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On a New Exponential Sum
Daniel Lieman and Igor Shparlinski

Abstract. Let p be prime and let ϑ ∈ z∗p be of multiplicative order t modulo p. We consider exponen-
tial sums of the form

S(a) =
t∑

x=1

exp(2πiaϑx2
/p)

and prove that for any ε > 0
max

gcd(a,p)=1
|S(a)| = O(t5/6+εp1/8).

Let p be a large prime and let ϑ ∈ z∗p be of multiplicative order t modulo p. We
put

e(z) = exp(2πiz/p).

We estimate exponential sums of the form

S(a) =
t∑

x=1

e(aϑx2

).

The question has been motivated by some results of [1] and in fact in the proof we
use some estimates from that paper, see Lemma 2 below.

We remark that the similarly looking sums

T(a) =
t∑

x=1

e(aϑx)

have been studied in many papers by many authors and have numerous applications,
see [4, 5, 6, 7, 8] and references therein.

Throughout the paper the implied constants in symbols ‘O’ and ‘�’ may occa-
sionally, where obvious, depend on the small positive parameter ε and are absolute
otherwise (we recall that A� B is equivalent to A = O(B)).

In particular, the following bounds have been obtained in [4],

max
gcd(a,p)=1

|T(a)| �




p1/2, if t ≥ p2/3;

p1/4t3/8, if p1/2 ≤ t ≤ p2/3;

p1/8t5/8, if p1/3 ≤ t ≤ p1/2.
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We note that the first bound has been known (with the implied constant c = 1) for
long time [5, 6, 7, 8] but the second and the third estimates are due to [4] and have
been obtained by a different method.

We also remark the papers [2, 3] in which, motivated by some cryptographic ap-
plications, the sums

U (a) =
τ∑

x=1

e(aϑex

),

where e is some integer and τ is the period of the sequence ϑex
, x = 1, 2, . . . modulo

p, have been estimated. In particular, it is shown in [3] that if the sequence ϑex

,
x = 1, 2, . . . is purely periodic modulo p then for any integer ν ≥ 1

max
gcd(a,p)=1

|U (a)| = O(τ 1−(2ν+1)/2ν(ν+1) p(3ν+2)/4ν(ν+1)+ε).

Nevertheless it is not clear how to use methods of the above works in order to
estimate sums S(a). Thus here we use quite different arguments.

Let τ (k) and ϕ(k) denote the number of distinct positive divisors and the Euler
function of an integer k ≥ 1, respectively. We use the following well known bounds

τ (k) = O(kε), ϕ(k)�
k

ln ln(k + 2)
,(1)

see Theorems 5.1 and 5.2 in Chapter 5 of [9].

Lemma 1 For any integer t ≥ 1 the number N(t) of solutions 1 ≤ x, y ≤ t of the
congruence x2 ≡ y2 (mod t) is bounded by

N(t) ≤ 4tτ (t).

Proof For each pair of integers u, v the system of congruences

x + y ≡ u (mod t), x − y ≡ v (mod t)

has at at most 4 solutions in 1 ≤ x, y ≤ t . Indeed, from the above congruences we
conclude that

2x ≡ u + v (mod t), 2y ≡ u− v (mod t).

Thus, x and y are uniquely defined modulo t/ gcd(2, t). Therefore N(t) ≤ 4M(t),
where M(t) is the number of solutions of the congruence

uv ≡ 0 (mod t), 1 ≤ u, v ≤ t.

For M(t) we have

M(t) =
t∑

u=1

gcd(t, u) =
∑
d|t

d
t∑

u=1
gcd(u,t)=d

1 ≤
∑
d|t

dϕ(t/d) ≤ tτ (t)

and the desired result follows.

We also need the following estimate which is essentially Theorem 8 of [1].
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Lemma 2 For any integers a and b such that gcd(a, b, p) = 1, the bound

t∑
v=1

∣∣∣
t∑

u=1

e(aϑu + bϑuv)
∣∣∣ = O(t5/3 p1/4)

holds.

Now we are ready to prove our main result.

Theorem 1 The bound

max
gcd(a,p)=1

|S(a)| = O(t5/6+εp1/8)

holds.

Proof For an integer x let us denote by Q(x) the number of solutions 1 ≤ y ≤ t of
the congruence x ≡ y2 (mod t).

Let Q denote the set of squares modulo t which are relatively prime to t . That is,

Q = {z | 1 ≤ z ≤ t, gcd(z, t) = 1,Q(z) ≥ 1}.

We remark that

t∑
x=1

Q(x) = t,
∑
z∈Q

Q(z) = ϕ(t),
t∑

x=1

Q2(x) = N(t).(2)

From the Cauchy-Schwarz inequality and from (2) we conclude

ϕ(t)2 =
(∑

z∈Q

Q(z)
) 2
≤ |Q|

∑
z∈Q

Q2(z) ≤ |Q|
t∑

z=1

Q2(z) = |Q|N(t),

Accordingly,

|Q| ≥ ϕ(t)2N(t)−1.(3)

Obviously Q(x) = Q(xz) for any integer x and any z ∈ Q. Therefore

S(a) =
t∑

x=1

Q(x)e(aϑx) =
1

|Q|

∑
z∈Q

t∑
x=1

Q(xz)e(aϑxz) =
1

|Q|
W (a),(4)

where

W (a) =
t∑

x=1

Q(x)
∑
z∈Q

e(aϑxz).
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From the Cauchy-Schwarz inequality and (2) we derive

|W (a)|2 ≤
t∑

x=1

Q2(x)
t∑

x=1

∣∣∣
∑
z∈Q

e(aϑxz)
∣∣∣

2

= N(t)
∑

z1,z2∈Q

t∑
x=1

e
(

a(ϑxz1 − ϑxz2 )
)

≤ N(t)
t∑

z1,z2=1
gcd(z1z2,t)=1

∣∣∣
t∑

x=1

e
(

a(ϑxz1 − ϑxz2 )
) ∣∣∣ .

Substituting u ≡ xz1 (mod t) and v ≡ z2/z1 (mod t) and then extending the sum-
mation over all v = 1, . . . , t , we obtain

|W (a)|2 ≤ N(t)ϕ(t)
t∑

v=1

∣∣∣
t∑

u=1

e
(

a(ϑu − ϑuv)
) ∣∣∣ .

If gcd(a, p) = 1 then from Lemma 2 we conclude

|W (a)|2 � N(t)ϕ(t)t5/3 p1/4.

Substituting this bound in (4) and using the inequality (3) we derive

|S(a)| � N(t)3/2ϕ(t)−3/2t5/6 p1/8.

Now the desired result follows from Lemma 1 and the bounds (1).

Let us denote by D(a) the discrepancy of the following sequence of fractional parts

{ aϑx2

p

}
, x = 1, . . . , t,(5)

that is,

D(a) = sup
0≤α≤1

∣∣∣ Aa(α)

t
− α
∣∣∣ ,

where Aa(α) is the number of fractions (5) which hit the interval [0, α).
Applying Corollary 3.11 of [8] we immediately obtain the following bound.

Theorem 2 For any integer a such that gcd(a, p) = 1, the bound

D(a) = O(t5/6+εp1/8)

holds.
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It is easy to see that the bounds of Theorems 1 and 2 are non-trivial for t ≥ p3/4+ε.
It would be useful to reduce the exponent 3/4. In particular it has been explained in
[1] why it is important to obtain non-trivial estimates in the range t ≥ p2/3.

We believe that our method can be applied to sums

Sn(a) =
t∑

x=1

e(aϑxn

)

as well.
Unfortunately we still do not know how to estimate more general sums

S(a, b) =
p−1∑
x=1

e(aϑx2

+ bϑx)

which are related to statistical properties of the Diffie-Hellman pairs (ϑx, ϑx2
) mod-

ulo p; we refer to [1] for more details.
Sums

S( f ; a) =
t∑

x=1

e(aϑ f (x))

with arbitrary polynomials f (X) ∈ z[X] are of interest as well.
Finally we remark that the sequence

ux ≡ ϑ
x2

(mod p)

satisfies the following simple recurrence relation

ux+3 ≡ u3
x+2u−3

x+1ux (mod p).

Thus, this and our uniformity of distribution results, can probably make this se-
quence useful for pseudo-random number generation.
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