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Abstract

We derive a simple abstract machine for lazy evaluation of the lambda calculus, starting

from Launchbury’s natural semantics. Lazy evaluation here means non-strict evaluation with

sharing of argument evaluation, i.e. call-by-need. The machine we derive is a lazy version of

Krivine’s abstract machine, which was originally designed for call-by-name evaluation. We

extend it with datatype constructors and base values, so the final machine implements all

dynamic aspects of a lazy functional language.

Capsule Review

As a kid I was fascinated by the drifting continents theory. It is obvious that there is some

connection between the shapes of Africa and South America, and it was very satisfying to

hear that there is indeed a plausible explanation. Abstract machines for functional languages

are similar to the drifting continents. When you look at all the different machines around, you

soon get the suspicion that there must be more than meets the eye. This paper is gratifying

because it explains that, indeed, there is a coherent theory underlying these isolated islands.

Another pleasing thing about this paper is that the particular abstract machine that it derives

is small, simple, yet efficient.

1 Introduction

The development of an efficient abstract machine for lazy evaluation usually starts

from either a graph reduction machine or an environment machine.

Graph reduction machines perform substitution by rewriting the term graph, that is,

the program itself. Sharing of argument evaluation in an application is implemented

by sharing the subgraph representing the argument term; this is ‘obviously correct’.

However, the rewriting of program subterms precludes efficient implementation on

sequential imperative computers, so graph reduction machines must be refined to

give efficient implementations. The machines become more complicated and less

obviously correct; cf. the G-machine (Augustsson, 1984; Johnsson, 1984).

Environment machines perform substitution by updating the environment, map-

ping variables to terms instead of modifying the program. They resemble sequential

imperative computers and therefore are ‘obviously efficient’. However, they imple-

ment call-by-name evaluation, and so must be modified to implement sharing of
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argument evaluation. The machines become more complicated and less obviously

efficient; cf. the Three Instruction Machine TIM (Fairbairn and Wray, 1987).

Ingenious and efficient hybrids of graph reduction machines and environment

machines exist, but since they are improvements of the others, they do not have

their initial simplicity; cf. the Spineless Tagless G-machine (Peyton Jones, 1992).

In this paper we take a different approach. We develop an abstract machine for

lazy evaluation from the natural semantics published by Launchbury (1993). Like

the graph reduction schemes, this semantics accounts for sharing from the outset,

yet an abstract machine can be derived from it easily.

1.1 Contributions

We show that known implementation techniques can be developed from a published

natural semantics for lazy evaluation. We do so in a number of refinement steps,

proving the correctness of the non-trivial ones.

Initially, we consider a simple language: the lambda calculus augmented with

mutually recursive let-bindings. From a natural semantics for this language, we

obtain an abstract machine, which is a naturally lazy version of the Krivine machine

(Curien, 1988). The machine has four instructions, is simple, close to a sequential

computer, and potentially efficient.

Extending the language and its natural semantics to include datatype constructors

and base values, we show that well-known and efficient implementations can be

derived for these too. The latter steps may be seen as reverse engineering of

techniques used in the Spineless Tagless G-machine (Peyton Jones, 1992).

Thus, the development covers all dynamic aspects of a lazy functional language,

but not the static aspects, such as type inference. We hope this demonstrates that

a lazy functional language implementation can be at the same time clearly correct,

small, understandable and efficient.

1.2 Motivation

One goal of this paper is pedagogical: to understand lazy evaluation. The extensional

properties of lazy functional languages are simple and elegant; lazy languages

satisfy more laws than strict ones. Conversely, the intensional aspects, such as space

consumption and evaluation order, are harder to understand. In practice, intensional

aspects are as important as extensional ones; an engineer should be able to estimate

the properties, including time and space requirements, of programs, just as he or

she understands the properties of other artefacts (bridges, power lines, computer

hardware, etc.). The study of a model implementation, as developed in this paper,

may help students understand the intensional aspects of lazy languages.

Similarly, a model implementation is useful for describing and experimenting with

implementation design choices, in particular the representation of environments.

Another goal of the paper is to provide a foundation for intensional program

analyses. For instance, an evaluation order analysis may determine at compile-

time (an approximation to) the evaluation order of subexpressions. Any semantic
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Deriving a lazy abstract machine 233

foundation for such an analysis must incorporate a notion of evaluation order, and

should be true to a real implementation. An abstract machine with close links to an

operational semantics seems a good candidate for a foundation.

The present work has already been put to such use. Sansom and Peyton Jones

(1995) devised a cost semantics , an instrumentation of Launchbury’s semantics with

time and space costs. Using a modified version of our derivation and proof they

show that an abstract machine with profiling, close to the actual implementation,

is correct with respect to the cost semantics. Working at the level of the semantics,

rather than that of the abstract machine, enables a precise discussion of alternative

cost attributions.

1.3 Outline

In section 2 we present a small lazy functional language and its operational seman-

tics, following Launchbury. In section 3 we first derive a simple abstract machine

with an evaluation stack and prove its correctness with respect to the semantics.

We then introduce an environment to avoid modifying the program being evalu-

ated, and replace variable names by de Bruijn indices. In section 4 we identify and

solve a problem with space consumption in the abstract machine. We then extend

the language, the semantics, and the abstract machine with algebraic datatypes in

section 5 and with base values in section 6. In section 7 we evaluate the resulting

abstract machine, and in section 8 we discuss related work.

2 A lazy language and its natural semantics

By lazy evaluation we understand normal order reduction to weak head normal

form (whnf), with sharing of argument evaluation.

2.1 Syntax

Launchbury (1993) presents a natural semantics for lazy evaluation of so-called

normalized lambda expressions:

e ::= λx.e | e x | x | let x1 = e1, . . . , xn = en in e

The argument in an application must be a variable x; this ensures sharing of ar-

gument evaluation by requiring that non-trivial argument expressions are let-bound

(and by treating let-bound expressions appropriately). General lambda expressions

may be transformed into ‘normalized’ ones by the introduction of new let-bindings.

Let-bindings are simultaneous and recursive, and all xi in a let-binding must be

distinct. We write let {xi = ei} e for the let-binding let x1 = e1, . . . , xn = en in e.

Throughout, ≡ denotes syntactical identity of expressions, and e[e′/x] denotes

näıve simultaneous substitution of e′ for all free occurrences of x in e:
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Γ : λx.e ⇓ Γ : λx.e Lam

Γ : e ⇓ ∆ : λy.e′ ∆ : e′[x/y] ⇓ Θ : w
---------------------------------------------------------------------------------------------------------------------------------------------------------------------

Γ : e x ⇓ Θ : w App

Γ : e ⇓ ∆ : w
-------------------------------------------------------------------------------------------------------------------------
Γ[x 7→ e] : x ⇓ ∆[x 7→ w] : ŵ Var

Γ[xi 7→ ei] : e ⇓ ∆ : w
------------------------------------------------------------------------------------------------------------
Γ : let {xi = ei} e ⇓ ∆ : w Let

Fig. 1. Launchbury’s natural semantics for lazy evaluation.

x[e′/x] ≡ e′

y[e′/x] ≡ y if x 6≡ y
(λx.e)[e′/x] ≡ λx.e

(λy.e)[e′/x] ≡ λy.e[e′/x] if x 6≡ y
(e1 e2)[e′/x] ≡ (e1[e′/x]) (e2[e′/x])

(let {xi = ei} e)[e′/x] ≡ let {xi = ei} e if ∃i.x ≡ xi
(let {xi = ei} e)[e′/x] ≡ let {xi = ei[e

′/x]} e[e′/x] if ∀i.x 6≡ xi

No implicit renaming of bound variables is assumed. We write e[pi/xi] for the

simultaneous substitution e[p1/x1, . . . , pn/xn], where the x1, . . . , xn must be distinct.

2.2 Launchbury’s semantics

A heap or store Γ = {. . . , x 7→ e, . . .} is a mapping from variables x to expressions

e. By domΓ we denote the heap’s domain (the set of variables x bound by Γ), by

rng Γ its range (the set of expressions e bound in Γ), and by Γ[x 7→ e] the heap

which maps x to e and any other variable y to Γ[y]. We write Γ[pi 7→ ei] for

Γ[p1 7→ e1, . . . , pn 7→ en].

A configuration Γ : e consists of a heap Γ and an expression e to be evaluated. A

judgement Γ : e ⇓ Θ : w says that in the heap Γ, the expression e will evaluate to

the value w, producing the new heap Θ. Launchbury defines the relation ⇓ on con-

figurations by a set of inference rules, that is, an operational semantics, reproduced

in Figure 1. He proved this semantics correct with respect to a denotational one.

Rule Lam: a lambda abstraction λx.e is already a value (in whnf) and therefore

evaluates to itself; the heap Γ is unmodified.

Rule App: an application (e x) is evaluated in heap Γ by evaluating e to a lambda

abstraction λy.e′, producing a new heap ∆. The argument x is substituted for the
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formal parameter y in e′, and e′[x/y] is evaluated in the heap ∆ to obtain the final

result w and final heap Θ.

Rule Var: a variable x which is bound to expression e in heap Γ[x 7→ e] is

evaluated by evaluating e in Γ to obtain a value w and new heap ∆. To achieve

laziness (that is, avoid re-evaluation of e), the heap must be updated with the reduced

value w, giving the heap ∆[x 7→ w]. This duplicates the expression w and might cause

name clashes later, so all bound variables in the other copy of w are replaced by

fresh variables, as indicated by the renaming notation ŵ. Observe that e is evaluated

in heap Γ which has no binding for x. If the evaluation of e to whnf requires x,

then the evaluation fails, indicating a ‘black hole’, a direct self-dependency in the

program, as in let x = x in x or let x = y, y = x in x.

Rule Let: a let-binding let {xi = ei} in e is evaluated by binding the expressions

ei to the variables xi, and then evaluating e in the resulting heap Γ[xi 7→ ei].

A program is a closed expression e in which all bound variables are distinct. The

value w of a program e is computed by finding a derivation of {} : e ⇓ ∆ : w. An

easy induction shows that the result w, if any, will be a lambda abstraction λy.e′.

The semantics rules are deterministic modulo variable renaming, and essentially

sequential: to build a derivation tree, one must determine the final heap of any

left-hand premise before proceeding to any right-hand premise.

2.3 Properties of Launchbury’s semantics

The semantics rules adequately model lazy evaluation: no function argument is

evaluated more than once, and no unevaluated expression gets duplicated.

Namely, in a normalized expression (see section 2.1), any non-trivial function

argument e must be bound to a let-variable x, and no such let-bound expression is

evaluated to whnf twice. At its first use, the let-bound x is removed from the heap

Γ, evaluated, and then rebound to the whnf w of e. An attempt to refer to x again

before its rebinding will fail; rule Var is not applicable unless x is bound in the

heap. After the rebinding, every subsequent use of x will just retrieve the whnf from

the heap, via rules Var and Lam .

Furthermore, only expressions which are in whnf are ever duplicated. In the

App rule, e′[x/y] substitutes a variable x for another variable y, and therefore can

duplicate only variables. In the Var rule, the duplicated expression w is a whnf of

form λy.e′.

Thus the rules model lazy evaluation. However, the duplication of w ≡ λy.e′ in

rule Var violates full laziness (Peyton Jones, 1987, Chapter 15), since e′ may contain

a redex with no free occurrences of y. Such a redex may be wastefully re-evaluated at

each application of w ≡ λy.e′. If desired, full laziness can be obtained by introducing

a new let-binding for every maximal free expression: recursively replace λy.(. . . e . . .),

where e is a maximal free expression, by let x = e in λy.(. . . x . . .), where x is a fresh

variable.

The semantics must avoid variable capture in the näıve substitution e′[x/y] in the

App rule, and must avoid rebinding of any variable x already bound in heap ∆ in

the Var rule. Launchbury ensures this by requiring all bound variables in a program
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e to be distinct, and by renaming all bound variables at the only point where an

expression w containing bound variables may be duplicated: the Var rule.

However, this renaming strategy is unsuitable as basis for an abstract machine

design. One problem is that variable freshness is not locally checkable in the Var

rule of Figure 1, because a binding x 7→ e may have been deleted from Γ in a

previous application of the Var rule. To see this, evaluate the expression

let s = λz.z in let p = (q s), q = (λy.let r = y in r) in p

in an empty heap. When applying the Var rule to evaluate and then re-bind q during

the evaluation of p, it seems possible to rename r to p, because p occurs in no local

expression or heap. But this would cause trouble later when re-binding the evaluated

p in the heap ∆, invalidating Launchbury’s (1993, p. 149) Theorem 1 about distinct

naming.

Hence, to check freshness, one must inspect all of the derivation tree built so far,

which is undesirable. Furthermore, it is unnecessary to rename all bound variables

of w in the Var rule; a more economical approach is adequate, and preferable in an

implementation.

2.4 Revising the semantics

We therefore change the renaming machinery, obtaining the revised semantics in

Figure 2. It is identical to Launchbury’s in all respects other than renaming. In the

next section we show that it avoids variable capture.

First, we make freshness locally checkable by extending each judgement with the

set A of the variables x left out of Γ in the premise of the Var rule. Intuitively, A is

the set of variables whose values are currently being computed.

Secondly, we move the renaming from the Var rule to the Let rule, and rename

only let-bound variables. Renaming let x1 = e1, . . . , xn = en in e with fresh variables

p1, . . . , pn gives the expression let p1 = ê1, . . . , pn = ên in ê, where ê denotes the result of

the näıve substitution e[p1/x1, . . . , pn/xn]. Since all xi are distinct, this is well-defined.

A variable p is fresh if it does not occur in A or Γ or let x1 = e1, . . . , xn = en in e.

Intuitively, the introduction of fresh variables corresponds to allocation of unused

heap addresses p1, . . . , pn, and is therefore naturally done in the Let rule rather than

the Var rule.

The value (whnf) w of a closed expression e is computed by finding a derivation

of {} : e ⇓{} ∆ : w using the revised semantics rules.

Henceforth we distinguish the heap pointers p introduced by the Let rule from the

program variables x originating from the expression to be evaluated. The soundness

of this distinction follows from the following observation: in a derivation tree for

evaluation of a closed expression, all occurrences of heap pointers p in expressions

are free (with p possibly bound in the heap), and all occurrences of program variables

x are bound by let or lambda. This is proved below.
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Γ : λx.e ⇓A Γ : λx.e Lam

Γ : e ⇓A ∆ : λy.e′ ∆ : e′[p/y] ⇓A Θ : w
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Γ : e p ⇓A Θ : w App

Γ : e ⇓A∪{p} ∆ : w
-----------------------------------------------------------------------------------------------------------------------------
Γ[p 7→ e] : p ⇓A ∆[p 7→ w] : w Var

Γ[pi 7→ êi] : ê ⇓A ∆ : w
----------------------------------------------------------------------------------------------------------------- (∗)
Γ : let {xi = ei} e ⇓A ∆ : w Let

(∗) In the Let rule, the variables p1, . . . , pn must be distinct and fresh: they must not occur in

A or Γ or let {xi = ei} e. The notation ê means e[p1/x1, . . . , pn/xn].

Fig. 2. Revised natural semantics for lazy evaluation.

2.5 Properties of the revised semantics

We must show that there is no variable capture in the substitution e′[p/y] in rule

App, and no rebinding of a variable p already bound in heap ∆ in rule Var .

For a given expression e, let Bv(e) denote its let- or lambda-bound variables and

Fv(e) its free variables, and extend this notation to configurations:

Bv(Γ : e) = Bv(e) ∪
⋃
{ Bv(e′) | e′ ∈ rng Γ }

Fv(Γ : e) = Fv(e) ∪
⋃
{ Fv(e′) | e′ ∈ rng Γ }

The revised semantics satisfies: In a derivation of {} : e ⇓{} ∆ : w where e is closed,

all bound variables are program variables x from e, and all free variables are heap

pointers p introduced by the Let rule. We now formalize this.

Definition 1

Let A be a set of variables. The configuration Γ0 : e0 is A-good if

(1) A and domΓ0 are disjoint;

(2) Fv(Γ0 : e0) ⊆ A ∪ domΓ0; and

(3) Bv(Γ0 : e0) and A ∪ domΓ0 are disjoint.

In the context of a judgement Γ0 : e0 ⇓A Γ1 : e1, these requirements say: (1) no

variable whose value is being computed is also bound in Γ0; (2) every free variable

of e0 is either being computed or is bound in Γ0: there are no dangling pointers;

and (3) program variables and pointers are distinct in e0.

Definition 2

The judgement Γ0 : e0 ⇓A Γ1 : e1 is promising if Γ0 : e0 is A-good.

In a derivation of a promising judgement, the distinction between program vari-

ables and pointers is maintained everywhere:
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Lemma 1

Assume the judgement Γ0 : e0 ⇓A Γ1 : e1 has a derivation. If Γ0 : e0 is A-good,

then Γ1 : e1 is A-good, domΓ0 ⊆ domΓ1, and every judgement in the derivation is

promising.

Proof

By induction on the structure of the derivation. 2

Proposition 1

Let e be a closed expression and consider a derivation of {} : e ⇓{} Θ : w. In no

instance of rule App can there be any variable capture in e′[p/y], and in no instance

of rule Var is p already bound in ∆.

Proof

Since e is closed, {} : e is {}-good by definition. By Lemma 1, every judgement

Γ : e0 ⇓A ∆ : e1 in the derivation is promising, and in every such judgement, the

configurations Γ : e0 and ∆ : e1 are A-good. It follows that:

In every instance of the App rule, p ∈ Fv(Γ : e p) ⊆ A∪domΓ ⊆ A∪dom∆ because

Γ : e p is A-good. Since ∆ : λy.e′ is A-good, Bv(∆ : λy.e′) is disjoint from A ∪ dom∆,

so p /∈ Bv(λy.e′): variable p is not bound in λy.e′. Hence p cannot be captured in

the substitution e′[p/y].

In every instance of the Var rule, A ∪ {p} and dom∆ are disjoint since ∆ : w is

(A ∪ {p})-good. Hence p is not already bound in ∆. 2

Proposition 1 says that if expression e is closed, then there can be no variable

capture or rebinding in a derivation of {} : e ⇓{} ∆ : w which computes the value w

of e. The revised renaming strategy is adequate. Note that the bound variables of e

need not be distinctly named.

To illustrate renaming, let us evaluate the expression let x = x in (λy.λx.y) x, in

which one should not näıvely substitute x for y in the beta-reduction:
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- Lam
{p 7→p} : λy.λx.y ⇓{} {p 7→p} : λy.λx.y

------------------------------------------------------------------------------------------------------------------------------------------- Lam
{p 7→p} : λx.p ⇓{} {p 7→p} : λx.p

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- App
{p 7→p} : (λy.λx.y) p ⇓{} {p 7→p} : λx.p

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Let
{} : let x = x in (λy.λx.y) x ⇓{} {p 7→p} : λx.p

In the premise of the Let rule, a fresh variable p has been substituted for x in the

expressions x and (λy.λx.y) x. In the second premise of the App rule, the argument

p has been substituted for y in λx.y; there is no variable capture.

3 Deriving a simple abstract machine

Operationally speaking, evaluation in the natural semantics builds a derivation tree

for {} : e ⇓{} ∆ : w from the bottom up, whereas computation by an abstract machine

builds a state sequence. We must turn the recipe for tree construction (Figure 2) into

a recipe for state sequence construction (Figure 3).

The challenge lies in the representation of the context of subtrees. For instance,

when applying the Var rule, we build a subtree for the premise, and the context

(the rule) tells us that we must update the heap ∆ at p with the computed value w
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afterwards to create ∆[p 7→ w]. This context must be made explicit in the abstract

machine: after the state sequence corresponding to the subtree, we must remember

to update the heap at p.

Only the App and Var rules change the context of subtrees. In the App rule, we

must remember to build a second subtree after building the first one, and in the Var

rule, we must remember to update the heap after building the subtree. Although a

subtree is built in the Let rule, the result ∆ : w of the subtree is also the result of

the entire tree, so no new context is needed.

The first step towards an abstract machine is to make the context (or continuation)

of each subtree explicit in the state. When the context is extensible as here (e.g. if t′ is

a subtree of t, then the context of t′ is an extension of the context of t), it is convenient

to use a stack for representing the context. This is a long-standing tradition: the

control context of a procedure invocation in Algol or Pascal is represented by a

stack of return addresses.

3.1 First step: introduce a stack

A state of the first abstract machine is a triple (Γ, e, S) where Γ and e are just the

heap and the expression of a configuration Γ : e, and S is a stack which represents

the context of this configuration: part of a surrounding derivation tree. Traditionally,

the e component is called the control of the abstract machine.

• The Lam rule does not give rise to any machine rules; no machine action is

required to leave the heap and expression as they are.

• The App rule from the natural semantics gives rise to two machine rules:

app1 which begins the computation corresponding to the left subtree, and app2

which begins the computation corresponding to the right subtree.

• The Var rule gives rise to two machine rules: var1 which begins the computa-

tion corresponding to the subtree, and var2 which updates the heap with the

computed result.

• The Let rule gives rise to the machine rule let which allocates new heap

addresses and begins the computation corresponding to the subtree.

The stack S is a list of arguments p and update markers #p. A reduced value w must

be a lambda abstraction λy.e. Whenever the control is a lambda abstraction λy.e,

we must examine the stack top element, and act accordingly:

• an argument p on the stack top is a reminder that λy.e must be applied to p,

that is, e[p/y] must be evaluated. This is done by the app2 rule.

• an update marker #p on the stack top is a reminder that the heap must be

updated with [p 7→ λy.e]. This is done by the var2 rule. Intuitively, λy.e is

the value of some expression that was previously bound to p in the heap; to

achieve sharing, the binding of p must be updated with this reduced value.

Values other than lambda abstractions will be considered later; they must check for

update markers #p also, to correctly implement the Var rule. The first version of the
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Heap Control Stack rule

Γ (e p) S app1

=⇒ Γ e p : S

Γ λy.e p : S app2

=⇒ Γ e[p/y] S

Γ[p 7→ e] p S var1
=⇒ Γ e #p : S

Γ λy.e #p : S var2
=⇒ Γ[p 7→ λy.e] λy.e S

Γ let{xi = ei}e S let (∗)
=⇒ Γ[pi 7→ êi] ê S

(∗) In the let rule, the notation ê means e[p1/x1, . . . , pn/xn], where variables p1, . . . , pn must be

distinct and fresh: they must not occur in Γ or let {xi = ei} e or S .

Fig. 3. Abstract machine mark 1, with stack.

abstract machine is shown in Figure 3. The set of update markers #p in the stack

corresponds closely to the set A used in the revised natural semantics rules.

The initial heap and the stack are empty, so the initial state is ({}, e, [ ]). The

machine terminates when no rule applies. Hence a terminal state either has form

(Γ, λy.e, [ ]), representing successful termination with result λy.e, or form (Γ, p, S)

where p /∈ dom Γ, representing the discovery of a black hole in the program. The

rules are deterministic modulo the choice of fresh variables.

In the terminology of Peyton Jones (1992, Section 3.2), the natural semantics in

Figure 2 is an eval/apply model, whereas the abstract machine in Figure 3 is a

push/enter model. The former evaluates an application (e p) by first evaluating e,

then applying the result to p. The latter evaluates (e p) by first pushing the argument

p, then entering the function e. The derivation above and the correctness proof

below show that these models are closely related.

To see the machine in action, and to show how it achieves sharing of subcom-

putations, consider the evaluation of let y = λx.x, v = (λz.z) y in v v in Figure 4.

The final result is λx.x, as expected. In the first step, fresh heap pointers p and q

are allocated and substituted for free occurrences of y and v. The redex (λz.z) y is

reduced only once, although it is used twice in the let-body. The last application of

rule var2 needlessly overwrites an expression which is already in whnf. Such identical

updates could be avoided by not pushing an update marker when accessing a whnf

(by rule var1). This refinement of the machine may be introduced at a later stage, if

desired.

3.2 Correctness of the first abstract machine

The correctness of the abstract machine with respect to the revised semantics is

established by Proposition 2 below, but first we need some auxiliary properties. Let
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Heap Γ Control e Stack S (rule)

[ ] let y=λx.x, v=(λz.z) y in v v [ ]

⇒ {p 7→λx.x, q 7→ (λz.z) p} q q [ ] (let)

⇒ {p 7→λx.x, q 7→ (λz.z) p} q [q] (app1)

⇒ {p 7→λx.x} (λz.z) p [#q, q] (var1)

⇒ {p 7→λx.x} λz.z [p,#q, q] (app1)

⇒ {p 7→λx.x} p [#q, q] (app2)

⇒ {} λx.x [#p,#q, q] (var1)

⇒ {p 7→λx.x} λx.x [#q, q] (var2)

⇒ {p 7→λx.x, q 7→λx.x} λx.x [q] (var2)

⇒ {p 7→λx.x, q 7→λx.x} q [ ] (app2)

⇒ {p 7→λx.x} λx.x [#q] (var1)

⇒ {p 7→λx.x, q 7→λx.x} λx.x [ ] (var2)

Fig. 4. Example evaluation with abstract machine mark 1.

ap(S) = {q | q is in S} stand for the set of argument pointers on the stack S , and let

similarly #(S) = {q | #q is in S} stand for the set of update markers on the stack

S .

Lemma 2

For all Γ, e, A, S , ∆, and e′ such that Γ : e is A-good, A = #(S), and ap(S) ⊆
#(S) ∪ domΓ, if Γ : e ⇓A ∆ : e′ is derivable then (Γ, e, S)⇒∗ (∆, e′, S).

Proof

By induction on the derivation of Γ : e ⇓A ∆ : e′. Lemma 1 ensures that all premises

are promising, and that ap(S) ⊆ #(S) ∪ dom∆.

Case Lam: The Lam rule says that Γ : λy.e ⇓A Γ : λy.e; but clearly (Γ, λy.e, S) ⇒∗
(Γ, λy.e, S) by the empty sequence of computation steps.

Case App: Assume Γ : e p ⇓A Θ : w by rule App. Note that ap(p : S) = {p}∪ ap(S) ⊆
Fv(Γ : (e p))∪ap(S) ⊆ #(S)∪domΓ by Lemma 1, so the induction hypothesis applies

in line three below.

(Γ, (e p), S)

⇒ (Γ, e, p : S) by rule app1

⇒∗ (∆, λy.e′, p : S) by left premise and ind. hyp.

⇒ (∆, e′[p/y], S) by rule app2

⇒∗ (Θ, w, S) by right premise and ind. hyp.

Case Var: Assume Γ[p 7→ e] : p ⇓A ∆[p 7→ w] : w by rule Var . Observe that w

is necessarily a lambda abstraction λy.e′. Moreover, for line three below, note that

A ∪ {p} = #(#p : S), so the induction hypothesis applies.

https://doi.org/10.1017/S0956796897002712 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002712


242 P. Sestoft

(Γ[p 7→ e], p, S)

⇒ (Γ, e,#p : S) by rule var1
⇒∗ (Γ, λy.e′,#p : S) by the premise and ind. hyp.

⇒ (Γ[p 7→ λy.e′], λy.e′, S) by rule var2

Case Let: Assume Γ : let {xi = ei} e ⇓A ∆ : w by rule Let , and that p1, . . . , pn do not

occur in A or Γ or let {xi = ei} e. Then they do not occur in S , that is, in #(S) or

ap(S), so

(Γ, let {xi = ei} e, S)

⇒ (Γ[pi 7→ êi], ê, S) by rule let

⇒∗ (∆, w, S) by the premise and ind. hyp.

2

The lemma shows that the abstract machine can simulate derivations by the

natural semantics. To show the converse, that it computes no more results than the

natural semantics, we introduce the concept of balanced computation. The intention

is that a balanced computation corresponds to a derivation (sub)tree.

We say that stack S ′ extends stack S if S ′ = r1 : . . . : rn : S for some stack objects

r1, . . . , rn, where n ≥ 0.

Definition 3

A balanced computation is a computation (Γ, e, S) ⇒∗ (∆, e′, S) in which the initial

and final stacks are the same, and in which every intermediate stack extends the

initial one.

Every successful computation ({}, e0, [ ]) ⇒∗ (Γ, λy.e′, [ ]) is balanced. We want

to prove that for every balanced computation (satisfying some further restrictions)

there is a corresponding derivation tree. First, we show that a balanced computation

has a simple structure.

Definition 4

The trace of a computation (Γ0, e0, S0)
tr1

=⇒ (Γ1, e1, S1)
tr2

=⇒ · · · trn
=⇒ (Γn, en, Sn) where

n ≥ 0, is the sequence tr1, tr2, . . . , trn of transition rules used. A balanced trace is the

trace of a balanced computation.

What are the possible forms of balanced traces? The empty trace, having one

state and no transitions, is balanced. Assume the initial stack is S . Any non-empty

balanced trace must begin with app1, var1, or let, since app2 or var2 would produce

an intermediate stack which is not an extension of S .

If the trace begins with app1, producing an intermediate stack of form p : S , then

eventually an app2 transition must occur which restores the stack to S; no other

transition can do this. The subtrace between app1 and the first occurrence of app2

is balanced (with stacks which are extensions of p : S), and the subtrace following

it is balanced (with stacks which are extensions of S). Hence the trace has the form

app1 bal app2 bal, where bal stands for arbitrary balanced traces.

If the trace begins with var1, producing an intermediate stack of form #p : S ,

then eventually a var2 transition must occur which restores the stack to S . The
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subtrace between var1 and the first occurrence of var2 is balanced. Furthermore,

since the control (before and) after var2 must be λy.e, only an app2 or var2 transition

could follow, but either would remove an element from the stack and contradict the

balancedness of the trace. Hence the occurrence of var2 is the last element of the

trace, which must have the form var1 bal var2.

If the trace begins with let, then the subtrace after let must be balanced, so the

trace has form let bal.

In summary, all balanced traces can be derived from the following grammar:

bal ::= ε | app1 bal app2 bal | var1 bal var2 | let bal

The four possibilities correspond to the four natural semantics rules Lam , App, Var ,

and Let in Figure 2. Thus potentially, a balanced trace has the same structure as

a derivation tree; the following lemma gives a formal proof, which shows that the

natural semantics can simulate any balanced computation of the machine.

Lemma 3

For all Γ0, e0, S , Γ1, w, and A it holds that if (Γ0, e0, S) ⇒∗ (Γ1, w, S) is balanced,

and w ≡ λv.e1, and A = #(S) then Γ0 : e0 ⇓A Γ1 : w is derivable.

Proof

By induction on the structure of balanced traces, following the grammar.

Case ε: follows by rule Lam because we have Γ0 = Γ1 and e0 ≡ w ≡ λv.e1.

Case app1 bal app2 bal: We must have e0 ≡ (e p). The state after app1 must

be (Γ0, e, p : S) and the state before app2 must be (∆, λy.e′, p : S). Since the trace

between these is balanced, Γ0 : e ⇓A ∆ : λy.e′ is derivable by the induction hypothesis.

The state after app2 is (∆, e′[p/y], S), and the trace of (∆, e′[p/y], S) ⇒∗ (Γ1, w, S) is

balanced, so ∆ : e′[p/y] ⇓A Γ1 : w is derivable by the induction hypothesis. Using

the App rule, we conclude that Γ0 : e p ⇓A Γ1 : w is derivable.

Case var1 bal var2: We must have e0 ≡ p and Γ0 = Γ[p 7→ e] and Γ1 = ∆[p 7→ λv.e1]

for some p, Γ, e, and ∆. The state after var1 is (Γ, e,#p : S), and the state before var2
is (∆, w,#p : S), with w ≡ λv.e1. Since the subtrace between these is balanced, Γ :

e ⇓A∪{p} ∆ : w is derivable by the induction hypothesis, which is applicable because

A ∪ {p} = #(#p : S). Using the Var rule we find that Γ[p 7→ e] : p ⇓A ∆[p 7→ w] : w

is derivable.

Case let bal: We must have e0 ≡ let {xi = ei} e, and for renaming of ê some p1, . . . , pn
have been chosen that do not occur in Γ0 or let {xi = ei} e or S . The state after let

is (Γ0[pi 7→ êi], ê, S), and the trace after let is balanced, so Γ0[pi 7→ êi] : ê ⇓A Γ1 : w

is derivable by the induction hypothesis. Since the p1, . . . , pn do not occur in Γ0 or

A or let{xi = ei}e, we can use rule Let to conclude that Γ0 : let{xi = ei}e ⇓A Γ1 : w

is derivable. 2

Proposition 2

Assume w ≡ λy.e1. Then ({}, e0, [ ]) ⇒∗ (∆, w, [ ]) if and only if {} : e0 ⇓{} ∆ : w is

derivable.
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Proof

If: follows from Lemma 2 because {} : e0 ⇓{} ∆ : w is derivable and promising. Only

if: observe that the computation ({}, e0, [ ])⇒∗ (∆, w, [ ]) is necessarily balanced; then

the result follows from Lemma 3. 2

Proposition 2 says that the abstract machine terminates with a value λv.e1 in the

control if and only if the natural semantics successfully derives this value. Both

systems are deterministic, modulo the choice of fresh variables in the Let and let

rules. As a second possibility, the machine may terminate with a heap pointer p in

the control, indicating a ‘black hole’, in which case the natural semantics permits

no derivations at all. As a third possibility, the machine may embark on an infinite

computation, corresponding to an infinite derivation tree in the natural semantics.

Determinism implies that these possibilities are mutually exclusive.

In retrospect it is not surprising that proving Lemma 2 requires less machinery

than Lemma 3. In the former proof we must create a sequence from a tree, which is

just a matter of recursive flattening. In the latter proof we must create a tree from

a sequence, which is harder: the notion of balanced trace is a device to recover the

tree structure from the sequence.

3.3 Second step: introduce environments and closures

The abstract machine above uses substitution in the expression e to model application

(in the app2 rule) and renaming (in the let rule). This is unsatisfactory from an

implementation point of view because it modifies the expression at run-time. To

avoid this, we introduce an environment E, which is a mapping from program

variables x to heap pointers p. The environment can be thought of as a delayed

substitution, which is not applied until we meet a program variable x in the control.

When we would previously perform the substitution e[p/y], obtaining a new

expression e′, we will now build the pair (e, {y 7→ p}) of the expression e and the

environment {y 7→ p}. In general, where we previously had an expression e′, we shall

now have a pair (e, E) of an expression e and an environment E such that e′ is

eE, the result of applying the substitution E to the expression e. The pair (e, E) is

traditionally called a closure.

Henceforth the heap maps pointers to closures (e, E) instead of expressions e.

Similarly, to bind the free variables of the control e, we add an environment E to

the machine state, which becomes a four-tuple (Γ, e, E, S). Now an expression e in

the control or the heap may have free program variables, but these will be bound

in the environment E associated with e.

The resulting abstract machine is shown in Figure 5. Each of the revised app1 and

var1 rules performs two tasks: first it finds the heap pointer p bound to x in E, and

then it behaves as the old app1 or var1 rule.

The correctness of this modification is clear, since the computation sequences

of the mark 1 and mark 2 machines are closely related. Every state of a mark 2

computation can be mapped to a corresponding state of the mark 1 machine, by

replacing every closure (e, E) with the expression eE.
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Heap Control Environment Stack rule

Γ (e x) E[x 7→p] S app1

=⇒ Γ e E[x 7→p] p : S

Γ λy.e E p : S app2

=⇒ Γ e E[y 7→p] S

Γ[p 7→ (e′, E ′)] x E[x 7→p] S var1
=⇒ Γ e′ E ′ #p : S

Γ λy.e E #p : S var2
=⇒ Γ[p 7→ (λy.e, E)] λy.e E S

Γ let{xi=ei}e E S let (∗)
=⇒ Γ[pi 7→ (ei, E

′)] e E ′ S

(∗) In the let rule, the variables p1, . . . , pn must be distinct and fresh: they must not occur in

Γ or let{xi=ei}e or S . The new environment E ′ is E[x1 7→p1, . . . , xn 7→pn].

Fig. 5. Abstract machine mark 2, with stack and environment.

Thus the introduction of environments does not change the result of a computa-

tion. However, it increases the set of heap addresses p transitively reachable from the

machine components e, E, and S . Namely, in the mark 1 rule app2, the substitution

e[p/y] would embed p in the new control only if y occurs free in e. In the mark 2

rule app2, p will be retained in the new environment E[y 7→ p] regardless whether y

occurs free in e or not. This can make a considerable difference, since many heap

addresses may be transitively reachable from the closure pointed to by p in the heap

Γ. In terms of lazy language implementations, we have introduced a space leak . The

same problem appears in the mark 2 treatment of let-bindings. We shall return to

this issue in section 4.

3.4 Third step: introduce variable indices

In this step, we get rid of program variable names, replacing them with de Bruijn

indices, which are numbers similar to variable offsets in conventional compiler

terminology†. The syntax of normalized lambda expressions with de Bruijn indices

is:

e ::= λe | e u | u | let e1, . . . , en in e

where u is a de Bruijn index (a positive integer). An environment E is now a mapping

from positive integers to heap pointers, and can be represented as a list [p1, . . . , pk]

of heap pointers, such that E maps index u to E[u] = pu when 1 ≤ u ≤ k. More

efficient representations of E exist.

† The introduction of de Bruijn indices at this point may seem premature, but it permits
comparison with the Krivine machine, and it permits the derivation of a well-known
and simple representation of data constructors in section 5.5, which in turn leads to a
well-known implementation of base values in section 6.2.
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Heap Control Environment Stack rule

Γ (e u) E=[p1, . . . , pk] S app1

=⇒ Γ e E pu : S

Γ λe E p : S app2

=⇒ Γ e p : E S

Γ[pu 7→ (e′, E ′)] u E=[p1, . . . , pk] S var1
=⇒ Γ e′ E ′ #pu : S

Γ λe E #p : S var2
=⇒ Γ[p 7→ (λe, E)] λe E S

Γ let {ei} e E S let (∗)
=⇒ Γ[pi 7→ (ei, E

′)] e E ′ S

In the app1 and var1 rules, pu is the u’th element of the environment E = [p1, . . . , pk].

(∗) In the let rule, the addresses p1, . . . , pn must be fresh: they must not occur in Γ or S . The

new environment E ′ is p1 : . . . : pn : E.

Fig. 6. Abstract machine mark 3, with stack, environment, and de Bruijn indices.

The transition rules of the final abstract machine are shown in Figure 6. Rules

app2 and let ensure that the environment E = [p1, . . . , pk] contains bindings for all

variables in scope, with p1 most recently bound and pk least recently bound. Thus an

occurrence of variable x must be replaced by a de Bruijn index equal to the number

of lambdas between the binding lambda λx . . . and the occurrence, plus one; this is

standard (Barendregt, 1984, Appendix C).

3.5 Related abstract machines

The lazified Krivine machines of Crégut (1991, p. 30) and Sestoft (1991, p. 31) may be

obtained from the present one by combining the rules let and app1 into a single rule

which requires every application (e1 e2) to take the restricted form let x = e2 in (e1 x).

That is, those machines always allocate a closure for the argument to ensure sharing.

When evaluating an application (e1 y) in which the argument expression is already

a variable y, this creates a superfluous indirection and requires an extra update. In

a recursive function, a chain of indirections may build up, causing a space leak.

Hence one advantage of the present machine is that sharing (the let rule) has been

separated from application (the app1 rule). We introduce let-bindings only where

necessary, by transforming the expressions to normalized form. In addition, let can

define recursive functions and cyclic data; the other lazified Krivine machines need

a separate mechanism for that.

To study our machine’s relation to the Three Instruction Machine TIM (Fairbairn

and Wray, 1987), we first observe that normalized lambda expressions are closely

related to ordinary sequential code:
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(e u) reads Push u; e Push pointer onto stack

λe reads Take; e Take one argument from stack

u reads Enter u Enter closure

let {ei} e reads Let {ei}; e Make recursive bindings

Inspection of the rules in Figure 6 shows that each of the four instructions Push,

Take, Enter, and Let performs a bounded amount of computation. The three first

instructions are those of the TIM, except that TIM’s Take n instruction can take

n ≥ 1 arguments from the stack, rather than a single one. Lazy versions of the

TIM usually tie sharing to argument passing, as do the lazified Krivine machines,

and with the same consequences: chains of indirections will build up unless special

precautions are made. Again, using let-bindings to separate sharing from argument

passing is preferable.

The TIM’s Take n instruction is more efficient than our single-argument Take

instruction in the call-by-name case, but causes complications in the call-by-need

case, when there may be update markers in between the n arguments to be taken

off the stack.

The abstract machine in Figure 6 is a Four Instruction Machine. Experimental

implementations of the machine are easily written in Scheme or Standard ML,

which provide destructive update as well as an underlying garbage collector.

4 Space considerations

The above abstract machine is quite efficient, but uses too much memory; it has a

space leak . The environments hold on to useless closures, as hinted in section 3.3.

Here we solve this problem.

4.1 A leaky program

To see that the machine as presented so far leaks space, consider the following

example program, where I abbreviates λy.y:

let f = (λn. let x = I in (f x))

in (f f)

Evaluation of this expression will not terminate. However, the real problem is that

evaluation requires an unbounded amount of space. We shall evaluate the expression

using the mark 2 machine in Figure 5; using the mark 3 machine with de Bruijn

indices would obscure the presentation.

Evaluation of the outer let allocates a closure ((λn. let x = I in (f x)), {f 7→ pf})
for f in the heap, at address pf say. Evaluation of the call (f f) in the let-body binds

n to the pointer pf , and enters the body of f with environment {n 7→ pf, f 7→ pf}.
The first evaluation of the inner let allocates a closure (I, E1) for x, at address px,1

say. The environment part E1 = {x 7→ px,1, n 7→ pf, f 7→ pf} contains bindings for x,
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n, and f, none of which is needed for evaluating I . The recursive call (f x) binds n

to the pointer px,1 and enters the body of f with environment {n 7→ px,1, f 7→ pf}.
The second evaluation of the inner let allocates a new closure (I, E2) for x, at

address px,2 say, where the environment part is E2 = {x 7→ px,2, n 7→ px,1, f 7→ pf}.
The recursive call (f x) binds n to px,2 and enters the body of f with environment

{n 7→ px,2, f 7→ pf}.
The third evaluation of the inner let allocates a new closure (I, E3) for x, at

address px,3 say, where E3 = {x 7→ px,3, n 7→ px,2, f 7→ pf}. Then it evaluates the

recursive call, and so on.

The undesirable overall effect is to build up an ever-growing chain of closures

for x, in which px,n points to a closure containing px,n−1, which points to a closure

containing px,n−2, and so on, down to px,1. At any point of execution, all these

closures are reachable from the abstract machine’s environment or stack, so none of

them can be garbage-collected. Consequently, the space consumption grows linearly

with the execution time of the program.

4.2 Practical consequences

The above example is contrived, but similar space leaks would appear in most recur-

sive programs. To show that the problem is significant in practice, we implemented

an extended version of the leaky abstract machine and ran it using Standard ML

of New Jersey. The data given below are based on the heap sizes reported by that

implementation. Printing a prefix of the list of natural numbers, defined by

let nats = cons 0 (map add1 nats) in nats

requires heap space proportional to the length of the prefix printed. In the improved

non-leaky machine presented below, an arbitrary prefix can be printed in a bounded

(and small) amount of space. In a similar experiment, computing and printing the

first 200 prime numbers (using Eratosthenes’s sieve) requires more than 3000 KB

heap space with the leaky machine, and less than 8 KB with the non-leaky one. It

is important to solve this problem.

4.3 Environment trimming

The solution is to refine the use of environments in the mark 2 and 3 machines,

so they model more closely the substitutions performed in the mark 1 machine

(Figure 3). Ideally, the environment E in the machine, and the environments stored

in closures in the heap, should not bind any superfluous variables.

Following an idea from the Spineless Tagless G-machine (Peyton Jones, 1992,

Section 5.3), we shall trim the environments E of let-bound expressions and of

let-bodies: only their free variables should be included in E. To perform trimming,

we annotate every let-bound expression and the let-body with the set t of its free

variables. This annotation is called a trimmer .

In the mark 2 machine, an environment E is a mapping from variable names to

pointers, a trimmer t is just a set of names, and the trimming E|t of E with respect
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Heap Control Environment Stack rule

Γ let{xi = (ei, ti)}(e, t) E S let′ (∗)
=⇒ Γ[pi 7→ (ei, E

′|ti)] e E ′|t S

(∗) The variables p1, . . . , pn must be fresh: they must not occur in Γ or let . . . or S . The new

environment E ′ (before trimming) is E[x1 7→ p1, . . . , xn 7→ pn].

Fig. 7. Revised let-rule with environment trimming for abstract machine mark 2.

to t is simply the restriction of the mapping E to the domain t. Figure 7 shows the

revised mark 2 let rule with trimming. Adding mark 2 trimmers to the example from

the previous section, we find that since I has no free variables, its trimmer should

be the empty set {}:

let f = ((λn. let x = (I, {}) in ((f x), {x, f})), {f})
in ((f f), {f})

We see that the environment in closures allocated for x will be empty, and no space

leak will occur. Although many closures are allocated for x during execution, they

quickly become unreachable and therefore subject to garbage collection.

In the mark 3 machine, an environment E = [p1, . . . , pk] is a list of pointers, a

trimmer t = [i1, . . . , in] is a sub-sequence of the de Bruijn indices 1, . . . , k, and the

trimming E|t of E with t is the sub-list [pi1 , . . . , pin ]. The de Bruijn indices of variable

occurrences must be adjusted when the environment gets trimmed. The adjustment

depends on the trimmer, that is, the set of free variables of the expression being

compiled. In general two passes over the expression are required at compile time,

but otherwise this adjustment poses no problems.

Closures for let-bound expressions are written to the heap, potentially have a

long life-time, and therefore are prone to cause space leaks; this is the reason for

explicitly trimming their environments.

Similarly, when a lambda abstraction is the whnf of a let-bound expression, then

a closure for the lambda abstraction will be written to the heap. If the lambda

abstraction ignores its argument as in let y = (λy.λz.z) x in . . ., the inclusion of x in

the environment may cause a space leak. However, a lambda abstraction must occur

either in the right-hand side of a let-binding or in a let-body, both of which have

their environments trimmed, so although its environment may contain superfluous

variables, they are likely to be few.

Trimming the environment of a lambda abstraction would entail the run-time

adjustment of the de Bruijn indexes of variable occurrences in its body.

4.4 Related approaches

In the intermediate language of the Spineless Tagless G-machine STG, every let-

bound expression is annotated with the set of its free variables. When making a

closure for a let-bound expression, the STG let-instruction trims the environment.
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It does not trim the environment of the let-body, but this does not harm lambda

abstractions, which in the STG-machine can appear only as right-hand sides in

let-bindings. The STG-machine seems to suffer the same potential space leak as our

machine when a lambda abstraction ignores its argument, but in the STG-machine

this can be fixed easily.

Lambda lifting (Johnsson, 1985) as used in the G-machine automatically performs

environment trimming by turning local function bindings into top-level function

bindings, passing any free variables as arguments. This may explain why lambda

lifting works so well in lazy languages, in spite of its destroying scope information

and introducing more parameter passing: the pointer copying required for parameter

passing is required anyway for environment trimming in a lazy language. The G-

machine does not seem to trim the environment of let-bound expressions.

Trimming incurs a run-time overhead, but it also reduces the time to access

variables when environments are represented as linked lists. A trimmed environment

could be represented by a vector, or by a linked list of argument values (and case-

bound values, see below) followed by a vector of the values of the free variables. For

simplicity we use linked lists throughout this paper. After introducing constructors

and case-expressions we shall return to environment trimming again.

A lazy approach to environment trimming was proposed by the designers of the

Three Instruction Machine (Fairbairn and Wray, 1987, p. 42). Every heap-allocated

environment is equipped with a trimmer in the form of a bit vector, indicating which

entries in the environment are live. This bit vector is generated a compile time. At

garbage collection, only the live pointers in the environment are followed in the

copy- or mark-phase. This scheme probably spends less time trimming, but requires

more space. It has the advantage that variable indexes need not be adjusted.

Efficient environment representations which are safe for space complexity have

been studied for strict functional languages (Shao and Appel, 1994). This work

should be relevant when designing environment representations for lazy languages

also, although their space/efficiency trade-offs are different: closures are created at

a much higher rate, and the lifetime of values is harder to predict.

5 Algebraic datatypes

Machine instructions for handling algebraic datatypes can be derived from natural

semantics rules also. Algebraic datatypes, as known from Standard ML or Haskell,

introduce two new forms of expressions: constructor applications c x1 . . . xa and case

expressions:

e ::= . . . | c x1 . . . xa | case e of {cj yj1 . . . yjaj → ej}nj=1

Constructor arguments must be variables to ensure sharing of components; ad-

ditional let-bindings may be introduced to satisfy this requirement. We assume a

typed language, so that constructors from different datatypes cannot be confused

at run-time, and so that every constructor cj has a fixed arity aj ≥ 0. Constructors

must be fully applied. In a case expression, e is the case object , and cj yj1 . . . yjaj → ej
is an alternative. There must be exactly one alternative for each constructor of the
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Γ : c p1 . . . pa ⇓A Γ : c p1 . . . pa Cons

Γ : e ⇓A ∆ : ck p1 . . . pak ∆ : ek[p1/yk1, . . . , pak /ykak ] ⇓A Θ : w
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Γ : case e of {cj ȳj→ej} ⇓A Θ : w Case

Fig. 8. Natural semantics rules for constructors.

datatype. For brevity we write {cj ȳj→ ej} for the list of alternatives, where ȳj is a

vector yj1 . . . yjaj of variables.

Launchbury gives the natural rules for evaluation of constructor application and

case (see Figure 8, where we have added the A component as in Figure 2). It follows

from the rules that a reduced value w may now be a constructor application c p1 . . . pa
as well as a lambda abstraction λy.e.

5.1 Constructors in the mark 1 machine

What changes are needed to handle constructors in the mark 1 abstract machine,

shown in Figure 3? Recall that the machine stack represents the continuation of a

computation; it says how to join subcomputations, corresponding to the flattening

of the derivation tree.

• The new Cons rule is similar to the Lam rule, and gives rise to no new machine

rules: a constructor application is a value already, and requires no machine

action.

• The new Case rule is similar to the App rule, and gives rise to two new machine

rules: case1 which begins the computation corresponding to the left subtree,

and case2 which begins the computation corresponding to the right subtree.

• A new version var3 of the var2 rule is needed, since the result w in the Var

rule of Figure 2 may now be a constructor application c p1 . . . pa, not just a

lambda abstraction λy.e. When a constructor application c p1 . . . pa finds an

update marker #p on the stack, it must update the heap at p with itself.

The new rules are shown in Figure 9. A new kind of stack object, similar in purpose

to an argument p, is needed to store the case alternatives while evaluating the case

object:

• a case marker is a list {cj ȳj→ej} of alternatives.

Rule case1 pushes the case marker, then starts evaluating the case object e. When an

application ck p1 . . . pak of constructor ck encounters a case marker, rule case2 starts

evaluating the k’th alternative.

5.2 Correctness of the constructor rules

The proof of Lemma 2 is easily extended to account for the new rules:
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Heap Control Stack rule

Γ case e of alts S case1

=⇒ Γ e alts : S

Γ ck p1 . . . pak alts : S case2

=⇒ Γ ek[pi/yki] S

Γ ck p1 . . . pak #p : S var3
=⇒ Γ[p 7→ ck p1 . . . pak ] ck p1 . . . pak S

The notation alts stands for the list {cj ȳj→ej} of alternatives, and ȳk stands for the vector

yk1, . . . , ykak of variables. In the case2 rule, ek is the right-hand side of the k’th alternative,

and ek[pi/yki] abbreviates ek[p1/yk1, . . . , pak /ykak ].

Fig. 9. Constructor rules for abstract machine mark 1.

Case Cons is trivial, by the empty sequence of computation steps (as for Lam).

Case Case: Assume Γ : case e of {cj ȳj→ej} ⇓A Θ : w by rule Case, then

(Γ, case e of {cj ȳj→ej}, S)

⇒ (Γ, e, {cj ȳj→ej} : S) by rule case1

⇒∗ (∆, ck p1 . . . pak , {cj ȳj→ej} : S) left premise and ind. hyp.

⇒ (∆, ek[pi/yki], S) by rule case2

⇒∗ (Θ, w, S) right premise and ind. hyp.

2

The other direction is more work. First, there are more balanced traces. Arguing as

in Section 3.2, we find that all balanced traces of the new machine can be derived

from the following grammar:

bal ::= ε | app1 bal app2 bal | var1 bal var2 | let bal |
var1 bal var3 | case1 bal case2 bal

The ε trace now corresponds to the Cons rule as well as the Lam rule, and the two

last possibilities correspond to the Var rule and the Case rule, respectively.

Secondly, Lemma 3 must be amended slightly, because the result w of a compu-

tation may now be a constructor application ck p1 . . . pak :

Lemma 4

For all Γ0, e0, S , Γ1, and w it holds that if (Γ0, e0, S) ⇒∗ (Γ1, w, S) is balanced, and

w ≡ λv.e1 or w ≡ ck p1 . . . pak , and A = #(S) then Γ0 : e0 ⇓A Γ1 : w is derivable.

Proof

By induction on the structure of balanced traces. Case ε. Follows by rule Lam or

Cons according as w ≡ λv.e1 or w ≡ ck p1 . . . pak .

Case app1 bal app2 bal, case var1 bal var2, and case let bal are as in Lemma 3.
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Heap Control Environment Stack rule

Γ case e of alts E S case1

=⇒ Γ e E (alts, E) : S

Γ ck x1 . . . xak E ′ (alts, E) : S case2

=⇒ Γ ek E[yki 7→pi] S

Γ ck x1 . . . xak E ′ #p : S var3
=⇒ Γ[p 7→ (ck x̄, E

′)] ck x̄ E ′ S

The notation alts stands for the list {cj ȳj→ej} of alternatives, and ȳk stands for the vector

yk1, . . . , ykak of variables. In the case2 rule, ek is the right-hand side of the k’th alternative, and

pi = E ′[xi] for i = 1, . . . , ak . In the var3 rule, x̄ stands for the vector x1 . . . xak of variables.

Fig. 10. Constructor rules for abstract machine mark 2.

Case var1 bal var3. We must have e0 ≡ p and Γ0 = Γ[p 7→ e] and Γ1 = ∆[p 7→
ck p1 . . . pak ] for some p, Γ, e, and ∆. The state after var1 is (Γ, e,#p : S) and

the state before var3 is (∆, ck p1 . . . pak ,#p : S). Since the subtrace between these

is balanced, Γ : e ⇓A∪{p} ∆ : ck p1 . . . pak is derivable by the induction hypothesis,

which is applicable because A ∪ {p} = #(#p : S). Using the Var rule, we find that

Γ[p 7→ e] : p ⇓A ∆[p 7→ ck p1 . . . pak ] : ck p1 . . . pak is derivable.

Case case1 bal case2 bal: We must have e0 ≡ case e of {cj ȳj → ej}. The state

after case1 must be (Γ0, e, {cj ȳj → ej} : S) and the state before case2 must be

(∆, ck p1 . . . pak , {cj ȳj → ej} : S). The trace between these is balanced, so that Γ0 :

e ⇓A ∆ : ck p1 . . . pak is derivable by the induction hypothesis. The state after case2

is (∆, ek[pi/yki], S), and the trace of (∆, ek[pi/yki], S) ⇒∗ (Γ1, w, S) is balanced, so

∆ : ek[pi/yki] ⇓A Γ1 : w is derivable by the induction hypothesis. Using the Case rule,

we find that Γ0 : case e of {cj ȳj→ej} ⇓A Γ1 : w is derivable. 2

Proposition 2 must be amended similarly and its proof must appeal to the extended

lemmas.

5.3 Constructors in the mark 2 machine

We introduce environments to avoid doing substitutions in the code, as in section 3.3

when we derived the mark 2 machine. Because of possible free variables in the right-

hand sides of alternatives, the case1 rule must store the environment E along with

the alternatives in the case marker (on the stack), and rule case2 must extract it

again. Hence a case marker now has form ({cj ȳj→ej}, E). Also, the substitution in

rule case2 must be replaced by environment extension. The new rules are shown in

Figure 10.

5.4 Constructors in the mark 3 machine

Replacing variable names by de Bruijn indices as in section 3.4, the syntax for an

alternative cj ȳj→ej becomes cj → ej , simply. The pattern variables yj1 . . . yjaj have
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Heap Control Environment Stack rule

Γ case e of alts E S case1

=⇒ Γ e E (alts, E) : S

Γ ck u1 . . . uak E ′ (alts, E) : S case2

=⇒ Γ ek E ′′ S

Γ ck u1 . . . uak E ′ #p : S var3
=⇒ Γ[p 7→ (ck ū, E

′)] ck ū E ′ S

The notation alts stands for the list {cj → ej} of alternatives. In the case2 rule, ek is the

right-hand side of the k’th alternative, and E ′′ = E ′[uak ] : . . . : E ′[u1] : E is the environment

for ek . In the var3 rule, ū stands for the vector u1 . . . uak of de Bruijn indices.

Fig. 11. Näıve constructor rules for abstract machine mark 3.

been replaced by the indices aj , . . . , 1 in the right-hand side ej . The seemingly inverse

order of the indices is natural; it corresponds to the indices in ej of the parameters

in the lambda abstraction λyj1. . . . λyjaj .ej . The resulting abstract machine is shown

in Figure 11.

5.5 Improving constructors in the mark 3 machine

The handling of constructors and case expressions can still be improved, by requiring

that every constructor application has the restricted form

ck ak . . . 1

in which the arguments u1 . . . uak are exactly the indices of the ak most recently bound

variables. In that case the new environment E ′′ in the second rule of Figure 11 is

always E ′′ = E ′[1] : . . . : E ′[ak] : E, which is just the environment E appended to the

first ak variables from E ′. Then there is no need to represent the arguments explicitly

in a constructor application; an application of a constructor ck can be represented

just by ck,a, showing its tag k and arity a. We have arrived at the Pack{tag,arity}
representation for constructors used by Peyton Jones and Lester (1992), with tag = k

and arity = a.

The restriction on constructor application can be enforced by defining named

constructors, as illustrated by the standard list-constructors nil and cons (with

arities 0 and 2):

nil = c1,0

cons = λλc2,2

An application cons x y of a named constructor is an ordinary application, in which

the arguments x and y must be variables to ensure sharing. To illustrate the use of

this encoding, consider evaluating cons x y with an update marker #p on the stack

top; assume that px = E[x] and py = E[y]:
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Heap Control Environment Stack rule

Γ case e of alts E S case1

=⇒ Γ e E (alts, E) : S

Γ ck,a E ′ (alts, E) : S case2

=⇒ Γ ek E ′′ S

Γ ck,a E ′ #p : S var3
=⇒ Γ[p 7→ (ck,a, E

′[1 . . . a])] ck,a E ′ S

The notation alts stands for the list {cj → ej} of alternatives. In the case2 rule, ek is the

right-hand side of the k’th alternative, and E ′′ = E ′[1] : E ′[2] : . . . : E ′[a] : E. In the var3
rule, E ′[1 . . . a] abbreviates [E ′[1], . . . , E ′[a]].

Fig. 12. Improved constructor rules for abstract machine mark 3.

Γ (λλc2,2) x y E #p : S

⇒ Γ (λλc2,2) x E py : #p : S (app1)

⇒ Γ (λλc2,2) E px : py : #p : S (app1)

⇒ Γ λc2,2 px : E py : #p : S (app2)

⇒ Γ c2,2 py : px : E #p : S (app2)

⇒ Γ[p 7→ (c2,2, [py, px])] c2,2 py : px : E S (var3)

Moving cons’s arguments into the environment via the stack may seem cumbersome,

but this scheme is simple and permits partial application of constructor encodings

such as cons. Moreover, in a realistic implementation, the frequent case of applying

a known constructor to all of its arguments can be detected and optimized at

compile-time. The improved constructor rules are shown in Figure 12.

Note that we ever only use the first ak elements of the constructor application’s

environment, where ak is the constructor’s arity. Hence we need to store only the first

ak elements of E in the heap when meeting an update marker. This is particularly

efficient if an environment is a linked list of vectors (of heap pointers); then the

constructor arguments can be represented by a fixed size vector of heap pointers,

and the append operation to build E′′ in rule case2 of Figure 12 can be done in

constant time, independently of the size of E ′ and E.

5.6 Environment trimming for constructors

The space behaviour of the rules in Figure 12 need to be improved in two ways. In

rule case1, storing the entire environment E in the case marker on the stack may

cause a space leak. Namely, it may hold on to a large value while the case object

e is being evaluated. Hence we should trim the environment E before storing it on

the stack.

In rule case2, even if an alternative has no free variables at all, its environment E ′′

will contain all the variables free in other alternatives. If the alternative is a lambda
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Heap Control Environment Stack rule

Γ case e of alts , t E S case1

=⇒ Γ e E (alts, E|t) :S

Γ ck,a E ′ (alts, E) :S case2

=⇒ Γ ek E ′′|tk S

Γ ck,a E ′ #p : S var3
=⇒ Γ[p 7→ (ck,a, E

′[1 . . . a])] ck,a E ′ S

The notation alts stands for the list {cj → (ej , tj)} of alternatives with trimmers. In the case2

rule, (ek, tk) is the right-hand side of the k’th alternative, and E ′′ = E ′[1] : . . . E ′[a] : E. In the

var3 rule, E ′[1 . . . a] abbreviates [E ′[1], . . . , E ′[a]].

Fig. 13. Final constructor rules with environment trimming, abstract machine mark 3.

expression λz.z, a closure for it might be written to the heap, causing a space leak

because of these free variables. Hence we should trim the environment E′′ of an

alternative, just as we trim the environment of a let-body.

In rule var3 we can do no better than including all the arguments when writing a

constructed value (ck,a, E
′[1 . . . a]) to the heap.

We therefore add a separate trimmer tk for each alternative ck → ek , and a joint

trimmer t for the list alts of all alternatives. The trimmer tk is the set of variables

free in ek , including the variables bound on the left-hand side, and t is the set of

variables free in one or more of {cj → ej}, excluding the variables bound on the

left-hand sides. We arrive at the improved rules shown in Figure 13.

The Spineless Tagless G-machine trims the joint environment of the alternatives

of case (Peyton Jones, 1992, Section 9.4.1). The G-machine does not seem to.

6 Base values

Additional machine instructions for handling base values, such as integers, can

be introduced in several ways. In this section we derive mechanisms for base

value handling from the representations suggested in Peyton Jones and Launchbury

(1991). Alternatively, one may derive nearly the same base value operations from

Launchbury’s operational semantics (Sestoft, 1994, Appendix B).

6.1 Deriving base value handling

We use integers with addition to illustrate base values:

e ::= . . . | n | e1 + e2

Note that the operands of the addition need not be variables, as they cannot be

shared. We shall assume that expressions are well-typed, so ‘+’ is applied only to

expressions that evaluate to integers. Launchbury’s evaluation rules are shown in

Figure 14. An integer n reduces to itself immediately by rule Int . An addition is
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Γ : n ⇓A Γ : n Int

Γ : e1 ⇓A ∆ : n1 ∆ : e2 ⇓A Θ : n2
------------------------------------------------------------------------------------------------------------------------------------------------------

Γ : e1 + e2 ⇓A Θ : n1 + n2 Add

Fig. 14. Natural semantics rules for integers.

evaluated by evaluating the operands in turn and adding their results by rule Add.

This reflects that ‘+’ and other base value operators are strict: the arguments must

be evaluated before the operation can be applied.

We exploit two ideas due to Peyton Jones and Launchbury (1991): using construc-

tors to represent boxed integers, and using case expressions to evaluate arguments

before the application of ‘+’. Recall that a boxed base value v is represented by a

closure which must be evaluated to obtain v, whereas an unboxed value is just the

bit-pattern representing the value. A boxed value may turn out to be undefined,

since an attempt to evaluate the closure may loop, whereas an unboxed value is

always defined.

First, we represent a boxed integer by a constructor application Int n. Here Int

is the only constructor in the datatype of boxed integers and has arity one, corre-

sponding to the generic constructor c1,1. Using the final constructor representation

developed in section 5.5, a boxed integer Int n would be represented by a pair (Int , E)

where E is a one-element vector containing a pointer to a closure somehow repre-

senting the unboxed integer n. But the unboxed n is just a bit-pattern, so we shall

let E be a one-element vector containing n directly, giving the boxed representation

(Int , [n]).

Secondly, we use case expressions to force argument evaluation. For instance, the

addition e1 + e2 of two integer-valued expressions is defined following Peyton Jones

and Launchbury (1991, p. 644), here slightly simplified:

case e1 of

Int n1 → case e2 of

Int n2 → Int (n1 + n2)

Using de Bruijn indices as in section 5.5, the case expression translates to the

following one (where we ignore environment trimming):

case e1 of {case e2 of {Int (2 + 1)}}

Here 2 and 1 are the indices of n1 and n2, not base value constants, so (2 + 1) means

‘add the two first values in the environment’. The rules already given in Figure 12

say how to evaluate the case expression, except for the unboxed addition (2 + 1). It

suffices to postulate a new machine instruction op+, which computes the (unboxed)

sum n′ of the two first values in the current environment, and creates the boxed

result (Int , [n′]). Thus we replace the innermost case alternative Int (2 + 1) by op+.

In conclusion, a single new instruction is needed to perform addition. Another
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Heap Control Environment Stack rule

Γ Cst n E S cst
=⇒ Γ Int [n] S

Γ op+ n2 : n1 : E S add
=⇒ Γ Int [n1 + n2] S

Fig. 15. Rules for base values in abstract machine mark 3.

new instruction Cst n is needed to introduce integer constants; it must evaluate to

(Int , [n]). The required new rules are shown in Figure 15.

For illustration, consider the evaluation of e1 + e2, which is compiled as

case e1 of {case e2 of {op+}}

Using the abbreviation e′ ≡ case e2 of {op+} for the inner case, we have

Γ case e1 of {e′} E S

⇒ Γ e1 E ({e′}, E) : S (case1)

⇒∗ Γ Int [n1] ({e′}, E) : S (evaluate e1)

⇒ Γ case e2 of op+ n1 : E S (case2)

⇒ Γ e2 n1 : E ({op+}, n1 : E) : S (case1)

⇒∗ Γ Int [n2] ({op+}, n1 : E) : S (evaluate e2)

⇒ Γ op+ n2 : n1 : E S (case2)

⇒ Γ Int [n1 + n2] S (add)

There is a close correspondence between this computation sequence and a tree

derived from the Add rule in the natural semantics of Figure 14. The two subcom-

putations starting with case1 and ending just before case2 correspond to the left and

right subtree, respectively. The first occurrence of case2 initiates the evaluation of

the right-hand subtree, and the second occurrence of case2 activates the add step,

which performs the addition in the conclusion of the rule.

When a let-bound expression evaluates to an integer, the result (Int , [n]) will

encounter an update marker #p on the machine stack. Since Int is just the constructor

c1,1, this situation is handled by rule var3 in Figure 12, which will update the heap

at p with the closure (Int , [n]), as desired.

6.2 Introducing a base value stack

The base value handling developed above is simple but inefficient. Intermediate base

values are held in the environment component of closures on the stack during the

computation. This may prevent optimization of environment representations, and

may complicate garbage collection by mixing base values and pointers in the stack.

It is better to have a separate value stack V for intermediate base values.

To introduce a separate value stack V , we replace the general Int constructor

(which is really c1,1) by a special constructor called Ret , which will be used only to
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Heap Control Env Values Stack rule

Γ Cst n E V S cst
=⇒ Γ Ret n V S

Γ op+ E n2 : n1 : V S add
=⇒ Γ Ret n1 + n2 V S

Γ Ret n V ({e}, E) : S ret1
=⇒ Γ e E n : V S

Γ Ret n V #p : S ret2
=⇒ Γ[p 7→ (Ret, n)] Ret n V S

Fig. 16. Rules for base values in abstract machine mark 3, with value stack.

handle boxed base values. A boxed value will be a closure (Ret, n), and we still use

the environment component to hold the unboxed value, since this simplifies updating

of the heap. Only the new Ret and op+ instructions will access the unboxed value,

so we can use the representation (Ret, n) instead of (Ret, [n]).

The new instruction Ret must push the unboxed integer n from the environment

onto the value stack. In contrast to Int it should not extend the environment, so it

must behave as an argument-less constructor c1,0 rather than c1,1. The behavior of

c1,0 is prescribed by the case2 and var3 rules of Figure 12. By rule case2, when Ret

encounters a case marker ({e}, E) on the stack, it must activate (e, E), and push the

base value held in E onto the value stack V . By rule var3, when Ret encounters an

update marker #p on the stack, it must update the heap at p with (Ret, n).

The rules for Cst n and op+ must be modified too. Clearly Cst n must evaluate to

(Ret, n). The addition operator op+ will find its arguments n2 and n1 on the value

stack V , and must evaluate to (Ret, n1 + n2). The new rules are shown in Figure 16.

The action performed by Ret is to ‘return’ to the ‘address’ kept on the stack

top: it activates the single closure in the case marker on the stack, hence its name.

Originally, Ret was introduced as a code trick by Fairbairn and Wray (1987) to

handle base values in the Three Instruction Machine; they called it Self rather than

Ret . It was adopted also by Peyton Jones and Lester (1992), who called it Return .

What is new here is the derivation of Ret from an ordinary constructor c1,1.

Consider again the evaluation of e1 + e2 by the new rules. The expression is still

compiled as case e1 of {e′}, where e′ abbreviates case e2 of {op+}:

Γ case e1 of {e′} E V S

⇒ Γ e1 E V ({e′}, E) : S

⇒∗ Γ Ret n1 V ({e′}, E) : S

⇒ Γ case e2 of {op+} E n1 : V S

⇒ Γ e2 E n1 : V ({op+}, E) : S

⇒∗ Γ Ret n2 n1 : V ({op+}, E) : S

⇒ Γ op+ E n2 : n1 : V S

⇒ Γ Ret n1 + n2 V S
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Type correctness would ensure that the only stack top objects encountered by the

Ret instruction are update markers #p or case markers ({e}, E); never an argument

pointer p.

Consider introducing the abbreviation e seq e′ for case e of {c1,0 → e′}, where seq

associates to the right. The compilation of e1 + e2 is e1 seq e2 seq op+, the reverse

Polish form of the expression. The net effect of evaluating a base value expression,

such as e1, is to push its own reduced value onto the value stack.

6.3 Boolean values, conditionals, and printing

Boolean values may be represented by two argument-less constructors False ≡ c1,0

and True ≡ c2,0, which may be tested by case expressions. These constructors

must be generated by the basic comparison instructions such as op<, op≤, op=,

op∧, op∨ which operate on the value stack. Alternatively, Boolean values may be

represented by the integers 0 and 1, and one may introduce a new conditional such

as Cond(e1, e2) from Peyton Jones and Lester (1992, Section 4.3.2) to test them, but

this would require a duplication of the machinery for environment trimming.

Printing of data structures can be done systematically as well – see Peyton Jones

and Lester (1992, Section 4.6.4) and Sestoft (1991, Section 3.4). One new machine

instruction suffices. It must print a string (as a side effect), and then activate the

closure in the case marker on the stack S . The activation of this closure corresponds

to the demand for a new substructure to print; thus the print instruction forces the

evaluation of composite data structures, as usual in lazy language implementations.

For this reason printing is not a trivial concern: If one wants to argue the correctness

of e.g. an evaluation order analysis with respect to the abstract machine, then one

must know how printing drives evaluation.

7 Assessment and further improvements

The final abstract machine, consisting of Figures 6, 7, 13 and 16, plus operations

for Booleans and printing (not shown), has twelve instructions and implements

all dynamic aspects of a lazy functional language. We wrote a straightforward

experimental implementation in Standard ML for the example language used by

Peyton Jones and Lester (1992). We used Standard ML references to implement the

heap Γ, and rely on the Standard ML system for garbage collection. Computing and

printing the first 300 prime numbers using Eratosthenes’s sieve takes approximately

21 seconds in this implementation running under Standard ML of New Jersey

version 108.13 and Linux with an Intel 486DX4/100MHz processor. This is only

5.3 times slower than Mark Jones’s Gofer system (version 2.30b, written in C).

Let us list some positive and negative properties of our abstract machine:

+ it performs tail calls in constant space;

+ it does not build indirection chains;

− it performs many identical updates (but this is easily avoided);

− all values must test the stack top;
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+ it can exploit strictness information to eliminate some identical updates (by

not pushing update markers for values which are already evaluated);

− even with strictness information it is hard to eliminate the tests on the stack

top element;

− variable access is not constant time, because the linked environment structure

must be traversed.

Surprisingly, the overhead incurred by identical updates in the experimental im-

plementation is negligible. In a more realistic implementation, eliminating identical

updates and some stack top tests would probably give a significant speed-up.

The environment trimming performed in let- and case-expressions may appear

expensive, but this cost is present also in the G-machine and the Three Instruc-

tion Machine TIM (when applying super-combinators) and in the Spineless Tag-

less G-machine (where environment trimming is explicit in let-bindings and case-

expressions), and is necessary to avoid space leaks.

In our experimental implementation the environment is a linked list of pointers.

The other extreme in the design space is the TIM’s representation of the environment

as a vector of pointers. Our representation gives fast application and slow variable

access, and TIM’s representation gives slow application and fast variable access.

A linked list of vectors is an obvious compromise, which should work well with

trimming.

Compile-time optimizations may be used to improve the implementation of known,

fully applied constructors. Similarly, one may improve base value handling as in the

B compilation scheme of Peyton Jones and Lester (1992, p. 160). By maintaining a

symbolic value stack at compile-time one may detect when a constant or an op+

instruction will necessarily find another arithmetic operation in the case marker on

the stack top (at run-time). In such cases the Ret step may be skipped, and the base

value operations can be performed directly on the value stack.

In short, we believe that a realistic implementation, perhaps the Spineless Tagless

G-machine, could be derived by further refinements.

8 Related work

The literature on derivation of abstract machines is rich. Closest to the present

work is Hannan and Miller’s formal derivation of the call-by-name Krivine machine

from a natural semantics for call-by-name evaluation, and Hannan’s (1991) further

concretizations of abstract machines. Their derivation differs from ours in that

environments and de Bruijn indices are introduced already in the natural semantics.

Hannan and Miller (1990) present a general transformation from branching natural

semantics rules to non-branching ones, essentially by introducing an explicit stack of

premises still to be proved. The further transformation from non-branching natural

semantics rules to flat abstract machine rules proceeds by several steps, more ad hoc.

Altogether they achieve, in smaller steps, the same as our somewhat monolithical

correctness proof (Proposition 2). On the other hand, our notion of balanced traces
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has intuitive significance and provided for an easy extension of the correctness proof

when augmenting the language with data structures (section 5).

Cast in a logical framework, Hannan and Miller’s derivation lends itself well to

formalization; Hannan and Pfenning (1992) mechanically verified such a translation

proof in Elf. We have not attempted machine verification, but believe that the

supporting concepts are formalized well enough that it would be feasible.

Wand (1992a, b) derived a compiler and an abstract machine from a denotational

semantics in continuation passing style. Josephs (1989) gave a denotational semantics

for a lazy functional languages. Presumably Wand’s approach could be used to derive

a lazy abstract machine from that.

Fairbairn and Wray (1987) developed the Three Instruction Machine TIM for

call-by-name evaluation of super-combinators in 1986, and made it lazy by using

update markers #p on the stack. Argo studied inefficiencies and improvements of the

TIM, in particular the handling of shared partial applications and the representation

of environments (Argo, 1989, 1990).

Krivine developed his machine for call-by-name evaluation around 1985; a de-

scription is given by Curien (1988). Borrowing the update marker technique from

the TIM, several people have made the Krivine machine lazy, including Crégut

(1990, 1991) and Sestoft (1991). The close relation between the Krivine machine and

the TIM has been studied by Crégut (1991, p. 41) and Mogensen (1992). Although

simple, the Krivine machine is practically useful: a strict version is at the core of

the efficient interpretive Caml Light system due to Leroy (1990).

Developing the Spineless Tagless G-machine, Peyton Jones (1992) studies all

aspects of lazy language evaluation. The point of departure is graph reduction,

and a solid operational understanding of lazy languages, rather than a formal

description. The necessary intuition can be gained by studying Peyton Jones (1987)

and Peyton Jones and Lester (1992).

9 Conclusion

We developed a simple and well-known abstract machine from a natural semantics

for lazy evaluation. We proceeded in a number of refinement steps, proving the cor-

rectness of the non-trivial steps, and demonstrated that well-known implementation

techniques can be derived from a semantics.

The resulting abstract machine is less sophisticated than the G-machine (Augusts-

son, 1984; Johnsson, 1984), the Spineless Tagless G-machine (Peyton Jones, 1992),

and the refined Three Instruction Machine (Argo, 1990; Peyton Jones and Lester,

1992), but it is simple and its correctness requires no separate proof. This shows that

a lazy functional language implementation can be at the same time demonstrably

correct, understandable, small, and quite efficient.

In addition to having pedagogical value, the present abstract machine and devel-

opment provide a foundation for program analyses which are concerned with the

operational properties of lazy languages.
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