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Abstract

In this study, we present and assess data-driven approaches for modeling contact line dynamics, using droplet
transport on chemically heterogeneous surfaces as a model system. Ground-truth data for training and validation are
generated based on long-wavemodels that are applicable for slow droplet motionwith small contact angles, which are
known to accurately reproduce the dynamics with minimal computing resources compared to high-fidelity direct
numerical simulations. The data-driven models are based on the Fourier neural operator (FNO) and are developed
following two different approaches. The first deploys the data-driven method as an iterative neural network
architecture, which predicts the future state of the contact line based on a number of previous states. The second
approach corrects the time derivative of the contact line by augmenting its low-order asymptotic approximationwith a
data-driven counterpart, evolving the resulting system using standard time integration methods. The performance of
each approach is evaluated in terms of accuracy and generalizability, concluding that the latter approach, although not
originally explored within the original contribution on the FNO, outperforms the former.

Impact Statement

Deep learning methods have been increasingly developed and utilized in making critical predictions in complex
engineering problems. A new category of such methods incorporates some physical insight (e.g., conservation
laws) in their architectures, in order to guide the training of the deep learning models and improve their accuracy.
A similar approach is followed in the present study, focusing on the AI modeling of traveling droplets over a
chemically heterogeneous surface, which is a type of flow that is of interest across a broad spectrum of
technological areas such as microfabrication, biomedicine, and energy applications among others. More
specifically, the best-performing model in the present study uses an analytically derived, albeit imperfect model
as the base solution, upon which corrections are introduced in a data-driven manner. This approach is
demonstrated to accurately capture the dynamics, even for surface profiles that are significantly different from
the ones used to train the data-driven model. Adopting such an AI-assisted approach holds the potential to
significantly reduce the solution time compared to computationally intensive high-fidelity simulations, exped-
iting also the design of surface features for controllable droplet transport. This approach, which is being applied
for the first time in the context of contact line dynamics, constitutes a proof-of-concept that may be extended in
different settings beyond contact line motion.
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1. Introduction

Wetting hydrodynamics concerns the dynamics of liquids in contact with surfaces and entails multi-
physics processes that operate at disparate scales. Central to this class phenomena is the motion of the
contact line, which is formed at the junctionwhere typically liquid, gas, and solid phasesmeet. Depending
on the level of detail at which the dynamics are resolved, this can often pose formidable large-scale
computing challenges. These challenges are often overcome by resorting to low-fidelity models which
typically rely on empirical approximations to capture unresolved physics. However, this limited predict-
ive capability is not desirable in applications of practical importance, where the need to precisely control
how a liquid behaves when deposited on a surface is key. These challenges are highly relevant to a broad
spectrum of scientific and technological areas, including, to name a few, microfabrication, smart
materials, biomedicine, pharmaceutical and printing industries, as well as energy conversion and water
harvesting in environmental applications (see, e.g., Bonn et al., 2009, for a review). Thus, in order to
address the need for accurate and efficient data generation in these settings, deep learning approaches
emerge as a promising alternative to high-fidelity simulations.

In the broader context of fluid dynamics, the uptake of deep learning methodologies has been
overwhelming in the past few years, mainly due to the abundance of data generated from experimental
and numerical studies, the evolution of hardware, especially in graphics processing units (GPUs), and the
broad availability of efficient open source frameworks and algorithms (Brunton et al., 2020; Vinuesa and
Brunton, 2021). Some illustrative examples of areas in fluid dynamics where deep learning approaches
are being used include, among others, turbulence modeling (Ahmed et al., 2021), reduced-order models
for extracting dominant coherent structures (Lee and Carlberg, 2020), nonintrusive sensing (Guastoni
et al., 2021). In contrast, the adoption of deep learning in multi-phase flows is not as widespread, with
many open questions and opportunities for delivering impact (Gibou et al., 2019). Noteworthy here are
two works involving multi-phase flows with a deep learning orientation, which study the data-driven
prediction of the kinematics of spherical particles (Wan and Sapsis, 2018) and bubbles (Wan et al., 2020).
In these works, imperfect models, which were obtained through analytical arguments and possess a
limited regime of applicability, are complemented with a data-driven contribution that is trained to learn
the difference between the prediction of the imperfect analytical model and the reference solution. The
reported performance of these hybrid models highlights the merits of such an approach, as they were
shown to generalize well to more complex cases outside the training datasets. This was achieved without
the need to make readjustments to the network parameters, whilst being able to significantly improve the
predictions of the pertinent analytical models.

However, the potential of deep learning methods for the study of the dynamics of contact lines as an
alternative to computationally expensive simulations has not been previously explored. Hence, this work
constitutes a first attempt toward the development of data-driven models that are able to reproduce the
dynamics of isolated droplets moving on heterogeneous surfaces. To this end, there is presently a
proliferation of candidate deep learning architectures that may be deployed depending on the intended
application. Within the context of using neural networks for learning solutions to partial differential
equations (PDEs), like the ones considered herein, it is important for such data-driven approaches to be
capable of obtaining generalizable models. Suchmodels may then be used for a broad range of parameters
and auxiliary data that capture as diverse dynamics as possible, extending beyond the dynamics of the
training datasets. This is particularly true when dealing with transport phenomena in the presence of
complex heterogeneous environments, where small temporal or spatial errors can lead to markedly
different behaviors in the longer term.

One particularly interesting class of such neural network architectures is associated with the
concept of the neural operator, as it was shown to be capable of learning resolution-invariant
mappings between infinite-dimensional function spaces, in a manner that is able to approximately
capture the relationship between the auxiliary data of a PDE (including its parameters, initial and
boundary conditions) and the solution, without the need to retrain the model for a new set of auxiliary
data (Kovachki et al., 2021b; Lu et al., 2021). A key feature of neural operators is the combination of
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linear, nonlocal operators with nonlinear, local activation functions. The way these nonlocal operators
are represented lies at the heart of neural operator architectures, giving rise to various alternatives,
which include, for example, spectral representations, graph neural networks, low-rank kernel decom-
positions, and fast multipole methods (see, e.g., Kovachki et al., 2021b, for an overview). Other classes
of deep-learning-based PDE solvers include physics-informed neural networks (PINNs) (Raissi et al.,
2019), solver-in-the-loop (Um et al., 2021), and message-passing neural PDE solver (Brandstetter
et al., 2022), among others.

The present study examines the use of the Fourier neural operator (FNO), originally proposed by
Li et al. (2020), which parametrizes the nonlocal operator in the Fourier space. This specific
formulation was tested by Li et al. for different PDEs, such as the Burgers and the Navier–Stokes
equations and was shown to be competitive against other established deep learning methods such as
fully convolutional networks (Zhu and Zabaras, 2018), residual neural networks (He et al., 2016),
U-Nets (Ronneberger et al., 2015), and so forth. FNO was also shown to be a subcase of DeepONets
(Lu et al., 2021), which constitute a broader framework for representing neural operator architectures
(Kovachki et al., 2021a). Lu et al. (2022) presented a comprehensive comparison between FNO and
DeepONet. Both approaches were found to exhibit similar accuracy and performance levels in a range
of examples, but FNOs were less flexible than DeepONets in handling complex geometries. More
recently, the FNO architecture was extended to better tackle complex geometries as well (Li et al.,
2022). Focusing on the computing cost–accuracy trade-off, De Hoop et al. (2022) concluded that
FNOsmay be the better choice for one- and two-dimensional problems, but DeepONets are preferable
for three-dimensional problems, because the cost of FNOs scales with the dimensionality of the
problem. For the problem under investigation, FNOs are arguably the method of choice as they
naturally apply to periodic domains, in alignment with the periodicity of the closed contact lines
considered herein. Hence, rather than pursuing the route of showing detailed comparisons with
other candidate architectures which have already been followed in the aforementioned works (see,
e.g., Li et al., 2020; De Hoop et al., 2022; Lu et al., 2022), in this work, we examine two alternative
uses of FNOs. Both approaches are applied to one-dimensional data derived from the evolution of a
contact line, which is parametrized by the azimuthal angle about the centroid position of the
contact area.

Training and testing datasets consist of contact line snapshots as a droplet traverses the heteroge-
neous features of the substrate. Two approaches are presented here, which are evaluated in terms of
accuracy and generalizability: in the first (hereinafter referred to as approach A), the FNO is used as an
iterative architecture, predicting the solution at fixed time steps based on the history of the system,
following similar ideas as those presented in the original contribution on the FNO (Li et al., 2020); in the
second (referred to as approach B), the FNO augments a less accurate leading-order analytical
approximation to the contact line velocity, which is then evolved in time using standard techniques.
In this manner, the aim is to improve upon an approximate model, derived from the work of Lacey
(1982), with a data-driven component for capturing higher-order corrections. The second approach is
inspired by the asymptotic analyses carried out by Savva et al. (2019) and Savva and Groves (2021),
which have shown that the inclusion of additional terms can indeed considerably improve the
agreement with solutions to the governing equation. It is also similar in spirit with other recent
contributions, although these were applied in other physical systems and employed different neural
network architectures (Wan and Sapsis, 2018; Wan et al., 2020). An account of the numerical methods
used for generating simulation datasets and the training of the data-driven models is presented in
Section 2. This is followed by the presentation of the results of the two different approaches in Section 3,
summarizing the key findings of the work in Section 4.

2. Methods

This section provides an overview of themathematical model and themethods used for producing training
datasets, alongside with a brief description of the deep learning architecture employed.
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2.1. Mathematical model

Studying systems involving moving contact lines requires expensive multiphase and multiscale compu-
tational fluid dynamics simulations based on a number of different approaches, the most popular of which
being phase field models (see, e.g., Huang et al., 2020; Shahmardi et al., 2021), volume-of-fluid methods
(see, e.g., Afkhami et al., 2009; Popinet, 2009), and the Lattice Boltzmann method for mesoscale
problems (see, e.g., Kusumaatmaja and Yeomans, 2007; Srivastava et al., 2013). In the limit of strong
surface tension, negligible inertia, and small contact angles, we may invoke the so-called long-wave
theory (Greenspan, 1978) to deduce a single nonlinear PDE for the evolution of the droplet thickness
h x, tð Þ as it moves on a horizontal and chemically heterogeneous surface in space x= x,yð Þ and time t, cast
in dimensionless form as

∂thþ∇ � h h2þ λ2
� �

∇∇2h
� �

= 0, (1a)

where λ is the slip length that is used to relax the stress singularity that would occur at a moving contact
line with the classical no-slip boundary condition (Huh and Scriven, 1971). Equation (1a) is made
nondimensional by scaling the lateral scales with ℓ= V= 2π tanφð Þ½ �1=3, h with ℓ tanφ, λ by ℓ tanφ=

ffiffiffi
3

p
,

and t by 3μl= γ tan3φð Þ, where V is the droplet volume, φ a characteristic wetting angle, assumed to be
small, γ is the surface tension, μ is the viscosity, and ρ is the density of the liquid. This free boundary
problem is associated with a set of boundary conditions, which are enforced along the contact line x = c tð Þ,
which needs to be determined as part of the solution, namely

h c, tð Þ= 0, (1b)

∇hj jx= c = tanΦ cð Þ, (1c)

vν = λ
2ν �∇∇2h

��
x= c

, (1d)

where vν is the normal velocity of the contact line (ν is the outward unit normal vector to the contact line on
the x� y plane) and Φ xð Þ corresponds to the profile of the local contact angle. While such a model is
merely an approximation to the full Navier–Stokes equations, it is broadly employed at least within its
regime of applicability (Mahady et al., 2013).

Although the model described by equations (1a)–(1d) is considerably simpler than the governing full
Navier–Stokes equations, its simulation is also challenging, particularly when the slip length is taken to be
realistically small. This is because as λ! 0, the problem becomes numerically stiff due to the increased
curvature of the free surface near the contact line, which requires small time steps to evolve the model
(Savva et al., 2019). These high computing requirements can potentially hinder progress toward
developing data-driven modeling approaches to tackle such problems.

Therefore, in order to mitigate the need for the large computing resources which are required for
establishing this proof-of-concept study on contact line dynamics, we have opted to produce datasets by
invoking the asymptotic model developed by Savva et al. (2019) and Savva and Groves (2021), which
reduces equations (1a)–(1d) to a set of evolution equations for the Fourier harmonics of the contact line.
The equations are evolved with a typically nonstiff time-stepping algorithm, such that the overall scheme
has a reduced computational overhead compared to the full problem (see Savva et al., 2019 for details on
the numerical methodology used). The capacity of such a reduced-order model to reproduce solutions to
equations (1a)–(1d) was scrutinized by detailed numerical experiments in the aforementioned works. It
was found to consistently be in excellent agreement with the predictions of equations (1a)–(1d) in all the
tested scenarios, including droplet transport in the presence of strongwettability gradients, for moderately
elongated droplets, and when surface features induce stick–slip events as the contact line traverses them.

2.2. The FNO deep learning architecture

The data-drivenmodeling procedure is focused on approximatingmappingsG between function spaces in
terms of neural network architecture. The trained network is expected to take a set of arrays I as input
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(realizations of the input function space) and provide a different set of arrays O as output, such that
approximate realizations of the output function space are given by O =GΘ I½ �, where GΘ approximates G
as a neural network architecture with model parameters Θ. Following the neural operator formulation
presented in Kovachki et al. (2021b), GΘ is determined from a function composition of the form:

GΘ =Q  ∘  σ WLþKLð Þ∘ ⋯ ∘ σ  W2þK2ð Þ ∘ σ W1þK 1ð Þ ∘ P, (2)

where P is a lifting operator, Kn are nonlocal integral kernel operators, Wn are local linear operators
(matrices), σ is some activation function, Q is a projection operator, and L is an integer specifying the
number of interior layers of the network. The lifting and projection operations are performed by shallow
neural networks and are therefore point-wise and fully local. The purpose of the lifting and projection
operators is to facilitate the training in a higher-dimensional space where GΘ can be captured more
accurately (Kovachki et al., 2021b). The most critical parts of the architecture are the integral kernel
operators that can approximate the nonlocal mapping properties much like Green’s functions act as
nonlocal solution operators for linear PDEs.

A key distinguishing feature among different approaches based on neural operators is the way the
nonlocal integral kernel operators are computed. In the present study, the most appropriate realization of
this method is the one adopted within the context of FNOs (Li et al., 2020), since the Fourier transform
lends itself naturally to performing computations on the periodic contact line. In this approach, a forward
and an inverse Fourier transform, denoted as F and F �1, respectively, are used to approximate the
nonlocal, convolution-type integral operators, namely,

K n~I =F
�1 RnF ~I

� �� �
, (3)

and each σ WnþKnð Þ operator is called a Fourier layer. In the above expression, ~I is a two-dimensional
array (with one dimension set by the lifting operator and the other dimension set by the spatial
discretization) used as the input to the integral operator, with F applied on the spatial dimension of ~I .
Moreover, Rn is a matrix that holds the learned weights of each Fourier mode describing the input, ~I . In
this manner, equation (3) can be viewed as a convolution filter, which affords the flexibility of selectively
discarding higher Fourier modes if desired. This can be a useful feature for preventing overfitting and for
reducing the parameter space. Using this parametrization in the Fourier space removes the dependence on
the domain discretization, in the sense that models trained on a specific grid can be tested on different
grids. If, additionally, the domain is discretized on a uniform grid, Fast Fourier Transform algorithms can
be readily applied, drastically accelerating the overall training procedure.

Thus, for fixed L, the model parameters Θ consist of the elements of Q, P, Ri, andWi, for i= 1,…,L.
The FNO architecture is schematically presented in Figure 1, referring the interested reader to the
contribution by Li et al. (2020) for more details on this formulation. In this study, we use a PyTorch
implementation of the FNO, with the option of activating the distributed learning framework Horovod
(2023) to facilitate the training of the data-driven model on multiple GPUs for the more demanding cases.
The values of the FNO hyper-parameters adopted are specific to each test case and are described in
Section 3, which are supported by the parametric exploration presented in Supplementary Appendix B. To
provide data-driven surrogate models for droplet transport, the FNO is utilized following two different
approaches, as detailed in the next two subsections.

2.2.1. Approach A: An iterative neural network architecture
With this approach, the solution at each time-step ti = idt, dt is the time interval between snapshots, is
obtained in a fully data-drivenmanner by iteratively evaluating the trained network.More specifically, the
first 10 profiles of the contact line shape c t0ð Þ,c t1ð Þ,…,c t9ð Þf g and the corresponding local contact angles
Φ c t0ð Þð Þ,Φ c t1ð Þð Þ,…,Φ c t9ð Þð Þf g are used as input, expecting the output of the model to yield the contact

line position at t = t10, that is, c t10ð Þ. This prediction is then used along with the solutions at the 9 previous
time-instances, namely c t1ð Þ,c t2ð Þ,…,c t9ð Þ,c t10ð Þf g, and the corresponding local contact angles to feed
the data-driven model in predicting c t11ð Þ. This process is then repeated until the solution is determined at
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the final time after 90 iterations, namely until t = t99, allowing adequate time for the wetting processes to
influence the droplet state. The choice of the number of input states considered is the same as the one used
by Li et al. (2020), whichwas also empirically found to be the best choice for the present study.Within this
approach, the training error EA

train, is given by

EA
train =

1
N train

XNtrain

n= 1

1
90

X99
i = 10

cnAI tið Þ� cnsim tið Þ�� ��
2

cnsim tið Þ�� ��
2

, (4)

where N train is the number of training samples (simulation cases), cnAI tið Þ and cnsim tið Þ correspond to the
contact line shapes of training sample n at time ti, as predicted by the AI and the reference simulation
model, respectively. Equation (4) corresponds to the average error that accumulates over the course of
iteratively evaluating the neural network architecture, noting that this metric was also employed in the
original work which introduced the FNO (Li et al., 2020). An analogous expression to equation (4) is used
for estimating the testing error EA

test, using N test simulation cases.

2.2.2. Approach B: A neural network architecture to improve a low-accuracy model
With the second approach, a data-driven model is trained to improve the accuracy of a reduced-order
model. As previously mentioned, the use of neural network architectures in this manner was also explored
previously, see, for example,Wan and Sapsis (2018) andWan et al. (2020), albeit in different applications
and with different neural network architectures. In the present study, such a hybrid model is developed for
the normal contact line velocity vν in the form:

υν = υνþH c,υνð Þ
lnλj j with υν =

ϕ3∗�ϕ3

3 lnλj j , (5)

which includes the leading contribution, υν, valid as λ! 0 (Lacey, 1982), andH , which is obtained in a
data-driven manner and lumps together higher-order corrections to v

�

ν
. The leading term depends on the

Figure 1. Schematic representation of the FNO architecture as presented in Li et al. (2020). Top panel:
The overall architecture. The auxiliary data used as input to the model is first lifted to a higher-

dimensional space via P. This is followed by a series of Fourier layers, before the output is projected
down to the solution space with the application of operator Q. Bottom panel: Schematic of a single

Fourier layer. The input is passed through two parallel branches, the top one applying the forward and
inverse Fourier transforms and the bottom one applying a local linear operator. The two branches are

merged together before applying the activation function.
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local contact angle ϕ∗ =Φ cð Þ and the apparent contact angle of the droplet, ϕ, as obtained from the
equivalent quasi-equilibrium problem which arises from equation (1a), namely

∇2h x, tð Þ= k tð Þ, x∈Ω tð Þ, (6a)

h c, tð Þ= 0, x= c, (6b)

Z
Ω
h x, tð Þdx= 1, (6c)

such that ϕ= �ν �∇hjx= c. Here, Ω tð Þ is the wetted domain of the substrate corresponding to the contact
line x= c tð Þ, which is assumed to be a simple, closed, and nearly circular curve, and k tð Þ is a parameter to
be determined subject to the volume constraint as given by equation (6c). The solution to the problem
described by equations (6a)–(6c) cannot satisfy the condition on the contact angle, equation (1c), and as
such, it only approximates the solution away from the contact line. This solution is obtained efficiently
using the boundary integral method, avoiding the need to obtain the profile of the drop everywhere inΩ tð Þ
(see Savva et al., 2019, for details).

In principle, H is expected to depend on c, vν, ϕ∗, λ, albeit more weakly on λ and ϕ∗ (Savva et al.,
2019). Here, H is assumed to depend solely on c and v

�

ν
instead of vν itself, which is deemed a

reasonable approximation that balances model accuracy and complexity. In this manner, the profile
of the surface heterogeneities is only implicitly affecting the higher-order corrections, which is a
key feature that can help us obtain a model that can be reliably used for unseen heterogeneity
profiles. The training dataset for Approach B consists of data for c, v

�

ν
, and vν, taken over 100 randomly

selected snapshots from N train simulation cases. The training error is therefore estimated using

EB
train =

1
N train

XN train

n= 1

1
100

X100
i = 1

Hn
AI tið Þ�Hn

sim tið Þ�� ��
2

Hn
sim tið Þ�� ��

2

, (7)

where, in this context, we takeH sim = lnλj j vν�v
�

ν

	 

. Similarly, the testing error, EB

test, is estimated using

N test simulation cases. OnceH is trained using simulation data, the AI-augmented model equation (5) is
evolved using time integration schemes that are typically used for the numerical solution of ordinary
differential equations.

2.2.3. A measure for performance comparison between the two approaches
Since the FNO architecture is employed differently in the two approaches pursued in this work, the
corresponding error measures, as defined in equations (4) and (7), cannot be used to compare their
performance, because they measure different quantities. In order to more quantitatively compare the two
approaches, an auxiliary error measure is proposed, which is defined at the end of the time interval of the
simulation, as

Eaux = dF cAI,csimð Þ
ffiffiffi
π
A

r
, (8)

whereA is thewetted area of the contact line and dF cAI,csimð Þ is the Fréchet distance, which is ameasure of
similarity between curves, taking into account the location and ordering of the points along the curves (Alt
and Godau, 1995). The expression for Eaux normalizes the Fréchet distance by a characteristic radius
derived from the area of the wetted region.

In the following sections, the respective expressions for Etrain and Etest are used to monitor the AI
training procedure for each approach (see, e.g., Figure 2), while Eaux is used to quantify the model
performance in some illustrative cases derived from different surface heterogeneity profiles (see, e.g.,
Figure 3), as a means to facilitate the comparison between the two different approaches.
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3. Results

For all the tests presented herein, the generated datasets consist of snapshots of droplets that spread and
travel over chemically heterogeneous surfaces, and in the absence of other body forces (e.g., gravity). The
chosen value for the slip length is kept constant, namely λ= 10�3, the droplet volume is fixed at 2π and the
initial contact line shape is the unit circle, whilst the profile of the chemical heterogeneity of the surface
and the initial droplet position are allowed to vary across different samples in the datasets. The generated
data used for training is converted to a polar representation that follows the centroid of the wetted area in
terms of 128 uniformly distributed points on the contact line based on the azimuthal angle. Specific details
on the datasets and heterogeneity profiles employed for each of the two approaches are provided in the
following sections.

Figure 2. Approach A, trained on varied striped heterogeneity profiles. Training and testing errors as a
function of the number of epochs for three different datasets with N tot = 150 (red curves; N train = 120 and
N test = 30), N tot = 300 (blue curves; N train = 240 and N test = 60), and N tot = 600 (black curves; N train =
480 and N test = 120). Dashed and solid curves show the training errors EA

train and testing errors EA
test,

respectively.

Figure 3.ApproachA, trained on varied striped heterogeneity profiles given by equation (9). Comparison
between FNO predictions (orange curves) and simulation data (blue curves and semi-transparent filled
areas) at the end of the simulation interval, for profiles that are described by equation (9), but were not
used in the training/testing dataset. The specific parameters used to describe the surface heterogeneities
in each case are listed in Supplementary Appendix A. The surface profile is colored in shades of gray
ranging between Φ= 2 (white) and Φ= 3 (black). For each case, Eaux is (a) 2:1, (b) 1:5, and (c) 5:5%,

respectively.
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3.1. Approach A: The fully data-driven model

Significant preliminary effort has been invested in determining (i) the type of heterogeneity profilesΦ xð Þ
that are necessary for a droplet to exhibit different types of behaviors for the model to learn (e.g.,
spreading, receding, excitation of higher harmonics, stick–slip dynamics, etc.), (ii) the time step dt
between the contact line snapshots at which the model is to be trained/queried, such that each snapshot
varies sufficiently from one instance to the next, and (iii) the near-optimal model hyper-parameters that
can provide reliable predictions on unseen samples, targeting a testing error, EA

test, in the order of 10
�2, see

equation (4). For each of the training scenarios performed with approach A,N tot samples were generated,
with 100 contact line snapshots per sample. Of these samples, 80%were used for training and the rest were
used for testing. The models were trained using an initial learning rate of 10�3, which was then halved
every 50 epochs. A rectified linear unit (ReLU) activation function was adopted, noting that other choices
in preliminary runs resulted in less accurate models (see Supplementary Table 4). All other relevant AI
parameters are mentioned in each of the following subsections.

3.1.1. Training on varied striped profiles
Themodel is first trained with samples that combine horizontal and vertical striped features, assuming the
form

Φ xð Þ= 2þp1
1þ tanh p2cos p3πxð Þð Þ

2
þp4

1þ tanh p5cos p6πyð Þð Þ
2

, (9)

where the parameters p1,p2,…,p6 are uniformly distributed random numbers; p1 and p4 lie in the range
�0:5,0:5½ �; the rest lie in the range �5,5½ �. With these parameter bounds, the local contact angle value
range is 2<Φ < 3. Therefore, each simulation run is unique, both in terms of the heterogeneity profile and
the initial droplet position. The droplet motion was sampled until t = 2, such that in most cases the droplet
was sufficiently close to its equilibrium position. The effect of the FNO-specific hyper-parameters is
examined in Supplementary Appendix B, where it is shown that a hyperspace of 128 channels, with
2 Fourier layers retaining 8 Fourier modes, can be considered as the best model for this training (see
Supplementary Table 1). The training and testing errors are shown in Figure 2 for different dataset sizes.
The model withN tot = 600manages to reach testing errors of about 0.4% and is used in subsequent model
assessments.

Figure 3 compares the FNOpredictions and the reference solutions at the end of the simulation for three
different heterogeneity profiles, which were not included in the training dataset, but were constructed
separately using equation (9) similar to the training samples (the specific parameter values are listed in
Supplementary Appendix A). Visually inspecting the results with horizontal stripes (Figure 3a) and a
combination of horizontal and vertical stripes (Figure 3b) suggests that the FNO predictions agree
excellently with simulation results with Eaux of approximately 2%. For both surfaces, the attainable
values for Φ were in the range of 2<Φ< 2:5. Upon broadening this range to 2<Φ< 2:8, increased Eaux,
but to a still acceptable value of about 5.5% (see Figure 3c). This degradation in the agreement may be
attributed to the arguably limited number of samples used to capture a multi-dimensional parameter space
(six surface parameters and two for the randomized initial droplet position), which appears to be also
exacerbated by sharper and broader wettability contrasts.

For surface profiles that are not described by equation (9) and are therefore outside the training dataset
distribution, the comparison of the FNO predictions against the reference solutions deteriorates. Figure 4
presents three such cases, referring the reader to Supplementary Appendix A for more details on the
specific profiles forΦ xð Þ. Figure 4a shows a case which is similar to the training dataset but rotated by 30∘,
Figure 4b shows a sample with smoothly varying random features and Figure 4c shows a sample with a
large-scale wettability gradient, each attaining Eaux values of 2.7, 11.4, and 56.9%, respectively. It is clear
that, even though the model is well-trained and performs well on surfaces with heterogeneities that are
drawn from the same distribution as the training dataset, it cannot generalize well enough outside this
distribution. This is especially true for cases where the centroid of the droplet travels on the surface under
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the influence of pronounced wettability gradients, such as the test case shown in Figure 4c. A richer
training dataset with increased complexity (in terms of heterogeneity profiles and therefore contact line
shapes) should be considered to improve the model’s generalizability.

3.1.2. Training with more complex heterogeneity profiles
To improve upon the previous effort, a more complex heterogeneity profile is considered for generating
the dataset, cast as a 7-parameter family of profiles of the form:

Φ xð Þ= 1þp1~xþp2 tanh p3cos p4 ~xsinp6þ~ycosp6ð Þð Þcos p5~xð Þ½ �, (10)

where ~x= xcosp7�ysinp7 and ~y = xsinp7þycosp7. Parameters p1,…,p7 are uniformly distributed
random numbers in the ranges p1 ∈ 0,1=15½ �, p2 ∈ 0,0:2½ �, p3 ∈ �5,5½ �, p4,p5 ∈ 0,4π=3½ �,
p6 ∈ �π=2,þπ=2½ �, and p7 ∈ �π,þπ½ �.

Qualitatively, profiles of this form include heterogeneities that superimpose a wettability gradient and
secondary features in terms of angled checkerboard patterns, which may also degenerate to striped
patterns (see, e.g., Figure 6 for some representative profiles generated by equation (10).More specifically,
p1 controls the strength of the gradient, whereas p2 and p3 control thewettability contrast and the steepness
of the secondary features, respectively. Parameters p4 and p5 set the wavelength of the secondary features,
whereas p6 and p7 represent random rotations of secondary features and the gradient, respectively. In
collecting the data necessary for the training and testing, care was taken to ensure that all simulations
corresponding to each realization of equation (10) and its initial conditions resulted in dynamics that
conformed with the requirement Φ c tð Þð Þ> 0 for all t > 0.

For each sample heterogeneity profile, a simulation run of 400 dimensionless time units is performed to
allow for sufficient time for a droplet to move in the presence of wettability gradients, within which
100 contact line snapshots are uniformly sampled. Supplementary Appendix B presents the parametric
exploration of the FNO-specific hyper-parameters, motivating the choice of a hyperspace with 128 chan-
nels and 2 Fourier layers retaining 8 Fourier modes, as the best choice for this effort (see Supplementary
Table 2). Figure 5 shows the training and testing errors for different dataset sizes, revealing that the model
with N tot = 2000 achieves testing errors as low as 0.4% and is used to produce the results in this section.
The increased dataset size compensates for the increased complexity of the surface heterogeneities
considered, leading to a testing error which is of the same order as in Section 3.1.1.

Figure 4. Approach A, trained on varied striped heterogeneity profiles given by equation (9). Comparison
between FNO predictions (orange curves) and simulation data (blue curves and semi-transparent filled
areas) at the end of the simulation interval, for profiles that cannot be described by equation (9) and are
therefore outside the training distribution: (a) horizontal and vertical striped features, rotated by 30∘,
(b) smoothly varying random features, and (c) wettability gradient along the x-direction. The specific

equations used to describe the surface heterogeneities in each case are given in Supplementary Appendix A.
The substrate shading follows that of Figure 3. For each case, the auxiliary error is 2.7, 11.4, and 56.9%,

respectively.
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Figure 6 compares the FNOpredictions and the reference solution for six cases that can be expressed by
equation (10), albeit not used during the AI training (specific parameters used to describe the hetero-
geneities for each case are listed in Supplementary Appendix A). Even though the model performance is
generally less favorable than the one presented in the previous section, it is able to capture a greater variety

Figure 5. Approach A, trained on heterogeneity profiles given by equation (10). Training and testing
errors as a function of the number of epochs for three different datasets with N tot = 500 (red curves;N train

= 400 and N test = 100), N tot = 1000 (blue curves; N train = 800 and N test = 200), and N tot = 2000 (black
curves;N train = 1600 andN test = 400). Dashed and solid curves show the training errors EA

train and testing
errors EA

test, respectively.

Figure 6. Approach A, trained on heterogeneity profiles given by equation (10), comparing the FNO
predictions (orange curves) and simulation data (blue curves and semi-transparent filled areas) at the
beginning (circular contact lines) and the end of the simulation interval for different realizations of

equation (10) that were not used during training/testing. The specific parameters used to describe the
heterogeneities in each case are given in Supplementary Appendix A. The surface profile is colored in
shades of gray ranging betweenΦ= 1 (white) andΦ= 2 (black). The value of the auxiliary error for each

case is (a) 10.2%, (b) 13.1%, (c) 5.1%, (d) 31.4%, (e) 77.2%, and (f) 49.3%.
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of behaviors. In the cases where the droplet primarily spreads on the heterogeneous surface without
moving appreciably from its initial position (e.g., Figure 6a,c), the model performs moderately well, with
Eaux≲10%. In other scenarios, where the droplet is traveling on the surface and the heterogeneities are
more complex, themodel performance deteriorates, withmuch larger discrepancies between the predicted
contact line position and the reference solution. Also noteworthy is that the predicted contact lines develop
unphysical instabilities, most notably observed in Figure 6b,e, where the variations in the surface features
are relatively smooth and do not justify the contact line protrusions predicted by the model.

3.1.3. Overall assessment
At this stage, we have gathered sufficient evidence to offer some commentary in relation to the
performance of Approach A, which, as mentioned previously, is similar in spirit as the approach followed
in the original contribution by Li et al. (2020) who proposed the FNO architecture. Specifically, we have
identified the following shortcomings that potentially severely limit the applicability of suchmodels in the
context of wetting:

Limited generalizability. This approach works generally well only if the unseen surface heterogeneity
profiles are relatively simple (e.g., no significant movement of the droplet centroid) and are drawn from
the same distribution as the heterogeneity profiles in the training dataset. Unlike the test cases considered
in the original contribution of Li et al. (2020), the parameter space herein considered is inherently multi-
dimensional. This is rather limiting, because there can exist countless parameters that can be used to
describe heterogeneity features, such as their arrangement, smoothness, the wettability contrast, and so
forth. This has an adverse effect on the requirements for the size of the training dataset, which needs to be
sufficiently large to accommodate a broad representation of the effects of the different heterogeneity
characteristics that a surface may possess. Hence, this approach has significant generalization challenges
that may only be overcome by supplementing the training dataset with types of heterogeneity profiles that
are qualitatively similar to the target testing scenarios.

Solution can only be queried at fixed intervals; using the data-driven model requires part of the
simulation to be completed. A number of sequential solutions is required to provide a reliable estimation
of the subsequent solution, the temporal spacing of which is problem-dependent and therefore limits the
generalizability of this approach even further. Moreover, these solutions should be uniformly spaced in
time while the subsequent solution can only be predicted at a fixed step, respecting the uniform time
spacing of the previous solutions. In the case presented here, 10 initial solutions were deemed adequate to
provide a reasonable prediction for the next 90 solutions. In the case of longer simulations with a larger
number of solutions to be predicted, it is possible that more solutions should be used as input to themodel.
Therefore, this approach requires simulating the initial stages of the target testing scenario (in the present
study this amounts to 10% of the simulation), before deploying the data-driven model for predicting how
the contact line evolves.

3.2. Approach B: AI-augmented model for the contact line velocity

In an effort to move past the limitations listed above, approach B, presented in Section 2.2.2, is followed
here, using the same dataset as in Section 3.1.2 to facilitate a fair comparison between the two approaches.
Thus, instead of using information for the heterogeneity profiles which was necessary for approach A,
approach B includes the leading-order term of the contact line velocity v

�

ν
in the input data. The rest of the

details of the training process remain the same, apart from the FNO-related hyper-parameters, an
exploration of which is presented in Supplementary Appendix B. Specifically, in Supplementary Table
3,we see that the architecture with 128 channels with 4 Fourier layers retaining 16 Fouriermodes gives the
best performance in the explored parameter range. In addition, a Gaussian error linear unit (GELU) was
used as the activation function since it was found to provide the most accurate results (see Supplementary
Table 4).

Figure 7 presents the training and testing errors, defined in equation (7), as a function of the number of
epochs, for different dataset sizes. An initial learning rate of 10�3 is used, which was halved every
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50 epochs.Within this approach, the model withN tot = 2000 achieves testing errors of 10% and is used for
the results presented in this section. It is worth noting that, even though this error is significantly larger
compared to the one obtained in Section 3.1.2, the presence of the leading-order term already provides a
reasonable initial estimate for the contact line velocity. It is the correction to this estimate that the data-
drivenmodel under approach B tries to capture, which, in some cases, is close to zero thus producing large
relative errors as it appears in the denominator of the summand in equation (7).

After developing a data-driven counterpart toH in equation (5), we advance the solution in time with a
time-stepping routine. Specifically, we employ a third-order explicit Runge–Kutta method (Bogacki and
Shampine, 1989) within the scipy.integrate.solve_ivp solver in Python, noting that this choice is a good
compromise between accuracy and efficiency as it requires only a few forward passes through the AI
model per time step. Nonetheless, this specific time-stepping scheme is not in any way a prerequisite of
this approach, as other time integration schemes can be applied with similarly accurate results. Figure 8
compares the AI-augmented predictions based on approach B against the reference simulation results, for
the same cases shown in Figure 6. As evidenced, the agreement is much improved compared to
approach A, exhibiting low values for Eaux without the nonphysical contact line protrusions that were
observed previously.

To assess the generalization capabilities of this approach, Figure 9 shows comparisons for heterogen-
eity profiles that are described by equation (10), but the specific values for the equation parameters are
well outside their corresponding ranges considered during training. More specifically, the heterogeneity
profiles used are variations of the profile of Figure 8d. In Figure 9a, a value of p3 = 10 is used, leading to
significantly sharper checkerboard patterns compared to those obtained with p3 ∈ �5,5½ � for the training
dataset. The model performs in a very satisfactory manner with an auxiliary error of 4.0%, which is
slightly elevated compared to the error obtained in the original case, see Figure 8d. Of course, as the
sharpness of these features increases further, numerical instabilities may occur if the number of harmonics
considered is not sufficiently large to capture the high-frequency components in the contact line profile.
This already makes the simulation problem challenging itself, and this would possibly be a regime where
the AI-driven model may also struggle to accurately resolve. In Figure 9b, a value of p2 = 0:4 is used,
resulting in a higher wettability contrast in the checkerboard pattern compared to those seen during
training with p2 ∈ 0,0:2½ �. In this case, the droplet is only able to spread as it cannot overcome the
wettability barrier, with an auxiliary error of only 3.0%. A third example, see Figure 9c, presents a case
where p2 = 0:4 and p1 = 0:1, imposing a steeper background gradient compared to the range of values
considered for p1 during training. In this case, the droplet moves further along the wetabillity gradient,

Figure 7. Approach B, trained on heterogeneity profiles given by equation (10). Training and testing
errors as a function of the number of epochs for three different datasets with N tot = 500 (red curves;N train

= 400 and N test = 100), N tot = 1000 (blue curves; N train = 800 and N test = 200), and N tot = 2000 (black
curves;N train = 1600 andN test = 400). Dashed and solid curves show the training errors EA

train and testing
errors EA

test, respectively.
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exhibiting an auxiliary error of 11.7%. A closer inspection reveals that this disagreement stems from the
more pronounced stick–slip events that occur, whereby the depinning of the contact line is more likely to
be mistimed compared to the reference solution. This observation was also made in the context of
asymptotic models for contact line dynamics (Savva and Kalliadasis, 2011). Nonetheless, the agreement
between the two solutions is very satisfactory, leading us to conclude that the AI-assisted approach

Figure 8. Approach B, trained on heterogeneity profiles given by equation (10), comparing the FNO
predictions (orange curves), and the reference simulation solutions (blue curves and semi-transparent
filled areas) using the same heterogeneity profiles of Figure 6. The value of the auxiliary error for each
case is (a) 2.3%, (b) 4.5%, (c) 1.1%, (d) 2.6%, (e) 0.9%, and (f) 8.1%, much lower compared to the values

reported, in Figure 6.

Figure 9. Exploring the range of applicability of approach B. The plots compare the FNO predictions in
accordance with equation (5) (orange curves) and the reference solutions (blue curves and semi-

transparent filled areas) for the contact line positions at the start and the end of simulations, as the droplet
traverses the features of the surface. All heterogeneity profiles are derived from the profile used in

Figure 8d (see equation (10) with the actual parameters given in Supplementary Appendix A) by altering
the value of a single parameter in each case: (a) p3 = 10; (b) p2 = 0:4; (c) p1 = 0:1 and p2 = 0:4. The

heterogeneity profiles are colored in shades of gray, ranging between Φ = 1 (white) and Φ= 2 (black).

e24-14 Andreas D. Demou and Nikos Savva

https://doi.org/10.1017/dce.2023.19 Published online by Cambridge University Press

http://doi.org/10.1017/dce.2023.19
https://doi.org/10.1017/dce.2023.19


presented here is able to handle more challenging heterogeneity profiles compared to the ones encoun-
tered during training.

Figure 10 further demonstrates the generalization capabilities of the model trained with the second
approach in significantly different heterogeneity profiles. Figure 10a shows the movement of a droplet on
a heterogeneous surface featuring the superposition of a checkerboard pattern and a gradient that turns
around a wettability barrier (see Supplementary Appendix A for the specific equation for Φ xð Þ). In this
setup, the droplet starts from the upper left region and undergoes a long excursion away from its initial
position to settle on themore hydrophilic part of the surface on the lower left region. Such a surface profile
is considerably more complex than the family of profiles the AI-augmented model was trained on, see
equation (10). Moreover, as shown in this figure, a simulation with the leading-order term alone, υν = υν,
leads to large discrepancies throughout the simulation. Upon augmenting the low-order model with its AI
correction, the errors considerably diminish, with Eaux at about 1.6% on the final solution. This further
supports the idea that the leading term already captures the effect of the heterogeneity features, allowing
approach B to better capture the dynamics on unseenΦ xð Þ, whilst requiring fewer data. A second example
is provided in Figure 10b in which a broader contact angle range is used than the one used during training,
and the slip length is changed to λ= 10�5, two orders of magnitude smaller than the value used to generate
the training dataset, λ= 10�3. Despite these appreciable changes, the AI predictions are in a good
agreement with the reference simulation results, with Eaux at about 4.0% at the end of the simulation.
As in Figure 10a, the predictions of the leading-order term are visibly inaccurate, but the AI model is able
to correct these predictions successfully. These observations highlight the capacity of the AI-augmented
model to generalize beyond the cases encountered during the training phase as long as the training samples
exhibit sufficiently rich behaviors.

The improved performance documented in this section demonstrates that approach B overcomes the
main drawbacks of approach A, presented at the end of Section 3.1. The only drawback of approach B is
the reliance on standard time integration schemes to advance the solution in time. This requirement entails
a longer testing time, especially in case adaptive time stepping is used to meet the stability criteria of the

Figure 10. Generalizability of approach B. The plots compare the FNO predictions in accordance with
equation (5) (orange curves), simulation results of the model that takes vν = v

�

ν
defined in equation (5)

(green curves), and the reference solutions (blue curves and semi-transparent filled areas) for the contact
line positions in several time instances as the droplet traverses the features of the surface for (a) a surface
profile that is markedly different from the heterogeneity profiles used in training/testing, and (b) a profile
that covers a broader range of contact angles and for λ = 10�5, two orders of magnitude smaller than the
value used for training. The specific equations used to describe the heterogeneities in each case are given
in Supplementary Appendix A. The surface profiles are colored in shades of gray, ranging between

(a) Φ = 1 (white) and Φ= 2 (black), and (b) Φ= 1 (white) and Φ = 3 (black).
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scheme, thus also increasing the number of times the network needs to be evaluated. However, this feature
is not too restrictive, because both the forward pass in the FNOmodel and the calculations of the leading-
order term are comparatively much cheaper than solving the governing model given by equations (1a)–
(1d). Although approach A is able to almost instantaneously predict the contact line evolution, it is to be
noted that in order to be able to start using the FNO network, a considerable portion of the simulation
needs to be completed by a standard solver, thus making the overall computational cost much greater
compared to the cost required for a simulation based on approach B.

4. Conclusions

This study explored two data-driven approaches for modeling the motion of droplets on chemically
heterogeneous surfaces, which are based on the FNO. The first approach follows a fully data-driven
pathway, where, the neural network is used in an iterative manner for predicting the solution at fixed time
intervals, whereas the second augments a leading-order analytical model for the contact line velocity with
a data-driven component, which is then used to advance the solution with standard time integration
schemes. The second approach possesses a significant performance advantage in terms ofmodel accuracy
and generalizability. The key feature behind the success of the second approach is the fact that the model
already encodes some of the physics and the AI model is tasked to learn corrections to that model. In
addition, this approach retains the capabilities of the FNO to be used on different grids, without the need to
retrain the model.

We should emphasize that, for the system considered here, an asymptoticmodel is readily available and
it can already efficiently and accurately resolve the motion of droplets on chemically heterogeneous
surfaces (Savva et al., 2019). However, thework undertaken here constitutes a proof-of-concept study that
may be extended, generalized, and refined for other situations where such asymptotic models are not
available. For example, the inclusion of further complexities (e.g., body forces) quickly renders asymp-
totic analyses intractable, whereas resorting to this type of data-driven surrogate modeling approach
appears to be a viable alternative to expensive direct numerical simulations.

The present work also opens a number of possibilities for further exploration in forthcoming studies.
First, the findings of this study can guide the generation of the corresponding direct numerical simulation
datasets for deploying this data-driven workflow on high-fidelity simulations that go beyond the long-
wave limit, considering improvements upon simple models that are applicable for larger contact angles
(Cox, 1986; Snoeijer, 2006; Afkhami et al., 2018). In addition, such efficient surrogates may be leveraged
in informing strategies for controllable droplet transport, by accelerating the use of inverse modeling
approaches for the design of surface features, alleviating long design cycles that typically rely on trial and
error through experiments and/or computationally demanding multi-dimensional parametric studies
through direct numerical simulations.
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