ON THE SPLITTING FIELD OF THE ALEXANDER POLYNOMIAL OF A PERIODIC KNOT

JONATHAN A. HILLMAN

We show that the Murasugi conditions for the Alexander polynomial of a cyclically periodic knot imply a modified form of the Burde-Trotter condition.

Let K be a knot in S^3 with Alexander polynomial $\Delta_K(t)$ and which is invariant under a rotation of prime power order $q = p^r$ about a disjoint axis A. Let \overline{K} and \overline{A} be the images of K and A in the orbit space $S^3/(Z/qZ) \cong S^3$. Murasugi showed that $\Delta_K(t) = \Delta_{\overline{K}}(t) \prod_{i=1}^{q-1} f(t, \zeta_q^i)$, where f(t, u) is the 2-variable Alexander polynomial of $\overline{K} \cup \overline{A}$ and ζ_q is a primitive q-th root of unity [7]. In particular, $f(t, \zeta_q^i)$ is congruent modulo (p) to $f(t, 1) = ((t^{\lambda} - 1)/(t - 1))\Delta_{\overline{K}}(t)$, where $\lambda = link(K, A) = link(\overline{K}, \overline{A})$. On reducing the equation $\Delta_K(t) = \Delta_{\overline{K}}(t) \prod_{\sigma \in G} f(t)^{\sigma} \mod(t - 1, p)$ we get $1 = \lambda^{q-1}$ modulo (p), and so $(\lambda, p) = 1$. (This is also clear for topological reasons, since K is connected.) If moreover $\Delta_K(t) \equiv 1 \mod(p)$ then $\lambda = 1$.

Trotter showed that if the commutator subgroup of the knot group is free and if Δ_K has no repeated roots then the q-th roots of unity are in $Split(\Delta_K/Q)$, the splitting field of Δ_K over Q [8]. Burde weakened these hypotheses to requiring that $\Delta_K(t) \neq 1 \mod (p)$ and that the second Alexander polynomial $\Delta_{2,K}(t)$ be trivial [1]. This was extended to all knots as a condition involving the higher Alexander polynomials: if $\Delta_K(t) \neq 1 \mod (p)$ but $\Delta_{n+1,K}(t) = 1$ then ζ_q has degree at most n over $Split(\Delta_K/Q)$ [6]. The higher Alexander polynomials are determined by (and determine) the structure of $H_1(X';Q)$, the first homology group with rational coefficients of the infinite cyclic cover of the knot complement, as a module over the principal ideal domain $Q[t, t^{-1}]$. It follows easily from the elementary divisor theorem (that is, essentially the structure theorem for finitely generated modules over a PID) that $\Delta_{n+1,K}(t) = 1$ if Δ_K has no irreducible factor of multiplicity greater than n. Hence the Burde-Trotter condition implies that $[Q(\zeta_q) : Q(\zeta_q) \cap Split(\Delta_K/Q)] \leq m$, where m is the maximal multiplicity of irreducible factors of Δ_K . This condition involves only Δ_K and is closer to Trotter's original formulation.

Received 6th December, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

J.A. Hillman

In this note we shall show that the Murasugi conditions as stated above imply this modified form of the Burde-Trotter condition. The Burde-Trotter and Murasugi conditions have been extended to knots in homology 3-spheres [5], and the present argument applies equally well to such knots. (Note that the formulation of the Murasugi conditions in [3] assumes that the Alexander polynomial of the axis \overline{A} is trivial, as is always the case when the homology spheres involved are both S^3 .) We also give simple examples to show that the Murasugi conditions do not imply the full Burde-Trotter condition involving the higher Alexander polynomials, and that the congruence alternative is needed in general.

THEOREM. Let Δ be a polynomial in Z[t] which satisfies the Murasugi conditions for some prime power $q = p^r$. Suppose Δ has irreducible factorisation $\Delta = \prod \delta_i^{e_i}$. Then either $\Delta \equiv 1 \mod (p)$ or $[Q(\zeta_q) : Q(\zeta_q) \cap Split(\Delta/Q)] \leq m = \max\{e_i\}$.

PROOF: Let $G = Gal(Q(\zeta_q)/Q)$. The Murasugi conditions assert that there is an integer λ , a knot polynomial $\hat{\Delta}$ and a polynomial f(t) in $Z(\zeta_q)[t]$ such that $\Delta = \hat{\Delta} \prod_{\sigma \in G} f^{\sigma}$ and $f(t) \equiv ((t^{\lambda} - 1)/(t - 1))\hat{\Delta}$ modulo (p). We may assume that $\Delta \not\equiv 1$ modulo (p). Then f is nontrivial and so has a nontrivial irreducible factor h in $Q(\zeta_q)[t]$. Let $S = \{\sigma \in G \mid h^{\sigma} = h\}$, and let T be a set of coset representatives for S in G. Then $H = \prod_{\tau \in T} h^{\tau}$ is irreducible in Z[t] and $H^{|S|} = \prod_{\sigma \in G} h^{\sigma}$ divides Δ , so $|S| \leq m$. Let $M = Q(\zeta_q)^S$ be the subfield of $Q(\zeta_q)$ fixed by S. Then M is generated over Q by the coefficients of h, and $[Q(\zeta_q) : M] = |S|$. Since the coefficients of h are elementary symmetric functions of the roots of h, which are among the roots of Δ , they are in $Split(\Delta/Q)$. The theorem follows easily.

Let $f(t) = t^2 - 3t + 1$ be the Alexander polynomial of the figure eight knot. Then $\Delta = f^3$ satisfies the Murasugi conditions with n = 3 and $\lambda = 1$. It is the Alexander polynomial of the connected sum of three copies of the figure eight knot, which admits an obvious Z/3Z symmetry. However the full Burde-Trotter condition implies that no knot with this Alexander polynomial and which admits such a cyclic symmetry can have a cyclic knot module. (In particular, no such knot can have unknotting number 1.) The polynomial $3t^2 - 5t + 3$ satisfies the Murasugi conditions with q = 3 and $\lambda = 1$, and hence is the Alexander polynomial of some knot with cyclic period 3, by Theorem 1.1 of [3]. As the splitting field for this quadratic is $Q(\sqrt{-11})$, which does not contain $Q(\zeta_3)$, we see that in general the alternative " $\Delta_K(t) \equiv 1$ modulo (p)" is necessary. (This answers a question raised in the "Remark" on page 266 of [2].)

References

[1] G. Burde, 'Uber periodische Knoten', Arch. Math. (Basel) 30 (1978), 487-492.

- [2] G. Burde and H. Zieschang, Knots, Studies in Mathematics 5 (W. de Gruyter, Berlin, New York, 1985).
- J.M. Davis and C. Livingston, 'Alexander polynomials of periodic knots', Topology 30 (1991), 551-564.
- J.A. Hillman, Alexander Ideals of Links, Lecture Notes in Mathematics 895 (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
- J.A. Hillman, 'New proofs of two theorems on periodic knots', Arch. Math. (Basel) 37 (1981), 457-461.
- [6] J.A. Hillman, 'On the Alexander polynomial of a cyclically periodic knot', Proc. Amer. Math. Soc. 89 (1983), 155-156.
- [7] K. Murasugi, 'On periodic knots', Comment. Math. Helv. 46 (1971), 162-174.
- [8] H.F. Trotter, 'Periodic automorphisms of groups and knots', Duke Math. J. 28 (1961), 553-557.

School of Mathematics and Statistics The University of Sydney New South Wales 2006 Australia