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CONFORMAL IMMERSIONS OF COMPACT RIEMANN
SURFACES INTO THE 2#-SPHERE (z = 2)

JUN-ICHI HANO

The purpose of this article is to prove the following theorem:

Let n be a positive integer lavger than or equal to 2, and let S™ be the unit sphere
i the 2n + 1 dimensional Euclidean space. Given a compact Riemann surface, we can
always find a conformal and minimal immersion of the surface into S ™ whose image 1s
not lying in any 2n — 1 dimensional hyperplane.

This is a partial generalization of the result by R. L. Bryant. In this papers,
he demonstrates the existence of a conformal and minimal immersion of a compact
Riemann surface into S, which is generically 1:1, when n = 2 ([2]) and n = 3
(1.

We start with an idea formulated by Bryant in his paper [2], which is also
fundamental for our proof. Let V be the set of all maximal isotropic subspaces in
C”*' with respect to the complex symmetric bilinear form, the extension of the

2n+1 . .
. The set V is a connected compact complex mani-

standard inner product on R
fold and has a natural projection 7 on the unit sphere Szn, defining the twistor
bundle (V, 7, S*), where the SO (2% + 1)-actions on V and on S* are equivar-
iant under the projection 7. Beginning with E. Calabi’s work ([5], [6]), the twister
bundle plays an important role in the geometry of minimal surfaces, or more
generally harmonic maps of surfaces, in s* (For recent developments on twistor
bundles over even dimensional Riemannian symmetric spaces and their applica-
tions, we refer to Bryant [3], Burstall-Rawnsley [4]).

There is a distribution T on V perpendicular to the fibre at each point with
respect to any Riemannian metric invariant under the SO(2xn + 1)-action, which
is not integrable, but is holomorphic [2]. An oriented surface immersed in S* has
a complex structure canonically determined by the orientation and the first fun-
damental form. The basic idea of Bryant’s proof [2] is that if a Riemann surface M
admits an anti-holomorphic immersion ¢ into V whose image is tangent to the dis-
tribution T at each point on M, then m,¢ : M— S™ is a minimal and conformal
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immersion.

Furthermore, the complex manifold V admits a holomorphic imbedding into
the complex projective space Pzn—l, introduced by E. Cartan [7] in connection with
the spinor representation. For our purpose, it is crucial that the imbedding can be
written in an explicit form in terms of the Cartan coordinates on a dense open
subset in V, so that V is realized as a projective submanifold of a simple form.

Our task is to combine the above two known results. In the section 1, we
study the distribution T on the twistor space V and give its concrete description
in terms of Cartan’s local holomorphic coordinates (Lemma 1.1). In the section 2,
making use of the Clifford algebra, we treat the projective imbedding of V (Lemma
2.1). In his lecture notes [7] (Chap. V, 92), E. Cartan suggests a quite different,
more direct approach to the projective imbedding. We would like to explore his
idea elsewhere.

The first half of the section 3 is a survey of differential geometry of a surface
in S which admits an anti-holomorphic section into the bundle space V whose
image is tangent to the distribution T. Corresponding to two different aspacts of
the twistor space, we state two characterizations of such immersion (Lemma 3.2
and 3.4). In Lemma 3.6, we show that if the image of such section is in general
position in PZ”_1 (not contained in any linear submanifold), then the surface in S
can not lie in any hyperplane of dimension 2% — 1. In the last section 4, using the
Riemann-Roch theorem, we construct an anti-holomorphic immersion of a given
compact Riemann surface into PZ”_1 whose image is contained in V, tangent to the
distribution T and in general position in Pzn_l. This yields immediately the main
theorem.

1. The twistor space over S o

1.1. The real Cartesian space R™*! is contained in C**** canonically and its

standard inner product extends to a complex symmetric bilinear form on cr

which will be denoted by B.
Using the standard basis {e,;4 =0,1,..., n, 1,..., #’} of R”*" we put
(1.11) e =-¢y,e,=Q/V2)(e; — V= 1¢,), e, = A/V2)(e; +V— L¢,).
Then {e,;1=0,1,...,n, 1’,..., n'} is a basis of C***', and
B(Za,e,, 22,be) = ab, + 2, (a;b, + a,b).

With this basis, the standard hermitian form is given by
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H(Z,ae;, 2:be) = Za.b,.

We denote by G, and by G respectively the matrix representations of the spe-
cial complex orthogonal group SO(2n + 1, C) and the special orthogonal group
SO(2n + 1) with respect to the basis {e;}. The group G, consists of all complex
matrices leaving the complex bilinear form B and the wedge product g, \ €, A €,
A ... ANg, ¢, invariant, and the group G is the intersection of G, and the
unitary group U(2n + 1).

Let g and g, be the Lie algebras of G and G, respectively. A complex (2n +
1, 2n + 1) matrix X belongs to g, if and only if its entries X, satisfy the follow-
ing conditions:

X = 0, Xor = — Xy, Xoy = — Xpoy Xiryp = — X,
Xil" = - in/, Xi,j = - Xj’i’ (i, j = 1,. ey n),

and X belongs to g if and only if X is skew-hermitian and belongs to g,.

1.2. A complex subspace V of the vector space C™* is said to be isotropic
if the restriction of B to V is identically zero. Every maximal isotropic subspace
in CZM1 is of the same dimension #, by Witt's Theorem. We denote by V the set of
all maximal isotropic subspaces in cr

The subspace V, spanned by e,,..., e, in the basis (1.1.1) is a maximal isot-
ropic subspace. Take an arbitrary maximal isotropic subspace V, and choose an
orthonormal basis {f,, ..., f,} of V with respect to H. Let f, denote the complex
conjugate of f; with respect to R™"'. Then, there exists one and only one unit vec-

tor f, such that f, is orthogonal to f,. .., f,, fl,. . .,f_n and that

(1.21) e AeAep A oA ANey=(—=V=D"HAGEANDA . ALAT.

Arranging these 27 + 1 column vectors f,, f,,.. ., fu» fl,. . .,fn, we obtain a
matrix belonging to G, which maps ¢, to f, G =0,1,...,n), and &, to f,, (i =
1,..., n), and hence V; to V. Thus, both G and G, act transitively on V.

Moreover, the correspondence 7 : V = f, is a G-equivariant map from V onto
the unit sphere S*. As the bundle space of the fiber bundle (V, 7, S¥), V is the
twistor space of the sphere S ([13]IV, 9).

The subset (G,), of all matrices in the complex Lie group G, which leave the
complex subspace V, invariant is a complex Lie subgroup of G, Thus, the quo-
tient space V of the complex Lie group G, modulo (G,), is a connected compact
complex manifold. Its complex dimension is #(n + 1)/2.

We denote by H the subgroup in G consisting of all matrices leaving the vec-
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tor e, invariant, and by K the subgroup of all matrices leaving the subspace V, in-
variant or equivalently the complex conjugate of V, invariant. The subgroup H is
isomorphic to SO(2#n), and K is a subgroup of H and isomorphic to U(%). As quo-
tient spaces of G, V= G/K and S” = G/H. We denote by II the quotient map
G— G/K = V. The composite 7. II is the quotient map G— G/H = S§*".

The Lie subalgebras in g corresponding to the Lie subgroups K and H are de-
noted by £ and § respectively.

1.3. Given a point p € SZ", let us take an arbitrary maximal isotropic sub-
space V lying over p and its complex conjugate V with respect to the real vector
space R™*! Clearly V N V= {0}. The direct sum V + V is the complexification
of the tangent space S, to S* at p. There exists a unique complex structure J, on
S,, such that V is the subspace of all eigen-vectors belonging to the eigen-value
V=1 of J, (ie., the (1.0)-component of the complexification of S,. The endomorph-
ism J, is orthogonal with respect to the inner product on S,.

Conversely, take an orthogonal complex structure J, on the tangent space S,
and a unitary basis {f;,..., f,} of the (1.0)-component V of the complexification
of S,. Obviously, V is a maximal isotropic subspace in C*"*' Asa pointin V, Vis
lying over p, this is 7(V) = p if and only if (1.2.1) is satisfied, with f, = p. If n is
even, 7(V) = (V) = p, but if # is odd, one and only one of 7(V) and (V) is p.

1.4. Consider V as the quotient space G,/ (G,),, where (G,), is the isotropy
subgroup at the point 0 = V, € V. We denote by L (resp. L,) the subgroup of
matrices in (G,), which induce the identity on the subspace V, (resp. leave not
only V,, but also its complex conjugate 170). The subgroup L is nilpotent, connected
and simply connected. The subgroup L, is isomorphic to GL (%, C).

The isotropy subgroup (G,), is the semi-direct product of its normal sub-
group L and the subgroup L, and hence connected. Later we need the fact that the
normalizer of (G,.), in G, coincides with (G,), This follows easily from that a
vector in C™*! kept fixed by the subgroup L belongs to V.

Let (g,), be the Lie subalgebra corresponding to the subgroup (G,),. We re-
gard the quotient space g,/ (g,), as the (1,0)-component of the complexification of
the tangent space T(V), to V at the point o. Then, the isomorphism: g/f—
8./ (g,), induced by the inclusion g C g, maps a real vector in T(V), to its (1,0)
component with respect to the complex structure on g,/ (g.),. (The same vector in
T(V), can be a real vector as an element of g/f and its (1,0) component as an ele-
ment of g,/ (g,),.)
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1.5. Let n be the nilpotent subalgebra of g, consisting of matrices § =
(X,,) with

Xy =Xo=0,X,=X,,=0,X,=0.

As a vector space, g, is the direct sum of subspaces n and (g,),.

Ifé=(X,) €En weset§ =X, = — X,oand §; =X,; = — X,,;. We have
Ll e L0
(151)  expé= O _________ ( ?if) _________ O
(= &) IE (—=(@1/2)¢8,+ &) ;' (0

The connected Lie subgroup corresponding to the Lie algebra n intersects
with (G,), at the identity, and the correspondence

& (exp &) (V)

difines a 1:1 holomorphic map from the complex vector space n onto an open sub-
set Vy in V. We regard (§,&,),1=<14,7, k<mn, §, +§&,=0, the complex
coordinates of the point (exp &) (V;) on V.

Let 2o, 2y, ..., &y, Tyy. . ., T, be the complex coordinates of C”™' with re-
spect to the basis {e;} in 1.1. These coordinate functions form the dual basis of
{e)}. If (exp & (V) =V, the restrictions of x,,. .., z, form the dual basis of the
basis {(exp &)e,, ..., (exp &e,) of V by (1.5.1), and V is the solutions subspace
of the following # + 1 linear equations (Cartan [7] Chap. V, 92):

[xo - Z:Lls/‘xi =0,
x, + 1/2)&x, — &2, =0, A1<j<m.

(1.5.2)

Conversely, given (§, &) satisfying &, +&,=0Q < 4,7, k <n), the sub-
space V of solutions of the above # + 1 linear equations is a maximal isotropic
subspace in C”*! and belongs to Vv,

The image of the identity element e of G, under II is the point 0 = V,, whose
coordinates are all zero. Take X = (X,,) € g,, and denote by X’ a matrix in n de-
termined by X = X’ (mod (g,),). Then (IIy),(X,) = (II,),(X"e) and

(1.5.3) (I, (X)) = 2,X,,(0/0€), + 2,,X,,;(8/0E,),.

1.6. Let (V, m, S*) be the fibre bundle constructed in 1.2. We show that
the fibre V(p) over an arbitrary point p € S is a connected complex sub-
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manifold.

Since V(ey) = H/K, it is connected and its real dimension is #n(n + 1). Let {
be the ideal of n consisting of matrices & such that § =01 <i<n). If £,
(exp &) (e,) = ¢, and the matrix exp & leaves the wedge product ¢, A (e; A ¢,,) A
... A (e, A e,) invariant by (1.5.1). Hence, the image of (exp &) (V,) under 7 is
¢, by definition, and (exp &) (V,) belongs to the fibre V(e). Comparing dimen-
sions, we see that in open subset V, the fibre V(e is the complex submanifold
defined by & = - -+ =§, = 0. By the homogeneity of the G-action on V, we
obtain the desired result.

1.7. Let t be the subspace in the complex nilpotent subalgebra n defined by
§x =00 <j,k<m). Wehaven=t+fand t N f = {0}. We denote by T, the
complex subspace t + (g,),/(g.), in the tangent space T(V), at 0o =V, of V,
which is spanned by (8/0¢,),,..., (8/0§,),.

Since [(g),, t + (g),] ©t+ (g.), and since (G,), is connected, the sub-
space T, is invariant under the linear isotropy representation of (G,), Hence,
there exists a G, -invariant distribution T on V which assigns to the point o the
subspace T,. Ast + (g,), is not a subalgebra, T is not completely integrable.

Consider now V as the quotient space G/K. The tangent space at o to the
fibre V(e,) is §/t =f + (g.),/(g.), on which the linear isotropic representation
of K induces the dual of the U(n)-action on the space of all complex
skew-symmetric (s, #)-matrices. The K-action leaves T, invariant and its repre-
sentation on T, is equivalent to the dual of the U(#)-action on C”. Clealy these
two representations of U(n) are inequivalent,

With respect to any G-invariant Riemann metric on G/K =V, the subspaces
h/t and T, are mutually orthogonal, and the distribution T assigns to each point
V on V the orthogonal complement T, of the tangent space of the fibre
V{(z(V)) ih the tangent space to V.

Let m, be the differential of the projection 7 : V— S* At each point VE V.
the restriction to T} of (), is an isomorphism onto the tangent space of S at
(V). If we choose the G-invariant Kahler metric on V associated to — 1/(4n — 2)
times the Killing form of g, this isomorphism becomes an isometry.

1.8. Lemma 1.1. On the open subset V,, the distribution T is defined by the
Sollowing n(n + 1) /2 equations:

(1.8.1) dg, + (1/2)(§dE, — §dE) =0, 1<i<j<n.
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Proof. We denote by D the distribution on V, which assings to each point
the subspace of solutions of the equations (1.8.1), and show that D = T. The #
vector fields

(1.8.2) 0/06, — (1/2) 2,6 0/08,, 1<k<n,

are solutions of (1.8.1) and span the distribution D. Since the subspace T, is span-
ned by (0/0¢),,..., (0/05,), T, = D, Therefore, in order to verify T = D, it
suffices to show that D is invariant under the G, -action. We will show that if g.0
€V, for some g € G,, the image of T, under the differential of the translation L,
coincides with D, , (1 < k < n).

Take an arbitrary vector X*e T,. X ¥ is the tangent vector at o = V,, of the
path ¢ (exp tX) .o for some X € t(1.7). We put g, = (g. exp tX),

(d/d),_,(&,(0,.V)) = & and (d/adD),_(&,;(0,.V)) = &,

where 0 = V.
Then,

(Lg)*(X*) = Ziéi(a/asi)g.o + Zikéik(a/agik)g.w
This vector belongs to D, ,, namely, written as a linear combination of # vector
fields given by (1.8.2) at g.o, if and only if its coefficients satisfy the equations
(183) &, + (1/2)&¢&,(g.0) — (1/2)&€,(g0) =0, 1<j<i<n
On account of Cartan’s equations (1.5.2),

.Z'o(O't.eI) - Z,‘&,‘(Gpvo)xi(gpel) = Oy
z(0,.¢) + (1/2)§,(0,.Vy)xy(0,.¢) — 2.§;:(0,.V)x;(0,.¢) =0,

1 <7, | £ n. We differentiate both sides of each equation at { = 0 and obtain the
equality

(1.84) Z A&, + (1/2)6&,(g.0) — (1/2)E,(g.0)} g, = £(g.0) (g.X),, +
(g'X)j’l + Z,{_ (1 /2)5,(1?0)5,(8'0) + Eij(g.O)}(g~X)u, 1< j, 1< n.

Since X € t, (g.X),, = (8);0X,. Take & € n such that (exp ).V, = exp .0
= g.0. By (1.5.1), the components of the column vector exp &.e; are

(S,-(g.O),..., 51’1‘!..., ey (1/2)5,(g0)§,(g0) + S,-j(g.o),...,)-

Thus, the right hand side of the equality (1.8.4) is equal to
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B(exp E'ejy g-eo)Xou

where B is the symmetric bilinear form defined in 1.1. Since exp é.¢; € g.V,,
B(exp £.¢, g.¢;) = 0 and the left hand side of the equality (1.8.4) is zero. From
the assumption that g.V, belongs to V,, it follows that the determinant of the
(n, n)-minor ((g);,) is not zero. Thus, we have verified the equalities (1.8.3) for
an arbitrary vector X ™ in T,, completing the proof.

2. Cartan’s projective imbedding

2.1. Here, we summarize what we need from the spin representation theory
(9] Ch.IL§XI). Let us denote by N the set of integers {1,..., #} and by N the col-
lection of all subsets in N, consisting of 2" subsets including the empty set @. For
A € N, #(A) denotes the number of integers in A, A° the complement of A. For
A, B € N, A + B is the subset of those integers which belong to A U B but not
to A N B. Given A, B € N, we denote by p(4, B) the number of pairs (7, 7) such
that i € A, j € Band i >, and put ¢(4, B) = (— 1)**?.

Let € be the Clifford algebra over C™**' with the symmetric bilinear form B,
the quotient algebra of the tensor algebra over C™*! modulo the ideal generated
by v @ v+ B(v, v).1, v € C”*'. The subspace €, spanned by [«, v] = u,v —
vau(u, v € Can) is closed under the bracket product, and is a Lie algebra. To
each [#, v], we assign the linear map I([#, v]) of C***" given by w + [[u, v], w]
= 4(B(u, w)v + B(v, w)u). Then [ defines a Lie algebra isomorphism €, — g.

Using the basis {e,} given by (1.1.1), we put

a,= (1/4) ey, ¢] and a, = (1/4) ey, ¢;,], 1 <1< n,

then, l(a,) = E,, — E,; and l(a;,) = E;, — E,;, where E,, is the matrix whose
(A, W -entry is 1 and others are all 0, (1, ¢ € {0,1,...,n,1,..., n}). Thus,
the Lie algebra €, is generated by a; and a;,, 1 < ¢ < n. Indeed,

211 (- la;, a]) =E; — E;;, I(— la, a;,]) =E; — E,,, and
l(_ [ai/, a]r]) = Ei’/ - Ef’i? 1 S i,j S n.

In the associative algebra €,
(2.1.2) aa; + a4, = aya;, + aya, =0 and a,a, + a,a;, + (1/2)5,;, = 0.
Hence,

(2.1.3) la;, a;] = 2a,a;, la,, a;] = 2a,a;, + (1/2)0;

and la,, a;] = 2a,a;,,1 <4, j<n.
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ForeachA = {i,,..., i, EN A <4, < --- <4, < ), we put
(2.1.4) A,=W2)a,...a,.ay...a,.
Then, by (2.1.2), we have

0,ifi € A,
A/V2)eli, DAy, if i € A,

Il

(2.1.5) a,. A, {

(2.1.6) a,. A, = I(l/‘@e(” DAgsia 18 € 4,
0, if i € A.

Thus, the subspace A in € spanned by these 2" elements A,, A€ N, is a
right ideal in the associative subalgebra oM generated by 1 and €,. By assigning
to each element a in the subalgebra o (resp. the Lie algebra G,), the restriction
7(a) to A of the right multiplication by @, we obtain a representation of the asso-
ciative algebra € (resp. the Lie algebra €,) on A. We denote by o the homomorph-
ism 7°I”" from g, into the general linear Lie algebra gl(A).

We denote by H(A) the diagonal matrix 2 A,(E;; — E;;) = I(— ZA,[a,,
a,1), A, € C, 1 < i< n These diagonal matrices form a Cartan subalgebra of g,.
Using the equalities (2.1.2 and 3), we obtain

o(HW). Ay = ((—1/2) 272, + Z2,)A,, for A={i,..., 1} €N

Thus, (1/2) XA, is the highest weight of the representation o and Ay is a high-
est weight vector. The representation o on A is the spin representation of g,.
(With respect to the basis {A,, A € N}, the matrix representations of 7(a; +
a;) and 7((/— 1) (a; — a,)), are skew-hermitian.)

2.2 We denote by (Gc)>l< the connected Lie subgroup in the general linear
group GL(A) corresponding to the Lie algebra G,. The center Z of (G,)™ is {+ I}
and hence the group (G,)* is Spin (2n + 1, C), the universal covering group of
SO(@2xn + 1, C). Obviously, G, & (GC)*/Z induces the isomorphism p.

Let us denote by p7! the complex projective space of all complex lines
through the origin in the 2"-dimensional complex vector space A, and by 0™ the
point in Pzn—1 determined by the line along the highest weight vector A,. The com-
plex spin group (Gc)>l< acts on the projective space modulo the center Z, and the
(Gp *_orbit through the point 0* can be identified with the complex manifold V =
G,/ (G,

The Lie subalgebra (g,), is spanned by

Ey—Ey(1<i<m,E,—E, 1<i<j<n) and
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Eii - Ej'i’ (1 é i, j S n),

and 7' ((g,),) is spanned by @, (1 <i<n), a,a, 1 <i<j< ) and a,a; + 0,
1<i<j<m by (2.1.1-3). Hence, p((g,),) is contained in the subalgebra of
matrices X such that p(X).Ay is a scalar multiple of Ay by (2.1.4.6). Moreover,
one can verify easily that these two subalgebras coincide. Thus, the isotropy sub-
group of (Gc)*/Z at the point 0™ contains a connected subgroup isomorphic to
(G,), as its connected component. As is mentioned in 1.4, the normalizer of (G,),
in G, is itself and hence the isotropy subgroup at 0* is isomorphic to (G,),.
Therefore, the (G,)*-orbit through the point 0™ can be identified with G,/ (G,),
=V.

We denote by ¢ this imbedding of V into P”™" Given g € G,, take g>|< S
(G,)* lying over g. Then, ¢(g.V) = g*.«(V) for VE V. Particularly, if X € g,

(2.2.1) t((exp X).V) = (exp p(X)).c(V) for VE V.

2.3. Our purpose is to describe the imbedding ¢ in terms of the coordinates
(&, &) on the open subset V, defined in 1.5 and of appropriate homogeneous
coordinates on the projective space PZ”_I.

We adopt some notational conventions following E. Cartan [7]. Let 4;,. . ., iy,
be an arbitrary choice of 2k integers in N = {1,..., n}. We put

oy, = /2N ZeGro ) (&) . (& )

26-12k
where in the summation {j,, ..., j,} runs over all permutations of ,. .., iy, and
€(y,. .., jo) denotes the sign of the permutation jj,. .., j,. Obviously, &ipoeniyy 18
skew-symmetric with respect to the indecies. If 7,,. .., iy are all distinct, &, ...;
is equal to

2 501 L -jzk) (51172) ce (‘EI

J2a-1<J2a;72<--<Jax

).

26172k

One can verify easily the equality
 2k-1 -1
(2.3.1) Eipine = 2o CDTELLE T
For any choice of 2k — 1 integers 4,,...,%,_, from N, we put
_ k-1 . .
& = (/2 U = DD Sy ) ) E) . €, )
as in the previous case. We have the equality

= SN DT ¢

ipedppay

(2.3.2) 3

iyeiggy i Tgedgey®
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Again, §; ,  is skew-symmetric in indeces.
IfA={i,...,5;} and 1 <4, < ... <14, < n, we also denote by &, the func-
tion §; ;,and if A= @, we put § = 1.

2.4. For later convenience, we prepare a new basis for the representation
space A. Given A= {i,,...,5,},1 <4 < ... <i, <mweput A ={,..., 75},
1<y <...<j<# and
= {(— D*e(4, NA,., if #(A) = 2k,

(— DA /V2)eld, N)Aye, if #(A) =2k — 1,
where Aye = (/2)'a, .. .a,a,. . .a, by (2.1.4).

(2.4.1)

Lemma 2.1, Let (§;, &;,) be the coordinates on the open subset V, defined in 1.5
and let [2,] be the homogemeous coordinates on P associated to the basis *A,,
A € N} of A defined by (2.4.1).

Then, on the open subset V,, the tmmersion ¢ : V — | maps the point with
coordinates (§,, &;,) to the point [£,].

The result coincides with the projective imbedding defined by Cartan [7].

Proof. Take an arbitrary point in V, and let (§;, &) be the coordinates of
the point. The point is written as exp &. o for some & = (X,,) € n where §, =
XO! = - Xi'O and SU = X;‘/j = - Xj'i (1.5). By (2‘21), T(eXp E. 0) = exp p(g).

*
0.
By definition, p =7+ [”', and exp p(&) = exp 7(I"'(&)). By (2.1.2) and

(2.1.2),
1—1(5) = - Zifﬂy - Ezj‘gijai’aj"

Since # is an associative algebra homomorphism of €,, one can easily verify
that r(exp @) = exp 7(a) for any a € €,. Thus,

(2.4.1) t(exp £. 0) = exp(— (X, §a;, + 2 ijai,aj,)).o*.

What left is to compute the left hand side of the above equality. For this, it is
helpful to notice that the subalgebra generated by a,,..., @, is isomorphic to the
exterior algebra over the vector space spanned by these vectors. The exponential
in the right hand side of the equality is a finite sum.
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exp (8 =
SA/KD (— DHR(E &a,) (2 Ejapa,) T + (2 Eja,a,)") =
S AN e L ap an, Y+ ZND2°ZE . a, a

1 g1 - 1 "

ForA={i,...,;,}, 1 <4< ...<i,<nby215-6),
(@y,...a,) Ay = 1/vV2)e(4, N)Ae.
Thus,
(exp I7(9). Ay = Zyen Carlallye,

where the constant C, = (— D1 /v2)e(A, N) if #(A) =2k — 1, and C,=
(— D', N) if #(A) =2k
By (2.4.1), ¥A, = C,A,c, and

(exp I7'(®). Ay = Z,cn Cu.847 A,

Finally we have z,(¢c(exp &. 0)) = &,, completing the proof.

3. A class of surfaces in S*'

3.1. In this section, we study local properties of an oriented surface M im-
mersed in S (n = 2). A complex structure is uniquely determined on M by the
orientation and the first fundamental form. Without loss of generality, we may
assume that a surface is sufficiently small and imbedded as a submanifold in s*

Let (V, 7, S™) be the twistor bundle, and let II: G— V be the quotient map
defined in 1.2. Given an immersion of a surface M into S*, we call a map o: M
— V a lift of the immersion, if 7.¢ is the given immersion. If m is a G-valued
function (E,, E,..., E,, E,,,..., E,) on M such that E, is the immersion, then
the map Il.m, which assigns to a point p € M the maximal isotropic subspace
spanned by E,(p), ..., E,(p), is a lift of M. Conversely, any lift is locally
obtained in this form. We say that a G-valued moving frame m determines a lift
IL.m.

We put

(3.1.1) dE, = 2,E,2,,, A4, n=01,...,n1, .., «).
As the matrix (£,,) is g-valued,
(3.1.2) 200=0, Q= — Qio, Loy = — Lo, 2y = — Ly,

‘Qij’ = - jSr, 'Qi’j = - Qj'i’ (i,jz 1,. ey n), and
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Q

=

- ‘Q/M' (/{'! n= 0’19--~, n, 1/,..., n,).

Lemma 3.1. Let ¢: M—V be a lift of an oriented surface M immersed in S>"
(n = 2). Then, the image of M under ¢ is tangent to the distribution T at each point
if and only if, on a neighborhood of each point on M, ¢ is determined by a G-valued
moving frame m satisfying the equalities

(3.1.3) Ry =80,;,=0,fr1 <1i,j<n.

A lift ¢ is further anti- holomorphic if and only if, m satisfies both (3.1.3) and

(3.1.4) 820, = 8, is of bidegree (0,1) for 1 < 1 < n.

Proof. Take a point p € M, and a tangent vector X at p. Let X’ be the tan-
gent vector at the identity of the group G corresponding to the matrix
((2,)p(X)). The equalities (3.1.1) means that the image (m,)p(X) of X under the
differential of m is the image of X’ under the differential of the left translation
L, (That is, the matrix (£;,) of 1-forms is the reciprocal image of the
Maurer-Cartan form on the group G under the differential of m.) Thus,
(@ p(X) = TumYpX) = {(L,,) 4}, {TTDe(X)}.

By (1.5.3), the (1,0)-component of (II,)e(X”) is

(3.1.5) 2,2, (0 0/98), + 2,9, (0 (3/08,),.

On account of Lemma 1.1, (¢,)p(X) is tangent to T at ¢(p) if and only if
(d&,),(Me(X)) =01 <i<j<n), and hence if and only if (2,,)p(X) =0
(1 <i<j<mn). We have seen that ¢(M) is tangent to T if and only if (3.1.3)
holds. Suppose that this is the case. Again, from the expression (3.1.5) of
(I1,) e(X"), it follows that ¢ is anti-holomorphic if and only if (3.1.4) is valid.

3.2. Let us impose an additional condition on a G-valued moving frame m
on M that E, is a tangent vector field of bidegree (1,0) of M. Let (£,, £,.) be the
dual basis of (E,, E,,). With respect to the complex structure on the surface, £,
and £, are of bidegree (1,0) and (0,1) respectively.

As before, we put

dE, = Z”EuQM, ALu=01,...,n1,. .., u).
Since

(3.2.1) dE,=E,2, + E,Q,,
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(322) 2=, Qo= 2y and Q,=0forp=2,....m,2,...1.

LEMMA 3.2. Let ¢: M—V be a lift of an oriented surface M immersed in S™
(n = 2). Then, ¢ is anti-holomorphic and the image ¢(M) is tangent to T if and only
if, on a neighborhood of each point on M, ¢ is determined by a G-valued moving
frame m, such that E, is the immersion and E, is a tangent vector field of bidegree
(1,0) of M and that the condition (3.1.3) is satisfied, namely, £, = £,,;, = 0, for
1<4,j<n

Proof. The condition is sufficient. Indeed, for such a moving frame m, (3.1.3)
and (3.2.2) are valid, and hence the second condition (3.1.4) in Lemma 3.1 is satis-
fied.

Next, we show that the condition is necessary. By Lemma 3.1, there exists
locally a G-valued moving frame m satisfying (3.1.3) and (3.1.4). Let F, be a
(1,0)-tangent vector field of unit length on M, and let F,, be the complex conjugate
of F,. Then, dE,= F,0, + F,0,, where (0,, ©,) is the dual basis of (F,,
F,) and O, and O,, are of bidegree (1,0) and (0,1) respectively.

On the other hand, dE, = 2.E;2,, + 2E;2;, by (3.1.1). From (3.1.2) and
(3.1.4), it follows that the 1-form 2 E,Q,, is of bidegree (1,0) and the 1-form
2E.Q,, is of bidegree (0,1). Therefore, F,0, = 2E;2,. This implies that
F,(p) belongs to the maximal isotropic subspace ¢(p) spanned by E,(p),. ..,
E,(p) at each point p. Thus, on a neighborhood of each point in M, we can choose
a G-valued moving frame m such that its second column is F; and that IL.m" = ¢.
Hence, m’ satisfies the condition (3.1.3).

3.3. Let M be an oriented surface immersed in S*. We denote by T(M) the
tangent bundle over M, and by S(M) the restriction to M of the tangent bundle
over S”. Obviously, T(M) is a sub-bundle of S(M). With respect to the complex
structure on M, T(M) is a holomorphic vector bundle.

Let F be the subset of the group G consisting of matrices whose 0-th column,
regarded as a point in s* belongs to M. The right action by the subgroup H, con-
sisting of all matrices in G leaving e, fixed, leaves F invariant and F/H = M.
Thus, F is the principal bundle of S(M) with the structure group H.

We denote by Q%= (2%,) the restriction of the left invariant Maurer-
Cartan form on G to F, and by o the h-valued 1-form (@,,) given by w,, = 0 if
either A=0or £ =0, and w,, = .Q*,w otherwise. The form w defines a connec-
tion on the pricipal bundle F.

Let E be a (smooth) section of the vector bundle S(M) defined on M, and let
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Y be a tangent vector field on M. The covariant differentiation V,(E) of E along
Y with respect to the connection w is given by the equality

(3.3.1) dEY(Np = ap)p +Vy(E),,

where a is a scalar and B(p, Vy(E),) = 0 ([11], Chap. VII).
For later use, we prepare the following

LeMMA 3.3.  Suppose that F is an S(M)-valued section on M such that F(p) is
orthogonal to T(M), at each point p € M. Then, VF = 0 if and only if F is a con-
stant R™" valued Sfunction.

Proof. 1f F is costant, obviously, VF =0 by (3.3.1). Conversely, suppose
that VF = 0. Since B(p, F(p)) =0 and B(T(M),, F(p)) = 0 by assumption,
a() = B, (dE)(V)p) = 0 for any p and Y. Hence, dF = 0 by (3.3.1) and F is

constant.

3.4. Here, we regard a point in V as a complex structure J, on the tangent
space S, to s* at p (1.3). We recall that the subgroup K in H consists of matrices

leaving the subspace V, spanned by e,,..., ¢, invariant. The tangent space to s*
at e, is spanned by €,..., &, €,..., & The point V; in V is the complex struc-
ture J, defined by J,.&; = €, Jp.6, = — &; (1 £ i < n). The group K is the sub-

group of matrices in H which commute with /.

Let M be an oriented surface immersed in S>". A necessary and sufficient
condition for the structure group H of the vector bundle S(M) to reduce to its
subgroup K is that each fibre S, of the vector bundle S(M) admits an orthogonal
complex structure J, so that S(M) is a complex vector bundle. If that is the case,
we denote by J the smooth section p + J,. By replacing J, with — J,, if necessary,
we can always assume that J, belongs to the fibre V(p) over p (1.3).

Suppose that S(M) is a complex vector bundle with a complex vector bundle
structure J. Then, the map p = J, € V is a lift ¢ of M. Conversely, to a lift ¢ of
M into V, there corresponds a complex vector bundle structure J on S(M) such
that ¢ () = J,.

A reduction of the structure group H of S(M) to its subgroup K preserves
the connection w in 3.3, if and only if the complex structure J is parallel, that is,
VJ =0 ([11] Chap. II, Prop. 7.4). If J is parallel, S(M) is a holomorphic vector
bundle over M by a theorem of Koszul-Malgrange [12].

Lemma 3.4, Let ¢:M—V be a lUft of an oriented surface M immersed in
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S™(n = 2). The image ¢(M) is tangent to T if and only if the reduction of the struc-
ture group H of the real vector bundle S(M) to the subgroup K associated to ¢ pre-
serves the conmection w. The lift ¢ is Sfurther anti-holomorphic if and only if the tan-
gent vector bundle T(M) is a complex sub-bundle of the holomorphic vector bundle

S(M) associated to ¢.

Proof. Let ¢ be an arbitrary lift of an oriented sufrace M, and let J be the
complex vector bundle structure on S(M) associated to ¢. We take a local
G-valued moving frame m = (E,, E,,..., E,, E,,..., E,) such that [L.m = ¢.

Applying (3.3.1) to each E;, we have

VE,=dE, — E,Q, = Z'EQ, + X'E,2,, 1 <i<n.

The complex vector bundle structure J being parallel with respect to the con-
nection w means that the bidegree of a section is preserved by the covariant dif-
ferentiation. Thus, VJ = 0 if and only if

VE,= 2/E;2,, 1 <i<m),and Q;;=0,for 1 <4,j<n,

or equivalently, M admits a lift whose image is tangent to T, in virtue of Lemma
3.1.

Suppose that M admits a lift @ whose image is tangent to T. Then, by Lemma
3.2, ¢ is anti-holomorphic if and only if we can choose a local G-valued moving
frame m such that II.m = ¢ and that E, is a tangent vector field of bidegree (1,0),
which amounts to that the tangent bundle T(M) is a complex sub-bundle of S(M).
We have finished the proof.

3.5. Let (Ey, &1y vvs &rv..r &rs. .. &) be an orthonormal moving frame
on M such that E; is the position vector and that g, and g, form an orthonormal
frame of the tangent space to the surface, adapted to the orientation. We denote by
{w,, .} the dual basis of {g,, g;-}. The second fundamental form II is given by

(3.5.1) 2 g (hy 0w, + hyyww, + hyweo t hygepo)),

where in the summation the index A runs through 2,..., n, 2/,..., #’, and A, =
h111/c
We put
E ‘_(1/‘/_)(g1 V= glr e \/_)(gn vV gn

E1/=E_‘1,..., n’=En~

Then, m = (E, E,,...,E,, E,, ..., E,) is a G-valued moving frame on M.
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Obviously, any G-valued moving frame m = (E,, E,,..., E,, E;,,..., E,) on M
such that E,(p) = p and that E, is a tangent vector field of bidegree (1.0), is con-
structed in the above manner.

We use the same notations as in 3.1 and 3.2. From ddE, = 0, it follows that

g, + 2,2, N 2,,=01for =11, and
(352)  QuA QD+ QuAQu=0forA=2,...,n2,. . . .

Put
Q= Hy 2y + Hyyy 8400, 25y = Hyy 182y + Hypoy 2,

By (352): H/Ill’ = H/Il'l’ (/z‘ = 2’~ co R, 2/)- . wn,)'
In terms of the moving frame m, the second fundamental form II is written as

2ZE (Hyy 202, + Hyy 2,0, + Hyn 2,90 + Hyp2,2,).
Comparing this expression of the second fundamental form with (3.5.1), we have
Hy = (Q /V2) S hjy + Byyy) + V= Ty, + Ry}, Hyyye = —111'

forj=2,...,n.

Thus, a surface is minimal, that is, the mean curvature vector
2 (172) (hyyy + By g,

vanishes, if and only if Hy,, = Hyy =0 forA=2,...,n,2,...,n, or equivalent-
ly if and only if, the 1-form 82, is of bidegree (1,0) forj=2,...,n,2,..., ' ([8)]).
By Lemma 3.1, if an oriented surface M immersed in S™ (n = 2) admits an
anti- holomorphic lift ¢ whose image ¢ (M) is tangent to T, then M is minimal ([2]).
The quartic form @ defined by Bryant [2] is the (4,0)-component of the covar-
iant symmetric 4-tensor B(II, II) and is written as

Q = BUI(E,, E), lI(E,, E))2,2,2,9,.

He shows that if a surface is oriented and minimal, @ is a holomorphic tensor field
with respect to the complex structure on the surface. He calls a minimal surface in
S* with vanishing @ superminimal [2]. From the above expression, it is clear that
the superminimality means that the vector II(E,, E,) is isotropic with respect to
B.

By definition,

I(E,, E) = 2VE;2,,(E)).
Thus, if M admits an anti- holomorphic lift ¢ whose image ¢ (M) is tangent to T, then
M is not only minimal but also superminimal in virtue of Lemma 3.1 ([2]).
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LeMMA 3.5  Suppose that a minimal surface on S™ is contained a hyperplane of
2n+1 n+1

dimension 2n — 1 in R . Then, the hyperplane must contain the origin of R’

Proof. Let {el} be the basis of C”*" defined in 1.1. In virtue of homogeneity
of the Riemann metric on Szn, it suffices to prove the lemma in the case where the
hyperplane is perpendicular to the vectors ¢, and e¢,,. As before, we choose a local
moving frame #, in which E| and E,, are tangent to the surface and hence ortho-
gonal to ¢, and e,. Since the surface is minimal. £2; and £,,, are of bidegree (1,0)
for y = 2,..., n. Thus,

dEl(El') = - EO + El.Qu(Ey).

Since E| is orthogonal to e, and e,,, the #n-th and the #'-th components of E|,
as well as, of dE, are zero. From the above equality, it follows that the #-th and
the #'-th components of the position vector E, are zero. Thus, the surface is lying
on the hyperplane z, = z,, = 0.

3.6. DEFINITION. A surface immersed in S* is said to be in general position
if no (2» — 1)-plane contains the surface.

LeEmMMa 3.6. Suppose that a surface M immersed n S ™ admits an anti-
holomorphic lift ¢ of the immersion such that the image under ¢ is tangent to the dis-
tribution T.

(1) The image of M in S™ is not in general position if and only if there is a
non-zero isotropic vector contained i all the maximal isotropic subspaces ¢(p), p € M.

(2) If the surface M is not in general position in S, then t(p(M)) is also not in
general position in P°

Proof. (1) Suppose that M lies in a (2#n — 1)-plane P. Since a surface satis-
fying the assumption is minimal (3.5), the plane P passes the origin of R”*! by
Lemma 3.5. Let U be the 2-plane perpendicular to P. Clealy, at each point p €
M, UC S, Thus, for any # € U, the section p — # € S, is parallel by Lemma
3.3.

Let F be an S(M)-valued section on M such that F(p) is orthogonal to
T,(M) at each point p € M. Then, F is parallel if and only if F is a constant
R™*'_valued function by Lemma 3.3. Thus, the vector space I' of all parallel
S(M) -valued sections on M orthogonal to T(M) may be regarded as a subspace
in R2"+1.

Under the assumption, the complex vector bundle structure J on S(M)
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associated to the lift ¢ is parallel with respect to the connection w, and T(M)
is a complex sub-bundle of S(M) by Lemma 3.4. Hence, / commutes with the
covariant differentiation V and leaves T(M) invariant. As a consequence, the vec-
it belongs to I', p —
J,(v) is again a constant vector belonging to I, that is, the restriction of J, to I' is

tor space I of sections is invariant by J. If a vector v € R

a complex structure J’ independent on p.

The subspace U is contained in I, but may not be invariant by the complex
structure J’. Choose a subspace U’ of real dimension 2 in I" which is invariant
under J'. Since U’ C S, at every p € M, M is contained in the (2% — 1)-plane
through the origin, perpendicular to U".

The maximal isotropy subspace ¢(p) is the (1,0)-component of (S,),, and con-
tains an isotropic non-zero vector (u — J'.u), w € U’, which is common for all
points p in M.

The converse is obvious. Indeed, if a non-zero isotropic vector v is contained
in ¢(p) for all p € M, v and its complex conjugate are orthogonal to p. Therefore,
M is contained in the hyperplane perpendicular to the real and imaginary compo-
nents of v, which are linealy independent.

(2) If M is not in general position, there is an isotropic vector of unit length
contained in all ¢(p), p € M by the above result (1). By homogeneity, we may
assume that this isotropic vector is e,.

Consider the subset V' of V consisting of all maximal isotropic subspaces
containing e, From 1.5, it follows easily that in the open subset V,, V, N V' is
defined by the equations £, =0, &, =0 (G =1,..., n — 1). Therefore, the image
of V' under the imbedding ¢ is contained in the linear submanifold in Pzn_1 defined
by the homogeneous linear equations

2,6 =0, where A = {i,,..., i,_,, n} €N,

and is not in general position.
Since ¢(M) € V', ¢«(¢(M)) is not in general position. We have finished the
proof of the statement (2).

4. Conformal immersions

4.1. THEOREM. Given a compact Riemann surface, theve always exists conformal
and minimal immersion into S=" (n = 2), whose image is in gemeral position, i.e. not
contained i any 2n — 1 dimensional hyperplane.
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In the rest of the paper, we prove the theorem. We begin with the following
remark: Suppose that a Riemann surface M admits an anti-holomorphic immersion
¢ into V and that the image ¢(M) is tangent to the distribution T. Then, 7.¢:
M— S¥ is an immersion. Obviously, ¢ is a lift of the immersion 7., and hence
the immersion 7.¢ is minimal by 3.5. Moreover, the new complex structure on M
determined by the orientation of M and the first fundamental form induced by 7.
coincides with the original one.

Indeed, since ¢ is anti-holomorphic, ¢ is conformal with respect to any
hermitian metric on M and the G-invariant hermitian metric on V indroduced in
1.7. As mentioned in 1.7, the differential of w is isometric on T at each point.
Hence, the immersion 7.¢ is conformal and the conclusion follows.

Thus, in order to construct a conformal and minimal immersion of a given
compact Riemann surface M into S* it suffices to find an anti-holomorphic im-
mersion of M into the complex manifold V such that the image of M is tangent to
the distribution T at each point ([2]). In what follows, we will work on the
Riemann surface M, the real manifold M endowed with its conjugate complex
structure, and find a holomorphic immersion of M into V tangent to the distribu-
tion T.

4.2. Suppose that a set of n(n + 1)/2 meromorphic functions f; (1 < ¢
<), f,(1 £j, k <) on a compact Riemann surface M satisfies equalities

(4.2.1) af, — A/2)(fidfi — fidf) =0Q <i<j<n).

We define f; ;, in terms of the f;’s and f;,’s in the same way as in 2.3, and
denote by ¢ the holomorphic map of M into P* ' given by

p L, L O, D) f D),

If ,(0<i<n),f, 1 <j, k<n)are all holomorphic at a point p € M,
the point ¢(p) in the complex projective space belongs to the submanifold V
by Lemma 2.1, and the image of the differential (¢,), is contained in T,, by
Lemma 1.1. Since the set of points where these #(% + 1)/2 functions are all holo-
morphic is dense in M, (p(M) is contained in V and tangent to the distribution T.

Next, we require that
(4.2.2) ¢ is an immersion.

On account of Lemma 3.6. (2), in order that the immersed surface 7. (M) in
S* is in general position, it is sufficient that the image qo(M) is in general posi-
tion in Pzn_l, namely that the 2" functions 1,..., f,, .. o iy fipig oo are
linearly independent over C. For this purpose, we impose the following condition:
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(4.2.3) There is a point p, on M where ord, (f, ,) = Z ord, (f,) and the
orders of these 2" functions 1,...,f,.. .,f,»,,. . .,f,~]...,»k,. .. at p, are all distinct.

Thus, the proof is reduced to find a set of #(# + 1)/2 meromorphic function
i A<i<n),fA1<j<k<n) on M satisfying the above three conditions
(4.2.1), (4.2.2) and (4.2.3). This will be done by induction on # (= 2). (It is ob-
vious that we have to exclude the case where n = 1))

4.3. Before we proceed further, we formulate some criteria for the differen-
tial of a holomorphic curve in the complex projective space not to vanish at a
point, which will be used frequently.

Take arbitrary meromorphic functions z,..., 2, on a Riemann surface and
denote by ¢ the holomorphic map into the projective space P” which assigns to a
point p the point in P” with homogeneous coordinates [1, z,(p), ..., z,()]. We
assume that at least one of z,,..., 2, is non-constant so that the map is not tri-
vial. We are concerned with the differential (¢,), at a point p.

Let v be the minimum of the orders of 1 = 2, z,,.. ., 2, at p. Let { be a local
holomorphic coordinate centered at p, {(p) = 0. Put w, =z, i=0,...,m
then [w,, ..., w,] defines ¢ in a neighborhood of p. We denote by ¢”"(p) the
point (w,(®), ..., w,®)) in C"*".

The image of (d/d{), under the differential (¢,)p is the tangent vector to
P” given by the projection of the vector ¢" (p) = (W), . .., w,®)) in C"*".
Thus, (¢4)p = 0 if and only if

(w; @), ..., w, () = A(w,®),..., w,(p)) for some A € C.

If one of 2y, 2,,..., 2, is of order v + 1 at p, no such A exists and (@4), is
injective.

4.4. When n = 2, Bryant shows the existence of a holomorphic map ¢:
M— P’ whose image is in general position. His holomorphic map is not only im-
mersion but also imbedding ([2], Theorem G). Nevertheless, as the first step of in-
duction, we shall construct a holomorphic immersion ¢ of M into P° subject to
(4.2.1-3).

Take a finite number of distinct points py, ..., p, on an arbitrary Riemann
surface M, and assign to each point a non-zero integer g, Then, there exists a
meromorphic function f on M whose order at p; is g; (1 < i< k). To see this,
write g; = v; — v; with integers v;, v; < — 2. In virtue of the existence theorem
of abelian differentials on a Riemann surface ([10] II. 5.), we can choose meromor-
phic 1-forms w; and ®); holomorphic everywhere except p, and of the orders v,
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and vV} at p, respectively, for each ¢ The meromorphic function f determined by
f(2 ') = X w, serves the purpose.

We start with a meromorphic function f, on a compact Riemann surface M,
having a zero of order 2 at a point p,. Let p,, ..., p, be the distinct zeros of the
differential df;, and let v,(= 2), v,,...,v, be the orders of df; at these zeros. Let
qs. .., 4, be the distinct poles of f;, and let y,,..., &, be the orders of f; at these
poles. We choose a meromorphic function F on M such that the orders of F at Dos

...y Dy are vy, ..., v, and that the orders at ¢;,..., g, are iy — 1,..., 1, — 1.
We put f,=dF/df,. Then, ord,(f) =—1 for i=0,...,k and
ord,(f,) = — 1 for j=1,..., m If we put f,, = F + (1/2) f,f, the relation
(4.2.1) is satisfied.
At the point p,, ord, (f,) = 2, ord, (F) =1, ord, (f) = — 1. In terms of a

local holomorphic coordinate { such that {(p) =0, f, = a,{* + . .. (a, # 0),
=00+ (b, #0), F=2a,b_ L+ - and f, = B/Dab_ L+ - -.
Thus ord, (f;;) = 1. We have shown that p, is the point satisfying (4.2.3).

The next step is to show that the map ¢ defined by (4.2.1) is regular at each
point p. We divide the proof into three cases, depending on the order of df; at p.
First, suppose that (i) ord,(df,) = 0. If further ord,(f,) = 0, then ord,(f;,) = 0.
Therefore, (df,), # 0 implies that (¢,), does not vanish.

Suppose that ord,(df) =0 and ord,(f,) <O0. Then ord,(f,) = — 1, as
ord,(dF) = ord,(f,). In terms of a local holomorphic coordinate { vanishing at p,

fi=a,+al+ -, (a,#0),

=L A b T e, (b, # 0, 0> ),

F={1/(—v+D}a,b "+ -+ and

fo=— 1/2)ah

+ (/2 H{A + /A = Wiab., — ab_, T+ -

From these, one concludes that ¢, does not vanish at p. Indeed, if a, = 0, the
minimum of the orders of 1, f,, f,, and f,, at the point is — v and the order of f,,
is — v + 1 and hence ¢, does not vanish at p by (4.2). If a, # 0,

") = (0,0, b_,, (1/2)agb_,),

o™~ = (0,0, b_,,,, A/2[{A + v)/A — v}ab_, — ab_,..)).
The latter is not a scalar multiple of the former.

Suppose that (ii) ord,(df;), > 0. The point p is not of py, . . ., p,. By our

choice, ord,(F) = ord,(df) = v, > 0. As is mentioned above, ord,(f,) = — 1.
We put v, = v. In terms of a local holomorphic coordinate { such that {(p) = 0,
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fl = aO + av+lcy+1 + Y (D > O’ au+l 2 0)7
f, = b_lc‘l + o (b #0),

F={(w+1)/va,,b "+
fo=— Q/2ab T+ -, ifa, # 0. and

f‘lZ = a,,_,,lb_l{(z + )J)/ZU} CV + ey if do = 0.

In both cases, the minimum of the orders of 1, f,, f,, and f, at the point is
— 1 and the order of 1 is O at the point. By 4.3. @4 does not vanish at p.

Finally, suppose that (iii) ord,(df)) < 0. Obviously, ord,(f;) <0, and the
point p is one of ¢y,. . .,q,. By our choice of F, ord,(F) = ord,(f)) —1 < 0 and
ord,(f;) = — 1.

fi=al + -, (a,#0,v<0),
=007+, (b, #0),
F={1/(v—D}ab 0"+

fo=ab_ {(—v+3)2@—DI"+ -

Clearly, v — 1 is the minimum value of the orders of 1, f;, f, and f;, at p and
ord,(f) = v. Again by 4.3, we conclude that ¢, does not vanish at p. We have
completed the case where n = 2.

4.5. The induction hypothesis is that we have a set of (# — 1)%/2 mero-
morphic functions f;, f;, (1 <4, 7 < k < n—1) on M satisfying (4.2.1-3). Let p,
be the point asserted in (4.2.3). The first task is to find a meromorphic function f,
suth that the differential form f,df, is exact for every ¢ = 1,...,2 — 1.

From M, we exclude the point D, and all zeros and poles of these functions
and their differentials and obtain an open dense subset. In this open dense subset,
we choose a finite number of distinct points py,. . .,p,.

Let D be a divisor on M given by po‘”pl”. .. .,blv with a positive integer v.
The integers o and v will be determined later. Let L(D™") be the vector space
spanned by meromorphic functions f on M such that div (f) = D' If f is not
identcally zero and belongs to L(®™Y), f has a zero of order at least v at b,, and
all poles of f are in the subset {p,,.. ., pp}, and their orders are at least — v.

Let {ppﬂ,. . .,pp+,,} be the subset of points in M each of which is a pole of
one of the functions f; (1 < ¢ < »n — 1). By choice, the points py,. .., Do Dps1s- - -»
Dovo are all distinct. We take o + o small circles 7, centered at p, (k=1,...,
0 + 0)so that the disks encircled by them are mutually disjoint.

We denote by g the genus of the Riemann surface M. Let {a, B,51=1,...,
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g} be a set of loops forming a system of generators for the fundamental group of
M. We choose these loops not intersecting with any circle 7,.
To each f EL(D™Y), we assign

J.sas. | ras. [ saz.

foreachi(1<i<n—1),I0<1<g and k(1 £k < p+ 0), and obtain
o+o+290(n—1)

linear functions on L(®7Y).
The Riemann-Roch theorem implies that

dmL®™") > deg® — g+ 1

((10] 1IL. 4). In our case, deg ® = v(p — 1). We will choose v and p sufficiently
large so that dim L®™Y is larger than the number of the linear functions above,
and consequently there exists a non-constant meromorphic function f, annihilated
by all these linear functions.

The inequality in question is v(p — 1) —g+ 1> (o+ o+ 29 (m— 1), or
equivalently, v> ®—1)+{(c+1Dn—1) +gCn—1)—1}(c—1"" It
suffices to choose v >nand p > (6 +1)(n — 1) + g2n — 1).

If this is done, f,df, = dF, with a meromorphic function F, on M for each
(1 <7< n—1) where F; is unique up to an additional constant. Put f;, = — F,
+ (1/2)ff, for each i (1 < i< n — 1). Then, the relations in (4.2.1) are valid.
Next, we will choose v so large that the condition (4.2.3) is satisfied.

4.6. By induction hypothesis, at the point p,, the orders of the meromorphic
functions f; ;,1=<4¢ <...<1i, <n—1, are all distinct. First, we choose v
larger than the absolute value of the order at p, of any one of these functions. Put
V' = ord,(f,), which is larger than or equal to v.

In terms of a local holomorphic coordinate { vanishing at p,,

fi=e "+, =ord, (f) #0,¢,#0,1<i<n—1),
fi=6, "+, 0.

Hence, the order of dF; at p, is v, + V" — 1. If the power series expansion of F; at
D, has the non-zero constant term, we subtract the constant from F; and use the
result as F; without affecting our argument. Then,

F, = {v,(, + ) Yee,
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fn = A, = )72, + V)0, 0 4 -,

and ord, (f,) = v, + V.

By induction hypothesis, if 1 <4, < --- <4, < n — 1, the order of f; ; at
Do is 2 v, . We denote by ¢, _;, the leading coefficient in its power series expan-
sion in {. The non-zero constants ¢; ; (1 <, <... <1 < n —1) are subject to
the relations (2.3.1) and (2.3.2).

Now, we examine the order of f; ;, at p,. From the definition of f; ; , given
in 2.3, it is obvious that

ord, (f, i) 2V + 2y,

Using the formulas (2.3.1) and (2.3.2), we determine the coefficient Cipign of
the (V' 4 20 v, )-th power of { in the power series expansion of f; , , at p,. If k
is odd,

k , -1
Ciyign = Z:1;=1Bi,,(’) + ”i,,) - @ /z)cncil...ik'

with some constants B; # 0 (1< b < k).

If k is even,

Ciyign = Zb<cBi,,ic{uib/()"/ + ’)i,,) - Vic/())/ + Vic)} + CnCiy. iy

with B,; #0(1 <b<c¢<k).

In both cases, the constant term — (1 /Z)Cncf,...ik if kis odd, ¢,¢; ;, if K is

even, is not zero by induction hypothesis and by the inequality ¢, # 0. Therefore,
we can choose a large positive integer v so that if V" > v, the coefficient ¢; ;.
does not vanish for every f; ; ,.

We have seen that

ord, (fi, ;») =V + Z v, for {i},... 4, n} €N,

and hence the condition (4.2.3) is verified at the point p,.

4.7. We shall show that the holomorphic map ¢ defined by (4.2.2) is regular
at each point. Take an arbitrary point p in M

We first take up the case where ord,(f,) = 0. If ord,(F,) # 0, form the
equality f,df; = dF;, ord,(F)) = ord,(f), and hence ord,(f,,) = ord,(f). If
ord,(F;) =0, either ord,(f,) 20 and ord,(f) =20, or 0> ord,(f,) =
ord,(f;). Therefore, the minimum of the orders of the functions at p does not de-
crease by adding the f; ;,'s to the old family {fir--ik}' which contains the constant
function 1. The induction hypothesis immediately yields that ¢ is regular at p.
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Suppose that ord,(f,) <O0. Then, p is one of p;, . . .,p, and — v
< ord,(f,) < 0. Moreover, by the choice of the point p, ord,(f;) = ord,(df) =0
(1<i<mn-—1), and f; is holomorphic (1 £¢<j<#n — 1) at the point. Since
f,df, = dF,. ord,(dF)) = ord,(f,) < — 1, and ord,(F,) < — 1. In terms of a loc-
al holomorphic coordinate { vanishing at p,

fi=a,+a,l+ - -(a a; F0),

=00+ b T+ (b, # 0, 12 2) and

fn = — @/2) (@ob_, 0™ + laynb_{(u+ D/Au— D} + apb_,, 107 + ).
It follows that — g is the minimum of the orders of the functions f; , {,. ..,

i) €N, at p. As in 4.3, we multiply each function by {* and form ¢"(p) and
@™ (p). We look at the {n}-th and the {i, n}-th coordinates of these two vectors

in Czn.
o"® =10,...,b_4..., — (1/2aub_,...], and
eV ® =10,...,b_4ys..., — 1/2)(ayb_,{(u+ D/ u— D} + apdb_,.),...1.

Suppose that ¢, (p) = 0. Then, 29" (p) = ¢™(p) for some 2 € C. Thus,

'lb—u = b—u+1’ and Z(aiob—u) = dilb_”{(ﬂ + 1)/(# - 1)} + aiob—u+1
=a,b_ (@ +1)/(e— D} + Aapb_),

yielding that a;b_,{(x + 1)/( — 1)} = 0. This is a contradiction. We have
shown that ¢ satisfies (4.2.2), completing the proof of the theorem.
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