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ABSTRACT

Traditional Chain Ladder models are based on a few cells in an upper triangle
and often give inaccurate projections of the reserve. Traditional stochastic
models are based on the same few summaries and in addition are based on the
often unrealistic assumption of independence between the aggregate incremental
values. In this paper a set of stochastic models with weaker assumptions based
on the individual claims development are described. These models can include
information about settlement and can handle seasonal effects, changes in mix
of business and claim types as well as changes in mix of claim size. It is demon-
strated how the distribution of the process can be specified and especially how
the distribution of the reserve can be determined. The method is illustrated with
an example.
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1. INTRODUCTION

In this paper a particular approach to stochastic claims reserving is taken where
relatively complete information of individual claims is used. The model is
described in theoretical terms, however as can be seen, it has many practical
applications.

TRADITIONAL RESERVING MODELS:

Traditional stochastic models (e.g. England and Verrall 2002), including Mack’s
model (e.g. Mack 1993), are based on the crucial and yet often ignored assump-
tion that the incremental amounts in the ‘upper triangle’ are stochastically
independent.
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Let us consider a simple example of incremental claims costs arranged tra-
ditionally:

114 CH. ROHOLTE LARSEN

Accident period
No. of periods to development

1 2

1 0 2
2 2 0
3 1 1
4 0 ?

If no further information is available, most people would suggest a reserve of 2.
However, the traditional Chain Ladder and stochastic models would lead to a
reserve of 0!

The example illustrates the importance of the assumption of independent
incremental values and of using the underlying data, if it is available.

If the figures were individual claim figures a reserve of 2 would also seem to
be a sensible answer. The model presented in this paper would also give this result.

The situation where the incrementals are correlated, perhaps not as obvi-
ously as illustrated above, is common and in these situations the Chain Ladder
model and traditional stochastic models are not appropriate. This is the main
motivation for developing more precise models.

INDIVIDUAL CLAIMS MODELS:

While individual claims development has been the subject for reserving models
recently, e.g. Mahon (2005) where the claims distribution is modelled, the start-
ing point in this paper is the stochastic Poisson process. The claims not yet
reported are therefore integrated in the model. This is similar to the nonpara-
metric Bayesian approach by Haastrup and Arjas (1996) where the number of
partial payments are considered. The approach is also similar to that of Norberg
(1999) where the partial claims are modelled using the Dirichlet distribution.

The presented model below is a parametric model utilising General Linear
Models (GLMs). It projects the effect of changes in portfolio size, changes of
mix of business, changes of mix of claim types, seasonal effects and changes
of empirical claims distribution. The pure period inflation can be estimated and
isolated from inflation caused by changes in portfolio mix.

Applying GLMs on individual claims data has been used before e.g. Tay-
lor and McGuire (2004) where a stochastic model of the total amount paid per
finalised claim is fitted using GLMs. The model presented below does not
require information concerning settlement.

The model includes an estimation of the multi dimensional distribution
of the future incurred amounts per development period given the incurred
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accumulated amount at the beginning of the period and given other informa-
tion concerning the claim, such as claim type and policy information. Based on
this distribution the mean of the future changes, i.e. the required reserve in excess
of the individual reserve, and even the distribution of this or any function of it
or of the total projection can be calculated. Where a theoretical calculation in
best case would be extremely complicated a projection via simulation can be
obtained. The model addresses the common situation where the incremental
amounts concerning a specific claim are not stochastically independent and is
dynamic in the sense that the future incremental amounts are stochastically
dependent on the past incremental amounts. The model can take the claims set-
tlement into consideration and this will be discussed briefly.

The model deals specifically with the fact that the development of large claims
is often very different from the development of other claims.

While the model here is based on Incurred Amounts it could equally be based
on Payments.

Although the model is complex compared to traditional reserving models,
each model component is manageable and the parameters can be estimated
using traditional distributions such as Generalised Pareto Distributions and
smoothing methods such as GLMs.

The paper is structured as follows: In section 2 the basic model is formu-
lated as a Marked Poisson Process (MPP) and the stochastic reserve is defined.
In section 3 a discrete version is created by making several assumptions and
the process likelihood is described. In section 4 it is demonstrated how the
distributions can be modelled using GLMs and other traditional smoothing
methods. In section 5 examples are outlined based on policy and claims data
from a Marine portfolio. In section 6 the resulting distributions of the reserve
and of the IBNR reserve are outlined. In section 7 the Bootstrap method as
a tool to create the estimation uncertainty is briefly outlined.

2. THE MARKED POISSON PROCESS

The claims process is described in the framework of MPPs. The advantage is
that general statements and results are available from this theory which facil-
itates the construction of the likelihood. Decomposing the process as described
below turns out to be particularly useful.

2.1. Definition of the MPP

Norberg (1999) defines a MPP as follows:

A claim is a pair C = (T, Z), where T is the time of occurrence of the claim and
Z is the so-called mark describing its development from the time of occurrence
until the time of final settlement.

The claims process is a random collection of claims {(Ti, Zi)}i = 1, …,N, the
index i indicating chronological order so that 0 < T1 < T2 < …

AN INDIVIDUAL CLAIMS RESERVING MODEL 115

9784-07_Astin37/1_06  30-05-2007  14:57  Pagina 115

https://doi.org/10.2143/AST.37.1.2020801 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020801


It is assumed that the times are generated by an inhomogeneous Poisson process
with intensity w(t) at time t > 0.

It is assumed that the distribution of the mark Zi only depends on i through
Ti i.e. is of the form Zi = ZTi

, where {Zt}t > 0 is a family of random elements
that are mutually independent and also independent of the Poisson process, and
Zt ~ PZ : t.

The claim process is then called a Marked Poisson Process (MPP) with
intensity w(t) and position-dependent marking PZ : t and we write

{(Ti, Zi)}i =1, …, N ~ Po(w(t), PZ : t ; t > 0). (2.1)

We shall exclusively consider marks of the form

Zi = (Ji,YJ, i,YJ +1, i, …,YD, i,Gi) (2.2)

with domain Ji ∈{1,...,D},YJ, i + … + YJ + n, i ≥ 0, n ∈{0,...,D – J}, Gi ∈C, where
i is the claim identification index, Ji is the stochastic reporting delay in years i.e.
Ji = 1 if the claim i is reported within the calendar year of occurrence, Jl = 2
if reported the year after etc. and where Yk, i is the stochastic incremental
incurred amount in the development period k ∈{Ji, ...,D} (we implicitly assume
that the claims are settled after D development years) and Gi ∈ C is a discrete
stochastic characteristic of the claim, for example claim-type and information
from the policy the claim is covered under.

We shall denote t(i) the outcome of Ti and Ii = 1 + [Ti ] i.e. the stochastic year
of occurrence concerning claim i and i(i) the outcome of Ii. Similarly j(i) is the
outcome of Ji i.e. the reporting delay concerning claim i and g (i) the outcome
of Gi i.e. the characteristic of the claim i.

The claim identification index i will frequently be omitted i.e. Yk = Yk, i ,
i = i (i), j = j (i) etc.

CLAIMS SETTLEMENT:

We will briefly discuss the situation where the settlement of the claim is included
in the mark: We consider the indicator variables Uk, i where Uk, i = 1 if the claim
i is closed by the end of the development period k and Uk, i = 0 otherwise and
consider marks of the form

Z = (J,YJ,YJ + 1,…,YD,UJ,UJ +1,…,UD,G) where index i has been omitted. (2.3)

2.2. The stochastic reserve

The stochastic outstanding claims reserve RD (in excess of the individual case
reserve) at the end of year D, is defined as the sum of all incremental amounts
Yk, i incurred after time D concerning claims that have occurred by the end of
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year D i.e. where the sum goes over all i and k where i(i) ≤ D and D + 1 – i(i) <
k ≤ D. For simplicity the index i has been omitted below:

, <
D k

i D D i k D1

=
# #+ -

R Y! (2.4)

The stochastic IBNR reserve IBNRD at time D is defined as the sum of all incre-
mental amounts in the future concerning claims that have occurred at time D
but are reported after time D i.e. where j (i) > D + 1 – i (i):

IBNR
> , , <

D k
j D i i D D i k D1 1

=
# #+ - + -

Y! (2.5)

We are interested in the conditional distribution of both the RD-reserve and
of the IBNRD-reserve given the information at time t = D or more generally in
the conditional distribution of the MPP Po (w(t), PZ : t ; D ≥ t ≥ 0) given the
process’ value at the end of period D, i.e. at time t = D.

2.3. Decomposing the process

The MPP can be decomposed into independent sections. The advantage of
this is that the likelihood can be split into corresponding products which can
be maximised in isolation.

We will consider a partitioning of the calendar year into q intervals or sea-
sonal periods, for example quarters, months or even days. The motivation for
this partitioning is that while the distributions can change over time (0,D) it
would be reasonable to assume that the changes through the shorter intervals are
negligible.

Let 0 = s0 < ... < sq = 1 be fixed values. The intervals [ i – 1 + sm – 1, i – 1 +
sm[ , i = 1,...,D, m = 1,...,q will be denoted by im.

The interval that the point of time ti belongs to is denoted im(i) or just im.
Similarly we shall denote m(i) (or just m) the interval number concerning ti.

We now decompose the process by the values of (i, m, j, g). In other words,
for each combination of i,m, j and g we consider the process where T ∈ im and
Z = ( j,Yj ,Yj + 1,…YD,g). The process is here called the (i, m, j, g)-component
process and the claims are called the (i, m, j, g)-claims. The number of (i, m, j, g)-
claims will also be denoted Ni, m, j, g or N (i,m, j,g).

We will also identify the claims by (i, m, j, g,n) where n = 1,…,Ni, m, j, g so that,
after rearranging the indices, the incremental amounts are Yi, m, j, k, g, n.

We then have the following expressions for the outstanding claims reserve
RD and for the IBNR reserve IBNRD :

R , , , , ,
, ..., , , ,
, ..., , , ...,

, ..., ,
>
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n N i m j g
i D j D
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(2.6)
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Below we will show that under certain assumptions the conditional distribu-
tions of the sums given the process’ value at time D can be regarded as sums
of stochastically (conditional) independent variables.

It follows (Norberg (1999)) that the (i, m, j, g)-component processes are
MPPs, that they are independent and that the (i, m, j, g)-claims occur with an
intensity which is the claim intensity multiplied by the probability that the claim
is a ( j,g)-claim i.e.

wi, m, j, g(t) = w(t)PZ : t{J = j, G = g}
(2.8)

= w(t)PZ : t{J = j |G = g}PZ : t{G = g}, t ∈ im.

By decomposing the process by (i, m, j, g) the distribution of the mark in the
component process ( j,YJ, i ,YJ + 1, i,…,YD, i, g) is equal to the distribution of
(YJ, i,YJ + 1, i,…,YD, i) given (i, m, j, g). It also follows that Ni, m, j, g are independent
and Poisson distributed and independent of the marks.

3. A DISCRETE MODEL

From the above it is seen that we must specify the following:

1: w(t)

2: PZ : t{G = g}

3: PZ : t{J = j |G = g} and

4: PZ : t{YJ, i,YJ + 1, i,…,YD, i} given (i, m, j, g).

This is done in the following four sections.

The sections 3.1 and 3.2 concern the distribution of the time of occurrence and
of the type of claim. In section 3.3 a ‘Chain-Ladder’ assumption is made which
is suitable for reserving purposes where information concerning the ‘future’ is
missing and where extrapolation of information concerning the past into the
future is required.

Section 3.4 deals with the multi-dimensional distribution of the incurred
amounts in the years after occurrence for a single claim. Assumptions are made
to discretisise the distribution and to reduce the D-dimensional problem into
a more practical two-dimensional problem.
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3.1. w (t) 

We assume that the intensity w(t) is constant in year i, except for the same
seasonal variation within the year, i.e. we assume that there exist positive figures
wi , i = 1,..., D and sm, m = 1, ..., q so that:

w(t) = wi sm, for t ∈ im. (3.1)

3.2. PZ : t{G = g}

While allowing for changes in business mix and/or claim type mix over the period
[0,D ] we assume that PZ : t{G = g} is constant for t ∈ im i.e. that the change in
business mix through these shorter periods im is negligible.

Let ei,m be the exposure in the interval im and ei,m,g the exposure concerning
the (i, m, j, g)-claims.

We will then use the parameterisation

PZ : t{G = g} = c (ei,m,g /ei,m) f (i,m,g), t ∈ im (3.2)

where c > 0, f (i,m,g) > 0 and f (1,1, g1) = 1 for a reference level g1 of G.

3.3. PZ : t{J = j |G = g}

In order to estimate the distribution of J given G, i.e. of the reporting delay
for each group of business g, we assume that this distribution is independent
of year of occurrence.

We therefore assume that the distribution of the reporting delay for each
group g of business is ‘the same’ for each year. Formally, we assume that
PZ : t{J = j |G = g}, t ∈ im, only depends on t through t – [t] i.e. that there exists
a function r’ of ( j,g, t – [t]), for which

PZ : t{J = j |G = g}= r’( j,g, t – [t]), t ∈ im (3.3)

This implies that the conditional distribution of the development delay J given
G is independent of the year of occurrence i. The assumption made therefore
corresponds to the assumption that is often made when e.g. the aggregated
number of claims is modelled using simple Chain-Ladder.

RESULT 1:
As a consequence of the assumptions made in sections 3.1, 3.2 and 3.3 the num-
ber, Ni, m, j, g, of (i, m, j, g)-claims is Poisson distributed with mean 

E (Ni,m, j,g) = e ,
,

i m
t i m!
#

] g
wi,m, j,g(t)dt 

= ei,m,g cwi sm f (i,m,g) r
,t i m!

#
] g

’( j,g, t – [t]) dt 

= ei,m,g cwi sm f (i,m,g) r (m, j,g) (3.4)
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where

r (m, j, g) = r
,t i m!

#
] g

’( j,g, t – [t]) dt. (3.5)

It should be emphasised that the development pattern r(m, j, g) concerning g-
claims can be dependent on g and m but not on i.

3.4. PZ : t{YJ, i ,YJ + 1, i , …,YD, i} given (i, m, j, g).

The remaining part of the distribution to be specified is of the mark (Yj,i,Yj + 1, i,
…,YD, i), in the (i, m, j, g)-components processes.

In order to handle the multi-dimensional time dependent distribution of the
mark (Yj,i,Yj + 1, i, …,YD, i) we make two assumptions:

1: PZ : t(Yj,…,YD) only depends on t through (i,m) i.e.

PZ : t(Yj,…,YD) = P (Yj,…,YD), t ∈ im (3.6)

It then follows that the (Yj,i ,Yj + 1, i, …,YD,i) are identically distributed given (i, m,
j, g). It is seen that the assumption is fulfilled if, for example, all increases of
the incurred amounts occur at the beginning of the period im.

2: The conditional distribution of (Yk |Yk – 1,…,Yj ), k = j + 1,..., D, only depends
on (Yk – 1,…,Yj) through a function of (Yk – 1,…,Yj) i.e. a function h exists so
that 

PZ : t (Yk |Yk – 1,…,Yj ) ~ PZ : t (Yk | h (Yk – 1,…,Yj)). (3.7)

Let Sk = Yk + … + Yj i.e. the accumulated incurred amount. The assumption is
for example fulfilled for h (Yk – 1,…,Yj) = Sk if the process (Sk), k = j,…,D is a
Markov Chain.

We have omitted the index i from the Yk and Sk .

RESULT 2:
Under the assumptions 1) and 2) we have

Pt(YD,YD – 1,…,Yj ) = Pt(YD |YD – 1,…,Yj ) Pt(YD – 1,…,Yj ) = …..

= P(YD | h(YD – 1,…,Yj ))*P(YD – 1 | h(YD – 2,…,Yj ))*… *P(Yj), t ∈ im (3.8)

The main advantage is that the conditional distributions are independent while
still maintaining a possibility that the incremental amounts are dependent on
the past developments.

Below we shall only deal with the situation where 

h(Yk – 1,…,Yj) = Sk. (3.9)
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However, h could be extended in different ways, e.g. h could include the infor-
mation whether or not the total incurred amount has been positive at some stage
in the past.

CLAIMS SETTLEMENT:

If the indicators Uk (= 1 if the claim is closed, otherwise 0) were included in
the mark we could for example consider functions of the form h (Yk – 1…,Yj ,
Uk – 1, …,Uj ) = (h1(Yk – 1,…,Yj), h2(Uk – 1,…,Uj)).

RESULT 3: THE LIKELIHOOD

Combining Result 1 and 2 it is seen that the (unconditional) joint distribution
of the process can be specified by for each component (i, m, j, g) specifying the
independent Poisson distributions of Ni, m, j, g , and by specifying the distribution
of Yj and of Yk given h(Yk – 1, …,Yj), k = j + 1,..., D which are all independent
and also independent of the Ni, m, j, g.

It follows that the likelihood, Li, m, j, g, for the observations for the (i, m, j, g)-
component is

Li, m, j, g = Po(ni, m, j, g, ei, m, g cwi sm f (i,m,g) r(m, j,g))
(3.10)

> , , ..., , , ,D i k j l N i m j g1 1$- + =

%
] g

P(yi, m, j, k, g, i | h (yi, m, j, k – 1, g, i,…,yi, m, j, j, g, i), i,m, j,g)

Since the components are independent the total likelihood is the product of all
the component likelihoods.

RESULT 4: THE CONDITIONAL DISTRIBUTION OF THE PROCESS

We are interested in the conditional distribution of the process given the process
at time t = D. Obviously, it is only the conditional distribution of the part of
the process where t > D we are concerned about.

Since the N’s and Y’s are independent so are the conditional distributions
of the N’s and Y’s given the information at time t = D.

The conditional distribution of the ‘future’ Ni, m, j, g , j > D – i + 1 is the same
as the unconditional distribution since the N’s are independent.

Let Ys +1 = ys +1, ...,Yj = yj be the observed values at time D, i.e. s + 1 = D,
j ≤ D. It follows (by successive conditioning) that the conditional distribution
of the ‘future’ Y’s are determined by the conditional distributions P(Yk | h(Yk – 1,…
Ys,Ys + 1 = ys + 1, ...,Yj = yj), k > D – i + 1, which are independent and also inde-
pendent of the N ’s.

When the underlying conditional distribution is fully specified (an example
is outlined below) the future N’s and Y’s can be simulated and the corre-
sponding reserves calculated by summarising relevant Y ’s. Approximations to
the distribution of the reserves can then be obtained by repeating the simula-
tions.

AN INDIVIDUAL CLAIMS RESERVING MODEL 121

9784-07_Astin37/1_06  30-05-2007  14:58  Pagina 121

https://doi.org/10.2143/AST.37.1.2020801 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020801


3.5. Observation plan:

We recall that

i is the year of occurrence, 1,…, D
m the season, 1,…, q
j the number of years to reporting the claim, 1,…, D
k the number of years to development, 1,…, D
g a characteristic of the claim, say claim type

ei,m,g the exposure for g-claims in year i and season m
Ni,m, j,g the number of (i, m, j, g) claims
Yi,m, j,k,g, i the incremental incurred amount for (i, m, j, g) claims with k years

to development, i = 1,…, Ni,m, j,g

We only observe Ni,m, j,g for the cells in the past, i.e. where i + j – 1 ≤ D and
Yi,m, j,k,g, i where i + k – 1 ≤ D, j ≤ k.

The observations can be arranged in a set of upper triangles, one for each j :

122 CH. ROHOLTE LARSEN
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4. MODELLING THE PROCESS USING GLM

We will for simplicity exclude the seasonal effect i.e. q = 1 and omit the index m.

The discrete stochastic characteristic G of the claim is of the form G = G1 ≈
G2 ≈ … ≈ Gn corresponding to n covariates, for example, n = 2, G1 = Class of
business and G2 = Claim Type.

9784-07_Astin37/1_06  30-05-2007  14:58  Pagina 122

https://doi.org/10.2143/AST.37.1.2020801 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020801


4.1. The distribution of the number of claims Ni, j,g

The number of claims Ni, j, g is fully specified by the mean structure since it is
Poisson distributed. It is assumed that there are no interactions i.e. that the
mean has the form

E(Ni, j,g1,g2, …gn
) = ei, j,g1,g2,…gn

cfI(i) fJ( j) f1(g1)… fn(gn) (4.1)

where (g1,…,gn) ∈ G1 ≈ … ≈ Gn, fI, fJ, f1,..., fn are positive functions of the covari-
ate levels, c > 0 and where ei, j,g1,g2,…gn

is the exposure in number of insurance
years. Please note that the exposure is independent of the reporting delay j
and of any covariate which does not originate from the policy covering the
claim such as claim type.

This is a GLM with exposure as offset, log as link function and Poisson as
distribution.

REMARKS:

In order to acquire a reasonable fit, interactions can be included in the model.
However interactions between I and J could have implications in forecasting
which would need careful consideration. For simplicity interactions are ignored
in this paper.

For each covariate there is a reference-level for which the factor is 1. There-
fore the mean concerning the reference cell (i.e. the cell consisting of the com-
bination of all the reference-levels) is proportional to the exposure i.e. E (N) =
ec for the reference cell.

Please note that in the situation where there are no covariates g the model
gives the same estimates as the Chain Ladder model based on volume weighted
averages. This follows from the fact that the sums N ’i. and N ’. j of the estimated
values N ’i, j in the upper triangle in both models are equal to the observed sums
Ni. and N. j .

By offsetting by the exposure ei, j, g1, g2, … gn
the pure period effect fI (i) can be

quantified as well as the effect implied by changes in the mix of claims.
Changes in the intensity of occurrence can be smoothed by treating the I-

factor fI as a continuous variable.

4.2. The distribution of the incremental amounts Yi, j, j, g

We are considering the distribution of the amount incurred in the reporting
period, k = j. The probability for the event {Yi, j, j, g = 0} is positive and the dis-
tribution of Yi, j, j, g can be specified by the probability P(Yi, j, j, g = 0) and by the
conditional distribution P(Yi, j, j, g |Yi, j, j, g > 0).

The conditional distribution of Yi, j, j, g (given Yi, j, j, g > 0) (or a transformation
of it) could be assumed to be a member of the exponential family and then the
parameters estimated using maximum likelihood estimation. This might be a
reasonable assumption for some portfolios. Alternatively, if this assumption is

AN INDIVIDUAL CLAIMS RESERVING MODEL 123

9784-07_Astin37/1_06  30-05-2007  14:58  Pagina 123

https://doi.org/10.2143/AST.37.1.2020801 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020801


not suitable, the quasi-likelihood approach could be taken. However, since the
reserve distributions will be determined by simulation, difficulties when simu-
lating the incremental amounts would need to be overcome.

In this paper we will take another approach by modelling the small and large
amounts separately. It turns out that the Generalised Pareto Distribution pro-
vides a accurate description of the large claims and simulation from this is
straightforward.

A large value L is chosen. First we specify the probabilities for the three dis-
joint events {Yi, j, j, g = 0}, {0 <Yi, j, j, g < L} and {L ≤ Yi, j, j, g). They are uniquely deter-
mined by the conditional probabilities p>0 = P(Yi, j, j, g > 0) and p>L = P(Yi, j, j, g >
L |Yi, j, j, g > 0) via the expressions 

P(Yi, j, j, g = 0) = 1 – p>0 ,
P(0 < Yi, j, j, g < L) = (1 – p>L) p>0 and (4.2)
P(L ≤ Yi, j, j, g) = p>L p>0.

The probabilities p>0 and p>L are both assumed to be of the form 1/(1+ p) where 

p = pi, j, j, g1, g2, … gn = cfI (i) fJ ( j) f1(g1)… fn(gn). (4.3)

This is a Logistic Regression Model with the logit function as link function.

Secondly we define the conditional distributions of Yi, j, j, g given the above events:

{0 < Yi, j, j, g < L}:

The conditional distribution of Yi, j, j, g given {0 < Yi, j, j, g < L} is assumed to be
Gamma distributed with mean and variance of the form 

Ec(Yi, j, j, g1, g2,…gn
) = cfI (i) fJ( j) f1(g1)… fn(gn) and (4.4)

Vc (Yi, j, j, g1, g2,…gn
) = Ec(Yi, j, j, g1, g2,…gn

)2f (4.5)

where Ec and Vc denotes the conditional mean and variance given {0 <Yi, j, j, g < L}.

The support for the Gamma distribution is {0 < y} and therefore the choice of
distribution is not entirely consistent. However, if L is large this is not neces-
sarily a significant problem in practice.

{L ≤ Yi, j, j,g}:

The conditional distribution of Yi, j, j,g given Yi, j, j,g ≥ L is assumed to be a Gen-
eralised Pareto Distribution i.e. the distribution function is of the form

F(y) = 1 – [1 + (y – L) / (ab)]– a, a> 0, b > 0. (4.6)

The distribution does not depend on Si, j,k –1,g as defined in (3.9), however, this
could be implemented if required.
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4.3. Distributions of Yi, j,k,g given Si, j, k –1, g = 0, k = j + 1,…D

The distribution of the incremental amounts Yi, j, k,g incurred after the report-
ing period are defined similarly to the distribution of Yi, j, j,g above, however a
covariate concerning the development delay k is also incorporated, for example
it is assumed that the conditional distribution of Yi, j, k, g given {0 <Yi, j, k,g < L} is
Gamma with mean and variance of the form 

Ec(Yi, j, k, g1, g2,…gn
) = cfI (i) fJ( j) fK(k) f1(g1)… fn(gn) and (4.7)

Vc (Yi, j, k, g1, g2,…gn
) = Ec(Yi, j, k, g1, g2,…gn

)2f (4.8)

where Ec and Vc denote the conditional mean and variance given {0 < Yi, j, k, g < L}.
It could further be tested/assumed that the factors concerning I, J and the

covariates are the same for the distributions of Yi, j, j, g and for the conditional
distribution of Yi, j, k,g given Sk – 1 = 0 and that the distributions only differ via
the factors concerning the development k.

4.4. Distribution of Yi, j,k,g given Si, j, k –1, g , Si, j, k –1, g > 0, k = j + 1,…D

This situation is different from the above since the incremental amounts can
be negative.

First we specify the probability for the following five disjoint sets with joint
probability 1: {Yi, j,k,g = 0}, {0 <Yi, j,k,g < L}, {L ≤ Yi, j,k,g}, {0 > Yi, j,k,g > – Si, j,k – 1,g}
and {Yi, j,k,g = – Si, j,k – 1,g}.

It is seen that the probabilities are uniquely determined by the conditional
probabilities p>0 = P(Yi, j,k,g > 0|Si, j,k – 1,g), p>L = P(Yi, j,k,g > L |Yi, j,k,g > 0, Si, j,k – 1,g),
p= 0 = P(Yi, j,k,g = 0 |Yi, j, k, g ≤ 0, Si, j,k – 1,g) and pS>0 = P(Yi, j,k,g > – Si, j,k – 1,g |Yi, j,k,g < 0,
Si, j,k –1,g) since we have the expressions:

P(Yi, j,k,g = 0 | Si, j,k – 1,g) = p= 0(1 – p>0),
P(0 <Yi, j,k,g < L | Si, j,k – 1,g) = (1 – p>L) p>0,

P(L ≤ Yi, j,k,g | Si, j,k – 1,g) = p>L p>0, (4.9)
P(0 >Yi, j,k,g > – Si, j,k – 1,g | Si, j,k – 1,g) = pS>0(1 – p>0)(1 – p= 0) and
P(Yi, j,k,g = – Si, j,k –1,g | Si, j,k – 1,g) = (1 – pS>0)(1 – p>0)(1 – p= 0)

Let 0 = x0 < x1 < … < xh be fixed values (where xh is sufficiently large) and let
SGi, j,k,g be the right interval point that Si, j,k – 1,g belongs to, i.e.

SGi, j,k,g = min{xs : (Yi, j,k – 1,g + … + Yi, j, j, g) ≤ xs} (4.10)

We assume that p=0, p>0, p>L and pS>0 only depends on Si, j,k – 1,g via the group-
ing SGi, j,k,g and that they all have the form 1/(1 + p) where

p = pi, j,k,xs, g1, g2, … gn
= cfI(i) fJ( j) fK(k) fSG(xs) f1(g1)… fn(gn) (4.11)
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Secondly we define the conditional distributions of Yi, j,k,g given the above
events (for Si, j,k – 1,g > 0):

{0 < Yi, j,k,g < L, Si, j,k – 1,g}

The conditional distribution of Yi, j,k,g given (0 < Yi, j,k,g < L, Si, j,k – 1,g) is assumed
to be Gamma distributed with mean and variance of the form 

Ec(Yi, j,k,xs, g1,g2,…gn
) = cfI(i) fJ( j) fK(k) fSG(xs) f1( g1)) … fn(gn) and (4.12)

Vc (Yi, j,k,xs, g1,g2,…gn
) = Ec(Yi, j,k,xs, g1,g2,…gn

)2 f, (4.13)

where Ec and Vc denote the conditional mean and variance and where the covari-
ate SG, capturing the accumulated incurred amount at the beginning of the
period, is incorporated. The distribution only depends on Si, j,k – 1,g through xs.

{Yi, j,k,g ≥ L, Si, j,k – 1,g}

The conditional distribution of Yi, j,k,g given (Yi, j,k,g ≥ L, Si, j,k – 1,g) is assumed
to be a Generalised Pareto Distribution which is not dependent on Si, j,k – 1,g i.e.
the density function is of the form

F(y) = 1 – [1 + (y – L) / (ab)]– a, y > L, a> 0, b > 0. (4.14)

The distribution does not depend on Si, j,k – 1,g , however, this could be implemented
if required.

{0 > Yi, j,k,g > – Si, j,k –1,g , Si, j,k –1,g}

The range for Yi, j,k,g given (0 > Yi, j,k,g > – Si, j,k – 1,g, Si, j,k – 1,g) is obviously] –
Si, j,k – 1,g,0 [and therefore the range for –log((Yi, j,k,g + Si, j,k – 1,g)/Si, j,k – 1,g) is ]0,∞[.

The conditional distribution of Yi, j,k,g given (0 > Yi, j,k,g > – Si, j,k – 1,g , Si, j,k – 1,g)
is specified by assuming that the distribution of –log((Yi, j,k,g + Si, j,k – 1,g)/Si, j,k – 1,g)
is Gamma distributed with mean and variance of the form as above.

REMARKS:

In order to acquire a reasonable fit, interactions can be included in the model.
However interactions between I and J could have implications in forecasting
which would need careful consideration. For simplicity interactions are ignored
in this paper.

The pure period effect fI(i) can be quantified as well as the combined effects
of f1(g1)) … fn(gn) which is the effect of changes in the mix of claims. The pure
period effect (i.e. the pure claims inflation) in the incurred amounts can be
smoothed by treating the I-factor fI as a continuous variable.

CLAIMS SETTLEMENT:

Let us briefly consider the situation where the indicators for closed claim Uk

are included in the mark and consider the functions
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h(Yk – 1…,Yj , Uk – 1,…,Uj) = ((Yk – 1 + … +Yj), Uk – 1). (4.15)

The distributions can be specified by, for example, assuming that Yk and Uk are
conditionally independent given ((Yk – 1+…+Yj ),Uk – 1) and then specifying the
marginal distributions. The marginal distribution concerning Yk and the ‘event’-
probabilities can be specified in the same way as above where an extra covari-
ate fU concerning U is included in the GLMs. The marginal distributions of Uk

given ((Yk – 1 + … +Yj), Uk – 1 = 1) and of Uk given ((Yk – 1+…+Yj), Uk – 1 = 0) can
be modelled using Logistic Regression.

5. AN EXAMPLE

We will illustrate the model based on a Marine portfolio with policy and claims
information available from the period 1992-2004.

5.1. Data

Data consists of the following:

AN INDIVIDUAL CLAIMS RESERVING MODEL 127

Policy records Claims records

Policy Id Policy Id
Start date Claim Id
End date Claim date

Reporting date
Vessel type Claim type
Vessel tonnage Incurred amount
Class of business Transaction date

N Y

i : claim id
i : year of occurrence i : year of occurrence
j : reporting period j : reporting period
e : exposure in years k : development period
g1 : grouped claim type g1 : grouped claim type
g2 : grouped vessel type g2 : grouped vessel type
g3 : grouped vessel tonnage g3 : grouped vessel tonnage
g4 : class of business g4 : class of business
N : Number of claims Yk : incurred amount in the development period k

Sk – 1 : accumulated incurred amount at the end of development
period k – 1

SGk : the discretisised value of Sk – 1.

Based on this data the sufficient statistics are created:
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The N-data has been created as follows: The exposure is first summarised by all
combinations of (i,g2,g3,g4). Then the exposure for the combination of (i, j,g1,
g2,g3,g4) is defined as the exposure for the projection (i,g2,g3,g4) i.e. the expo-
sure is independent of reporting delay j and claim-type g1.

The Y-data has been created as follows: For all observable combinations of
i and k (i.e. where i + k ≤ D + 1) where there are no records of incurred amount
a record is generated with Yk = 0 and thereafter the Sk – 1 and SGk values are cal-
culated.

As an example the empirical mean as a function of SG is outlined below.
The greater the accumulated incurred amount at the beginning of the period
the greater the future average increase given that it is positive and less than
$500,000. However, this trend does not continue for SG > 700,000 where the
mean is approximately $85,000 and independent of SG.
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5.2. Estimation method

The estimated parameters concerning the Poisson, Gamma and Logit models
are the maximum likelihood estimates. The parameters concerning the Gen-
eralised Pareto Distributions are fitted using non linear regression analysis
where the ‘distance between the empirical d.f. and model d.f.’ is minimised. The
process of fitting the parameters in the model-components will be illustrated
below by a few examples.

5.3. Example 1

In order to specify a reasonable model thorough empirical analyses are required.
As a first example we will illustrate the impact of the SG-criteria on the
likelihood that the incremental amount is greater than L = $500,000 given that
it is greater than 0 i.e.

p>L = P(Yi, j,k,g > L |Yi, j,k,g > 0, Si, j,k – 1,g > 0). (5.1)
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The probability p>L is of the form 1/(1 + p) where 

p = pi, j, k, sg, g1, g2, … gn
= cfI(i) fJ( j) fK(k) fSG(xs) f1(g1))… f4(g4). (5.2)

The sufficient statistic is the number of ‘trials’ T and number of ‘hits’ H :

Ti, j,k,sg, g1, g2, g3, g4
= ∑I (Yi, j,k,sg, g1, g2, g3, g4

> 0, Si, j, k –1, g1, g2, g3, g4
> 0) (5.3)

Hi, j,k,sg, g1, g2, g3, g4
= ∑I (Yi, j,k,sg, g1, g2, g3, g4

> L, Si, j,k –1, g1, g2, g3, g4
> 0) (5.4)

where the summary is over the claims identification i.

The observed (equal to estimated) hit-rate, H/T, for each level of the SG-cri-
teria are outlined below. The hit-rate increases dramatically by the SG-value
i.e. for claims where the incurred amount at the beginning of the period is
large there is a much higher likelihood that the incremental value is greater than
$500,000 given that the incremental value is positive.
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5.4. Example 2

We will now focus on the conditional distribution of Yi, j,k,g given that it is
greater than L = $500,000 and given that Si, j,k – 1,g = 0. 371 yearly incremental
amounts of this kind have been observed. A section of the empirical d.f. and
the fitted Generalised Pareto d.f. are outlined below.
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6. ESTIMATING THE DISTRIBUTION OF THE RESERVES RD AND IBNRD

Despite the fact that the joint distribution is fully specified by the one-dimen-
sional conditional distributions, an exact calculation of the conditional distri-
bution of the RD-reserve and of the IBNRD-reserve given all information in the
past, is not simple. The distribution of the total reserve RD and of the IBNRD

reserve, based on 500 simulated ‘ultimate’ projections, is outlined below.
500 repetitions seem sufficient for estimating the fractions up to 95% but reli-
able estimates for higher fractions would need more simulations. The average
time per simulation is approximately 0.5 min. on a Pentium 4, CPU 3.00 GHz,
1.00 GB of RAM.
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7. ESTIMATION OF UNCERTAINTY

Since the observation is random, the estimated parameters, as functions of the
observation, are also random. The implication is that the projected distribution
of the reserve as described above is uncertain. To quantify this uncertainty
the Bootstrap method could be applied since the claims are assumed to be
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stochastically independent, however this has not yet been implemented. This
solution would only be practical if all the programs corresponding to the model
components described in section 4 could be run automatically in a batch and
it would be a huge number of GLM- and GPD-estimations.

The steps would be as follows:

1) From a Poisson distribution with mean equal to the total number N of
observed claims a number M is sampled.

2) M claims {(Tm,Zm)}m =1,…,M} from the set of observed claims {(Ti,Zi)}i,…, N}
are sampled with replacement.

3) The model parameters {p} are estimated based on the sampled claims {(Tm,
Zm)}m =1,…,M}.

4) One reserve outcome is simulated according to the model and fitted para-
meters {p} (as described above) given the original observation.

5) Step 1-4 are repeated e.g. 500 times.

The resulting distribution would be a reasonable approximation to the total
uncertainty i.e. the process variation as well as the estimation uncertainty if the
number of repetitions in step 5) is sufficiently large and if the empirical dis-
tribution is ‘close’ to the distribution of the underlying process, i.e. if there are
‘many’ claims.

8. CONCLUSION

It is concluded that the distribution of the outstanding claims liabilities, when
detailed individual claims information is available, can be assessed by describ-
ing the claims process as a MPP with relatively weak assumptions and using
GLM and GPD to specify the components of the model.

The models can include information about settlement and can handle sea-
sonal effects, changes in mix of business and claim types as well as changes in
mix of claim size.

The models are more suitable than Chain Ladder models and traditional
stochastic models based on aggregated data when the incremental amounts
are not independent.

While the distribution of the process has not been specified in an exact
closed form, the distribution of any function of the process, including the
reserve Gross and Net of Reinsurance, can be approximated via simulation.

Bootstrap could be a practical way forward to assess the combined process
variation and estimation uncertainty, however more work would be required.
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