameter values for TSM–RBFN RC

Parameter a1 a2 η1 η2 η3

Value 2.0 2.0 0.12 0.10 0.10

Parameter b1 b2 μ1 μ2 μ3

Value 1.0 1.0 0.05 0.05 0.05

Parameter v1 v2 γ

Value 1.0 1.5 3/5

Fig. 4. (Colour online) Desired attitude of main body and mobile antenna.

Gaussian functions were initialised with arbitrary numbers, and each of the weights of

the output layer with zeros.

To compare the robustness against inertial uncertainties and external disturbances, four

control methods were considered:

— an ISM controller (Equation (8));

— a TSM controller (Equation (30) – see Appendix A);

— a GGD-RBFN robust control scheme (Equations (11), (31), (32) and (33)); and

— the TSM–RBFN robust control scheme (Equations (11), (19), (20) and (21)).

The simulation results are shown in Figures 4–10. The desired attitudes of the main body

and the antenna are shown in Figure 4. The tracking errors e1 and e2 are shown in

Figures 5–6, and the tracking errors when the general gradient descent learning algorithm

(Equations (31–33) – see Appendix A) was applied to update all parameters of the RBFN

in (11) are show as dotted lines in Figures 5–6.

The control torques with the TSM–RBFN robust control law are shown in Figure 7.

The output uNN of the RBFN whose the parameters are updated by TSM–OLA is

shown in Figure 8. It is clear from Figure 8 that the RBFN can quickly compensate

for the parameter uncertainties and external disturbances, and the robust controller can
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Fig. 5. (Colour online) Tracking error of the main body.

Fig. 6. (Colour online) Tracking error of the mobile antenna.

compensate for the RBFN approximation error and make the closed-loop system stable

along the desired trajectory. The mean square errors and the maximum errors of the

attitude tracking are shown in Figures 9–10. The results of the four proposed methods

show that the TSM–RBFN robust control scheme is better at reducing the effects of

parameter perturbations and external disturbances. This is because the TSM–RBFN

robust control scheme is added in parallel to learn the system’s model error Δ.
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Fig. 7. (Colour online) Control torques.

Fig. 8. (Colour online) The output of the RBFN.

5. Conclusions

Since the dynamic equations of the multi-body spacecraft are highly non-linear, and it

is difficult to obtain detailed knowledge of the non-linear dynamics, we have proposed

a robust control scheme for multi-body spacecraft attitude tracking in the presence of

mass parameter uncertainties and external disturbances. The control scheme consists

of an RBFN and a robust controller. The RBFN enables us to compensate for the

parameter uncertainties and external disturbances, and the robust controller enables us to
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Fig. 9. (Colour online) The mean square error of the attitude tracking.

Fig. 10. (Colour online) The maximum value of the attitude tracking error.

compensate for the RBFN approximation error and makes the closed-loop system stable

along the desired trajectory. In order to increase the RBFN convergence speed, we have

also proposed a new online learning algorithm (TSM–OLA) in which the introduction of

the non-linear item improves the efficiency of the artificial neural network. Closed-loop

system stability can also be achieved on the basis of Lyapunov stability theory.

No detailed knowledge of the non-linear dynamics is required in any part of the

design process. Moreover, the proposed robust scheme is simple and can be applied to
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more complex systems. The simulation results for a multi-body spacecraft show that

the proposed robust control scheme exhibits significant advantages for the attitude

tracking control of a spacecraft in the presence of mass parameter uncertainties and

external disturbances. This NN-based robust control system has the potential to enable

autonomous operations of on-orbit multi-body spacecraft.

Appendix A. TSM controller

The TSM controller is based on Yu et al. (2000) and given by

TC = M0

(
ẍd + αė + γβdiag(|e|γ−1)ė + υsat(S, ε)

)
+ Q0. (30)

Appendix B. The GGD learning algorithm

The GGD learning algorithm is described by the following equations:

˙̂
W = η1 Φ̂ · eT (31)

˙̂cT = η2e
T · ŴT · Φ̂T

c (32)

˙̂σT = η3e
T · ŴT · Φ̂T

σ . (33)

Appendix C. Glossary of symbols

θ1 = attitude angles of the main body

θ2 = rotational angles of the mobile antenna

Jw = moment of inertia of the reaction wheels

Jb = moment of inertia of the main body about the axis

JD = moment of inertia of the rigid beam about the axis

Ja = moment of inertia of the mobile antenna about the axis

Tb = control torque of the main body

rA = distance from point Oa to point Ob

ρC = distance from the mass centre of the system to Ob

ρD = distance from the mass centre of the rigid beam to Ob

ρA = distance from the mass centre of the mobile antenna to Oa

OXY Z = Earth centre inertial frame

OoXoYoZo = orbital reference frame

ObXbYbZb = reference coordinates of the main body

OaXaYaZa = reference coordinates of the mobile antenna

d = external disturbance torque

ωw = angular velocity of the reaction wheels

Ta = control torque of the mobile antenna

md = mass of the rigid beam

M = mass of the system

ma = mass of the mobile antenna.
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