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ABSTRACT. This paper discusses dielectric properties
of snow according to various dielectric models and
compares them with experimental results. The complex
permittivity of wet snow is assumed to consist of two
parts, being the sum of the permittivity of dry snow (a
mixture of ice and air) and the excess permittivity due
to liquid water (resulting from the dielectric mixture of
water and air). In particular the effect of liquid water
is considered. Exponential models and
structure-dependent models based on mixture theories by
Taylor and Tinga and others are applied. It is shown
that the assumption that water inclusions have the form
of either randomly oriented discs or needles, or of
spheres do, not get empirical confirmation but the
inclusions are preferably prolate ellipsoids (ellipticity
0.16) or oblate ellipsoids (ellipticity 0.12), dry snow
being a dielectric mixture of randomly oriented
discshaped ice particles and air.

RESUME. La constant diélectrique de la neige, formules
de mélange et résultats expérimentaux. On examine les
propriétés diélectriques de la neige déduites de différents
modeles diélectriques et on les compare aux observations. On
suppose que la permitivité complexe de la neige humide est
la somme des permitivités de la neige séche (mélange de
glace et d'air) et de la permitivité due 4 l'eau liquide
(mélange d’eau et d'air). L'influence de I'eau liquide est
particulierement examinée. Des modéles exponentiels et des
modeles structurodépendants basés sur les théories de

INTRODUCTION

The effect of liquid water upon the dielectric
characteristics of snow has been a puzzle for
glaciologists during the last few decades. Several papers
dealing with the electrical properties of snow have been
published. However, the results for wet snow are not
always consistent with one another.

Snow can be treated as a threecomponent mixture
consisting of air, ice, and water. A special case is dry
snow which contains no liquid (free) water. The
dielectric properties of these constituents are well
known, including their frequency dependence (see, for
example, Hallikainen, 1977). Experimental formulae for
the complex permittivity of dry snow have also been
presented (Nyfors, 1982; Tiuri and others, 1984)
Numerous formulae explaining and predicting the
dielectric characteristics of wet snow have been
presented. These may be mixing formulae that have the
permittivities of air, ice, and water as parameters, or
they may even be linearized functions of density and
wetness. More rigorous mixing theories take into account
the microscopic structure of snow and the liquid water
distribution. In this case, the resulting formulae usually
contain additional parameters (for example,
depolarization factors of the ice and water particles)
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mélange de Taylor, Tinga et autres sont appliquées. On
montre que les hypothéses d'inclusions liquides ayant tant la
forme de disques ou d'aiguilles orientés au hasard que de
sphéres ne sont pas en accord avec I'experience mais que les
inclusions ont plutét la forme d'ellipsoides allongés (ellipsité
0,16) ou aplatis (ellipsité 0,12); la neige séche étant un
mélange diélectrique de particules de glace en forme de
disques orientés au hasard et d'air.

ZUSAMMENFASSUNG. Mischformeln und experimentelle
Ergebnisse fiir die Dielektrizitdtskonstante des Schnees.
Dielektrische Eigenschaften des Schnees, wie sie aus
verschiedenen dielektrischen Modellen hervorgehen, werden
mit  experimentellen Ergebnissen verglichen. Es wird
angenommen, dass die komplexe Permittivitit des feuchten
Schnees sich aus zwei Teilen zusammensetzt: sie ist die
Summe der Permittivitit trockenen Schnees (eines Gemisches
von Eis und Luft) und der fberschiissigen Permittivitit
infolge flilssigen Wassers im Schnee (als Ergebnis der
dielektrischen Mischung von Wasser und Luft). Insbesondere
wird der Einfluss des freien Wassers untersucht. Des
weiteren werden exponentielle Modelle von Taylor und
Tinga u.a. angewandt. Die Hypothese, dass freies Wasser die
Form von scheiben-, nadel- oder kugelférmigen Einschliissen
mit zufilliger Orientierung annehme, wird nicht bestitigt.
Die Einschliisse sind meist lingliche Ellipsoide (Elliptizitit
0,16) oder abgeplattete Ellipsoide (Elliptizitit 0,12).
Trockener Schnee erweist sich als eine dielektrische
Mischung von scheibenférmigen Eiskérnern mit zufalliger
Orientierung und Luft.

that are determined by the type of snow. In this paper
it is presumed that the effects of ice and water on the
permittivity of wet snow can be superposed. In other
words, the threecomponent mixing formula

€ = floW) (1

is separable in the form

€ = f]_(P) + fz(W) (2)

where €. is the complex permittivity of snow, p is the
dry density (see below), and W is the wetness of snow.
This means that wet snow is treated as a two-component
mixture consisting of dry snow and liquid water. And
dry snow is for its part a dielectric mixture of air and
ice. There are papers employing this separation approach,
for example Ambach and Denoth (1972), Denoth and
Schittelkopf (1978), Ambach and Denoth (1980), Mitzler
and others (1984), Tiuri and others (1984); see also Stiles
and Ulaby (1981).

The first term in Equation (2) is the permittivity of
dry snow, the density of which is equal to the "dry
density" of the wet snow in question, i.e. the density
which the snow sample would have if all the liquid
water were replaced by air. Because the dielectric
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properties of dry snow are fairly well known, the most
interesting problem is the increase of the complex
permittivity due to the free water, in other words the
second term in Equation (2). The difference between the
permittivities of wet snow (eg) and dry snow (eq)

Ae = €5 — €q = Aeg' — jeg' 3)

is therefore a result of the dielectric mixture of air and
water. This mixture gives the increase of the real part
of the permittivity of snow. And, because dry snow is
practically lossless in comparison with water at
microwave frequencies, the whole imaginary part of the
dielectric constant of wet snow comes from this
mixture.

DIELECTRIC PROPERTIES OF THE CONSTITUENTS

The relative permittivity of air is ey;, = 1 — jO. At
1 GHz and 0°C the dielectric constant of ice is
€jce = 315 — j0O.003.  Air and ice are also
quasi-dispersionless in the microwave range. Therefore
the dielectric properties of dry snow obey the
high-frequency approximation of the Debye equation, the
relaxation frequency being less than 100 kHz. The real
part of the permittivity is constant with frequency at
microwave wavelengths, and, as has already been noted,
the loss factor is negligible. Accordingly, the dispersion
characteristics of wet snow originate from the frequency
dependence of liquid water.

The complex permittivity of water e, follows fairly
well the Debye equation

€ e
= W3 ___wa ! =je. "
€y = € + : = ¢ Je (4
w wo 1 =k _](DTW w w )
where e, is the static dielectric constant of water, ey
is the high<requency dielectric constant of water, and
Ty 15 the relaxation time of water. Experimental values

for e,o range from 4.5 to 55. At 0°C the static
permittivity is ey -~ 88 and the relaxation time
T = IBPS.

Therefore the relaxation frequency is around 9 GHz
under normal conditions. Hence most dielectric

measurements of wet snow are carried out in the
low{requency range. Many snow sensors for determining
the permittivity of snow operate near 1 GHz (Tiuri and
others, 1982; Aebischer and Mitzler, 1983; Denoth and
others, 1984). In this paper the air—water mixture is
therefore discussed considering a frequency of 1 GHz.
For calculating the dielectric properties of wet snow at
other frequencies from the 1 GHz results, see Tiuri and
others (1984). At 1 GHz and 0°C the relative dielectric
constant of water is e,, = 88.0 — j9.79.

In this paper the models explaining the dielectric
behaviour of the mixture are divided into two groups.
Structure-independent "exponential models" predict the
permittivity without recourse  to microstructure
parameters unlike the "structure-dependent models".

EXPONENTIAL MODELS

Mixing formulae

The exponential models  give the complex
permittivity of the mixture e, 2s a function of the
complex permittivities of its constituents e; through the
equation

mine = ) fi € f ®)
i

where f; is the volume fraction of the ith constituent,
and [ f; = 1. The exponent a is the degree of the

i1
model, and = 0 < a € 1.
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Exponential models have been applied to dielectric
mixtures by many authors:

a

1 Brown has presented a formula of this kind
linearly dependent on the volume fraction (Wang
and Schmugge, 1980). Fung (1982) has also
applied it for determining the effective
dielectric constant of a vegetated medium.

i~
I

1/2 Birchak and others have derived this formula
for the soil-water mixture (Birchak and
others, 1974).

o
]

04 By treating wet snow as a three-<component
mixture, one can apply the exponential model
to the classical results of Cumming (1952). The
best fit is found by optimizing the parameter
a, and the result is @ = 04.

R
]

1/3 This value of the parameter a will lead to a
cubic function for the permittivity of two-phase
mixtures.

The complex dielectric constant ¢, of a two-

component mixture in which the other component is air,

according to the exponential model, obeys the following

formula (obtained directly from Equation (5)):

em = (1 — 0 + oe;H/a (6)

where ¢ is the volume fraction of the inclusions.
Therefore | — ¢ is the volume fraction occupied by air.
€; is the complex permittivity of the inclusion material
(e = ¢;'(1 — j tan B)) = €;' — je;").

The following approximation, which assumes that
the inclusion material has low losses, will be used:

Eia = Ei'a(l —j tan Si)a = ei'a (1 —ja tan Bi).

(7
The error in this approximation has its maximum value
at a = 05. For the air-water mixture (e; = ey), tan

6; = 0111 25 gives (1 — j tan 8;)% = 10015 — j0.0555
and | — ja tan §; = | — j0.0556. The error is 0.2%,
which is negligible. For the air—ice mixture (e;
the error is still very much smaller.

Applying the approximation to Equation (6) yields

= €ce)

‘a 1/a
.@e; 4 a tan s,
em = (1 =0 + o€&;? Y R e

-0 + o€

'a
.®€; " tan B;

= = ‘ayl/a |1-j 8
(I =0+ oe;%) T— (®)
Therefore
em' = (1 —o + ¢¢]DV/a, ©)
em' = 0¢;% tan & (1 - o+ ¢e;a)“ —a)/a
(10)

o¢; @ tan §; b |

]
€m

Dry snow

From Tiuri and others (1984), the empirical values
for the dielectric constant of dry snow are

"

€4 1 + 1.7|pd + 0.7pd2‘ (11)

€g" = (052p4 + 062p4%)e" e (12)

where €";.o 1is the imaginary part of the dielectric
constant 0? ice.
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The exponential mixing model can be applied to
dry snow conceived as a dielectric mixture of air and
ice fwith the complex permittivity 3.15(1 —
j0.001). When the parameter a is a = 1/2, we have

€' = 1 + 169p4 + 0.71p4° (13)
ed" = (061pg + 0.52p4%)e";ce (14)
which follows the experimental results fairly well.

The case a = 1/3 leads to the formula of Looyenga
for dry snow (Stiles and Ulaby, 1981):

eq' = (1 + 0.50804)% (15)

which explains the real part of the permittivity
satisfactorily.

Wet snow

From Equations (9) and (10) the excess permittivity
of wet snow due to the liquid water follows:

-1, (16)

R amn
This is the difference between the permittivities of wet
snow and the corresponding dry snow (that snow which

is left when all liquid water is replaced by air).

Different values for the parameter a give at | GHz
and 0°C:

a =1 Ae' = 8700, (18)
&' = 0.79%, (19)
a = 1/2 Aeg = 68W + T02W2, (20)
€' = L04W + 87202 (21)
a =04 Ae'= (5000 + 1)%5 —, (22)
& = 0.666W(5.000 + )15, (23)
a = 1/3 Ae' = 103W + 35.7W2 + 41103,  (24)
€' = 0.495W + 3.420% + S8OWS.  (29)

The graphs of these formulae are shown in Figures 1-4.
The empirical curves at 1 GHz have the form

Aeg' = (0.1 + 0.8W%)e,,', (26)
2
e" = (0.1W + 0.9W )e," , @n

based on experimental results (Tiuri and others, 1984),
are also shown,

Ag;

i

05

i 1 L L | 1 1 I 1
. 0 0.05 0.1

W
Fig. 1. The increase in the real part of the permittivity
of snow due to liqguid water according (o exponential

models. The broken line is empirical (Tiuri and others,
1984 ).
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W

Fig. 2. The increase in the real part of the permittivity of
snow due to liquid water (exponential models).

0.05

0 0.05 0.1

Fig. 3. The increase in the ({Imaginary part of the
permittivity of snow due to liquid water (exponential
models). The broken line is empirical (Tiuri and others,
1984).

10 T T T T | T T T T
| ]
: a=1 B
ar a=Y2 1
A a=0.4 1
I a=3 4
D L 1 1 | i 1 1 1 ]
0 05 10

W

Fig. 4. The increase in the imaginary part of the

permiltivity of snow due to liguid water (exponential
models ),

STRUCTURE-DEPENDENT MODELS

Different dielectric mixing models will be presented
that take into account the microscopic structure of the
mixture. Ice and water are considered as the inclusion
phases, the host material being air. The models take into
account the shape of the inclusion particles. The mixing
theories have been reported by Taylor (1965), Tinga and
others (1973), and Polder and van Santen (1946).
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Taylor

The theory of Taylor leads to different formulae
depending on the shape of the inclusions. For randomly
oriented needles the formula is

1 /1 1
[ Sd . Y d? + € + §-¢ei(ei =13 (28)

5
where d = (¢; — 1) (1 — 3@).

For randomly oriented discshaped inclusions the
complex permittivity is

2
1 -3¢ (1. —ie3)
B = (29)
1 =l ~=3=)
4
For spherical inclusions the mixing formula is

b &= i —b + = g (30)

where b = ¢; — 2 + 3¢ — 3¢e;. This formula has also
been derived by Béttcher (1952). Essentially the same
results are obtained from the theory of Polder and van
Santen.

For randomly oriented inclusions that are not discs,
needles, or spheres but ellipsoids with known semi-axes
the mixing formula is

3
1
€m=1+3—0(Ei—]) E

a=1

- | " 31
Em(l—-Na) + ciNa

where N,, N,, and N, are the depolarization factors of
the ellipsoids with semi-axes (a;, a,, a,):

i a; a;a;dg 32
N; JZ(t+ﬂj2)3/2(t+ﬂjz)1/2 (E+ak2)"’2' (32)

The equation
Ny + Ny + Ny =1 (33)

also holds. If two semi-axes of the ellipsoids are equal,
two of the depolarization factors are also equal

Ny = Ny = (1 =Ng)/2

1 e? 1 =/1-¢?
= = |1 % In (34)
H(1-e") 2/1=? 1+ /1=2?
for prolate ellipsoids, and
N, = N,=(1 —Ny)/2
e 1 : e 35)
B e — arcco =g
Al-?) | g2 J1=?

for oblate ellipsoids. The ellipticity e is the ratio of the
smaller semi-axis to the greater one. For ellipsoids of
revolution in general the following mixing formula is
valid:

|
Em = 1 + ga(ei—l) X

(36)
€ 2e

% +
€ —EN(ei—em) €m + Nlej—ey,)
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where N = N, = N,, the depolarization factor of the
ellipsoid in the direction of the two equal semi-axes, For
discs N = 0, for spheres N = 1/3, for needles N = 1/2,
for prolate ellipsoids 1/3 € N ¢ 1/2, and for oblate
ellipsoids 0 ¢ N ¢ 1/3.

Dry snow

Formulae (28), (29), and (30) give the complex
dielectric constant of dry snow. For randomly oriented
needleshaped ice inclusions

€'q = — (1.075 - 1.792¢) +
(37)
+ /(1075 - 17920)2 + 3.5 + 2.2580 .
E"d 1
- = ——+ 08333¢ +
€lice
(38)
B 1.038 —0.908¢ + 1.493¢°
v/ 4306 — 15950 + 32100
For randomly oriented discshaped ice inclusions
p e e
o e 39
0~ T 0228 ° @l
i 0.7006 — 0.1035¢%
— 2 (40)
£ [1 —0228¢]
For spherical ice inclusions
€'q = — (0288 — 1.612¢ +
(41)
+ /(0288 - 1612¢)? + 1575,
i |
sl e g 1) &
€ice 4
(42)

b, 12875 —2.48¢ + 4.84¢?
J 265 — 14849 + 41600

The dielectric constant of ice is assumed to be Eice =
3.15 — jej,e and the assumption €"jce << €'ice is made.
The volume part of ice is ¢ = A/Pjce: Pg 15 Pjce = 0.917
Mg/m®. In Figures 5 and 6 the results are illustrated
together with the empirical results by Nyfors (1982).

T T T T T
20 1
£l | ]
..,
L E=1+2p, i
] . Taylor, disks
=l —w—, needles |
= —mn—_ spheres |
Z 5
F - \-—Tlngc. spheres E
Pz
L y i
10 1 1 Il 1 —: 1
01 0.2 03 0.4 05

Py
Fig. 5. The real part of the dielectric constant of dry snow
according to structure-dependent models. The points are
experimental from Nyfors (1982).
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(10 (R S T T T T -
Ele

03

Taylor, disks
~— —u—. spheres
~— —«—_ needles

~— Tinga. spheres

2 1 e e e i
0 05 Pa 1

Fig. 6. The loss tangent of dry snow according o
structure-dependent models. The experimental points are
from Nyfors (1982). The experimental points contain five
sets of measurements. The data are relative to the densest
sample in each set, which has been Jorced to fil the curve
Jor needles.

Wet snow
Formulae (28), (29), and (30) give for the excess

permittivity of snow due to liquid water at | GHz and
0

Taylor, needles

Aeg' = 725 — 445 +

(43)
+ 1980 —3756W + 5265W%,
S5 - 0833 — 05 +
€w
(44)
, 22.25 —43330 + 60.4W2
J 1980 — 3756 + 5265W2
Taylor, discs
ey 5833W -
L L
$ 1 —0.3295W 43)
€ 0.6667W — 0.2172W? g
ew' 1 —06591W + 0.1086W? (46)
Taylor, spheres
Aeg' = 6530 —225 + /506 — 2806 + 42582,
(47)
e 563 — 404 4892
2 - oasw-025 + .
Ew v 506 —2806W + 425817
(48)

These formulae are depicted in Figures 7-10 together
with the experimental results (Tiuri and others, 1984).

Taylor, prolate and oblate ellipsoids

Ae;' and e" can be numerically solved from the
complex Equation (36) by substituting e = Ae! + 1 —
jeg" and ey = 88.0 — j9.79. The results for differently
shaped ellipsoids are given in Figures 11-14 with the
experimental results (Tiuri and others, 1984).
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15
Ae,
W=
05
0 1 1 1
0 0.05 01
w
Fig. 7. The increase in the real part of the permittivity of
snow due to liquid water according to

structure-dependent models. N - Taylor, needles; D -
Taylor, discs; § - Taylor, spheres, TINGA - Tinga and
others, spheres. The broken line is empirical (Tiuri and
others, 1984).

T T T T I T T T T

A€,

50

0

0 05 1.0
W

Fig. 8. The increase in the real part of the permittivity of
snow due to liguid water (structure-dependent models). N
- Taylor, needles; D - Taylor, discs; S - Taylor, spheres;
TINGA - Tinga and others, spheres.

015 T T T T 7
€, //
//
0.4 V4 o
7
V4
Ve
T
Ve
0.05 -
S
TINGA :
0 0 I 0.05 01
W

Fig. 9. (The increase in) the imaginary part of the
permittivity of snow due to liquid water
(structure-dependent models). N - Taylor, needles; D -
Taylor, discs; S - Taylor, spheres; TINGA - Tinga and
others, spheres. The broken line is empirical (Tiuri and
others, 1984).
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Fig. 10, The
permitlivity of

imaginary part of the
liquid water

increase in the
snow due lo
(structure-dependent models). N - Taylor, needles; D -

Taylor, discs; § - Taylor, spheres; TINGA
others, spheres.

- Tinga and

1.5 T T T
Ay 5
bt Y/
t.g:b (h\f? ) //
1.0 B Q?\, Q\-‘ \Eg) //Q, -
e S N
S
% >
05+ // QL2 a
Z
Z gl
> — (133 ZoMERE
O — 1 1 1 1
0 002 0.04 0.06 0.08 010
W

Fig. 11. The increase in the real part of the permittivity of
snow due to liguid water. Taylor model, prolate

ellipsoids. The parameter N is the depolarization factor
of the ellipsoids in the direction of the shorter
semi-axes.

15
A’

1.0 + d
0:5 [ -

0 i - 1 1 1 1

0 0.02 0.04 0.06 008 010
W

Fig. 12. The increase in the real part of the permittivity of
snow due to liquid water. Taylor model, oblate ellipsoids.
The parameter N is the depolarization factor of the
ellipsoids in the direction of the longer semi-axes.

168

https://doi.org/10.3189/50022143000006419 Published online by Cambridge University Press
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//, 0.L5
~ 0.L0 0,333
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Fig. 13. (The increase in) the imaginary part of the Taylor

model, prolate ellipsoids. The parameter N

is the

depolarization factor of the ellipsoids in the direction of

the shorter semi-axes.

015 ; . . 2
“ /"
Es /
/4
0.10+ :’ S, é?' S #
&) Ly gy
5 AL
S o
)
y gy
0.05f 7 Vo
£ S
0-“,.\0
oAl
015
(e = ———— 120 | 0.333
[ —— ~ SPHERES
0 0.02 0.04 0.06 008 0.10
w

Fig. 4. (The increase in) the imaginary part of t
model, oblate ellipsoids. The

he Taylor

parameter N is the

depolarization factor of the ellipsoids in the direction of

the longer semi-axes.

Tinga and others

The theory of Tinga and others (1973) vyields for

spheres

2+ €5 + 20(¢; —1)
€m =
2+£i—¢(ei—])

(49)

For dry snow (ice—air mixture) assuming that Ciga = 319

= je"jce and €"jop << €'icn
1 + 08354
€ = —— M
g 1 =-0417¢ °
B 9
", = == ~ Vi
€ice 265 —2210 + 4620

These functions are given in Figures 5 and 6.
The excess permittivity of wet snow due
water at 1 GHz and 0°C is

261W
Beal =ieme—re
90 — 87W

9w
8100 - 15660W + 75691

Gs"/fw" =

(50)

(51)

to liquid

(52)
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These formulae are depicted in Figures 7—10 together
with the experimental results (Tiuri and others, 1984).

CHALOUPKA’S Y-FUNCTION

Chaloupka, Ostwald, and Schiek have studied the
dielectric properties of wet materials and the effect of
the geometrical shape of the water particles (Chaloupka
and others, 1980; Ostwald and others, 1980). They apply
the mixing formula of Polder and van Santen for which
they need to know the distribution function of the
water inclusions, They calculate this function via the
measurable real and imaginary parts of the dielectric
constant of the mixture. They define the quotient Y as

Y = .‘_ml__"em (54)

€m

where eq., is the permittivity of the dry material, and
€m' — Jey" the complex permittivity of the mixture of
this dry material and water.

The central feature in this Y-function from the
point of view of tentative mixing theories, is the
assertion stated by Chaloupka, Ostwald, and Schiek that
the Y<unction is independent of the water content. In
other words, any amount of liquid water augments in
the same rate both the real and imaginary part of the
material. Applied to the air—water mixture discussed in
this paper, the Y-function will be

]
- (55)

sS"

Therefore the flatness of a plot of the Y-function versus
water volume W is a measure of the pertinence of the
Chaloupka approach to a water-mixture model.

If the Y-function is flat for a mixing model, then
its reciprocal 1/Y will also be flat. It seems more
natural to compare the change in the imaginary part to
the change in the real part due to liquid water, i.e. to
calculate the function 1/Y = ¢"/Ae;'. Experimental
results (26) and (27) give support to the thesis of
Chaloupka and others, namely that 1/Y = tan &,.
Figures 15 and 16 show the behaviour of the ¥Y-function
according to mixing models discussed in this paper.

T T T T

/Y
a=1and experimental

0.10

0.05

0 1 1 1 1
0 02 04 06 08 10

W

Fig. 15. The 1/Y-function (Chaloupka and others, 1980) of
exponential models.
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'I/Y T T T T
D _and experimental
——&-___7
0.10
5
0.05K §
TINGA
0 1 L 1 1
0 02 04 06 08 10
W

Fig. 16. The 1/Y-function (Chaloupka and others, 1980) of
structure-dependent models.

DISCUSSION

Figures 1—4 show that the parameter a in
exponential models should be near 1/3 for the real part
of the dielectric constant and near 1/2 for the
imaginary part of the dielectric constant in order to
explain the dielectric behaviour of the liquid water in
snow. Both parameter values give also good results in
explaining the permittivity of dry snow (Equations
(9)—13)).

From Figures 5 and 6 it can be seen that the
mixing theory of Taylor with randomly oriented
discshaped ice inclusions agrees with experimental
results for the permittivity of snow. For very light new
snow the mixture theory with random orientation of
needles gives better values and for very dense snow
spherical particles give the best results. The mixture
theory of Tinga and others with spherical inclusions
gives values that are too low. In the range pg <
0.5 Mg/m® the linear function eg = 1 + 2py is a
tolerable rule of thumb.

For the disc, needle, and sphere models explaining
the air-water mixture (Figs 7-10) the situation seems
worse than for the exponential models: the needle and
disc models of Taylor predict too large values and the
sphere models of both Taylor and Tinga and others too
small values for both the real and imaginary parts of
the dielectric constant of the mixture. In particular the
model of Tinga and others is extremely inconsistent with
experimental results.

From Figures 11-14 it can be seen that both prolate
and oblate ellipsoids are able to explain the
experimental results of the real part of the excess
permittivity due to liquid water. For the real part of
the permittivity of the mixture, the depolarization
factors N = 048 for prolate ellipsoids and N = 008 for
oblate ellipsoids give the correct dielectric behaviour.
This means that the water inclusions have ellipticity
(axial ratio) e = 0.16 (prolate case) or e = 0.12 (oblate
case). The results for the imaginary part show that the
experimental behaviour in the wetness range W = 0-10%
by volume does not have the same curvature as the
mixing models but the prolate ellipsoid assumption is
more consistent with it. Also the corresponding
depolarization factor (0.49) is near to the depolarization
factor of the real part (048). However, the figures for
the real part of the permittivity should be stressed more,
because the accuracy in the measurements of the real
part, on which the empirical curve is based, is greater
than the accuracy of the experimental curve for the
imaginary part.

One possibility that increases the degree of freedom
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in the model is to assume a distribution function for
the axial ratio of the water inclusions. Nevertheless, the
theoretical treatment will become tedious, and the
formulae resulting from the exponential models may be
more suitable for engineering applications.

Finally, Figures 15-16 show that in Chaloupka's
sense the exponential models are the better the nearer
the parameter a is to unity. From the
structure-dependent models, the needle and disc models
of Taylor are very good, but the sphere models of
Taylor and especially Tinga and others are extremely
poor.
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