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We present the numerical solution of two-point boundary value problems for a third-order

linear PDE, representing a linear evolution in one space dimension. To our knowledge, the

numerical evaluation of the solution so far could only be obtained by a time-stepping scheme,

that must also take into account the issue, generically non-trivial, of the imposition of the

boundary conditions. Instead of computing the evolution numerically, we evaluate the novel

solution representation formula obtained by the unified transform, also known as Fokas

transform. This representation involves complex line integrals, but in order to evaluate these

integrals numerically, it is necessary to deform the integration contours using appropriate

deformation mappings. We formulate a strategy to implement effectively this deformation,

which allows us to obtain accurate numerical results.

Key words: Initial-boundary value problems, Airy equation, non-periodic problems, unified

transform, Fokas transform

1 Introduction

In a series of papers over the last 10 years, two of the authors, in collaboration with Fokas,

have conducted an extensive analysis of boundary value problems on a finite interval for

linear evolution partial differential equations (PDEs) in one space variable [1–5]. This

analysis uncovered results that are somewhat surprising, in view of the fact that the

problem is a linear problem in one spatial variable. The novel ingredient that allowed a

broader understanding of the structure of such boundary value problems is the approach

known as the unified transform, or Fokas transform. This approach, pioneered by Fokas

and significantly extended during the past 15 years by a number of authors, gives a
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unified way to treat boundary value problems for linear and integrable non-linear PDEs

in two independent variables (for a general account and bibliography, see [6, 7]). In its

general form, the transform and its inverse are rigorously obtained through the solution

of a so-called Riemann-Hilbert problem, a classical problem in complex analysis [8, 9].

Indeed, this transform is at its heart a complex variable approach. The shift in perspective

from the use of the classical Fourier analysis approach, a real variable transform, to

using a transform in the complex plane enabled a broader and deeper understanding of

the structure of these boundary value problems. Using the unified transform, it has been

possible to classify the particular boundary value problems, for linear evolution PDEs in

two variables, for which a series representation of the solution of the problem does not

exist—problems that behave very differently from a two-point or periodic boundary value

problem for the prototypical evolution PDEs in one space dimension, such as the heat

equation [10, 11].

This approach yields an explicit representation of the solution of the boundary value

problem in the form of a complex contour integral. This representation is more general

than the classical series representation, and can be shown to be equivalent to it whenever

such series representation exists—for example, when the boundary conditions are periodic.

In all but one example, the given conditions are smooth, but in the last numerical example

we consider initial conditions that are piecewise constant. The solution in this case exhibits

Gibbs-like phenomena, as is to be expected given that this transform is a generalisation

of the classical Fourier transform approach. The applicability of this approach for a wider

class of data, in suitable Sobolev spaces, has been rigorously justified in [12].

In a separate development, Olver [13] discovered, by careful numerical investigation

then confirmed by rigorous computations, that the solution of a periodic boundary value

problem for linear evolution PDEs can display a phenomenon that he called dispersive

quantisation. It is natural then to investigate whether this quantisation is only supported

in a periodic setting, and in general how boundary conditions qualitatively affect the

solution at all or at specific times.

The initial motivation for this study was to investigate whether dispersive quantisation

could occur for different boundary conditions. In particular, our aim was to investigate,

numerically in the first instance, whether there is a qualitative difference between the

solutions of a given PDE when posed with boundary conditions that support the existence

of a series solution representation, as opposed to boundary conditions for which such a

series solution representation does not exist.

Such numerical experiments could also be performed by numerical time-stepping, for

example, using the package Chebfun in Matlab. We have indeed verified some of our

examples with the time-stepping routine of Chebfun, though for non-periodic boundary

conditions that couple the two boundary points the implementation is non-standard.

Olver’s numerical results were obtained by a direct evaluation of the series representation

of the solution, suitably truncated. This allows an efficient evaluation at different times. Our

aim is to generalise this approach, and with the new integral solution representation for the

third-order boundary value problems at our disposal, we set out to evaluate it numerically.

To this end, we consider boundary value problems for a specific third-order linear

evolution PDE, sometimes known as Airy’s equation, defined on the finite interval [0, L].
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Namely, we consider the following class of initial, boundary value problems:

qt(x, t) + qxxx(x, t) = 0, x ∈ [0, L], t > 0,

q(x, 0) = q0(x), x ∈ [0, L],

q(0, t) = f0(t), t > 0,

q(L, t) = g0(t), t > 0,

qx(L, t) = α qx(0, t), t > 0, α ∈ �,

(1.1)

where q0, f0 and g0 are prescribed functions, compatible at the point (x ∈ {0, L}, t = 0),

the corners of the domain.

Equation (1.1), or rather its close sibling qt + qx + qxxx = 0, is the linearisation of

the famous Korteweg-de Vries equation which models shallow water waves. Hence, this

equation has significant importance from the point of view of applications. However, our

motivation in studying this particular problem is that it is the simplest possible problem

for which the phenomenon referred to above, namely the lack of a series representation

for the solution, can manifest itself given specific boundary conditions.

The generalisation to more general linear evolution equations (with constant coefficients)

of arbitrary order and including lower order terms, is technically more cumbersome,

but conceptually not essentially different. In particular, the integration contours for the

solution representation are determined asymptotically by the highest order term in the

PDE [14]. This is the essential property needed for the numerical evaluation. In this

paper, we focus on this particular example as it contains all the features of the general

case found in general, and allows us to describe in detail the numerical difficulties and

our strategy for overcoming them.

The behaviour of the solution to (1.1) depends essentially on the coupling constant α.

This is easily justified by a formal integration by parts. Indeed, to illustrate the effect of

different values of α, consider

d

dt
‖q‖2

2 :=
d

dt

∫ L

0

|q|2dx = −2

∫ L

0

q qxxx dx = −2(q qxx)

∣∣∣∣x=L

x=0

+ 2

∫ L

0

qxx qx dx = (−2q qxx + q2
x)

∣∣∣∣x=L

x=0

= 2q(0, t) qxx(0, t) − 2q(L, t) qxx(L, t) − q2
x(0, t) + q2

x(L, t).

(1.2)

Imposing the boundary condition qx(L, t) = α qx(0, t), (1.2) simplifies to give

d

dt
‖q‖2

2 = 2q(0, t) qxx(0, t) − 2q(L, t) qxx(L, t) + (α2 − 1) q2
x(0, t).

When f0(t) ≡ 0 and g0(t) ≡ 0, then the energy is conserved in time if |α| = 1 and energy

decreases in time when |α| < 1, that is, the equation becomes dispersive.

In this paper, we study numerically the effect of varying α values. Our starting point is

the integral representation of the solution given by the Fokas transform, and its numerical
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evaluation. A similar numerical approach was pioneered in [15]. In this paper, Fokas and

Flyer evaluated the contour integral representation for the solution of specific boundary

value problems for the linear KdV equation, but only posed on the half line, i.e. in the limit

as L → ∞. In this case, the integrand is a function which is analytic with respect to the

complex variable of integration. It turns out that the problem of selecting a contour in an

optimal way for the numerical evaluation of the relevant integral is a very delicate issue.

This is due to the fact that, unlike the case when the problem is posed on a half line, in

the case of a problem posed on a finite interval, the integrand is no more analytic, but

rather meromorphic, and the evaluation of the residues at the poles may be the dominant

contribution to the computation.

We concentrate on devising a strategy for the numerical evaluation of the solution at

any point (x, t). This strategy will then be put to use to investigate the original quantisation

question in subsequent work.

The organisation of the paper is as follows: In Section 2, we summarise the unified

transform method, and discuss the integral representation of the solution of problem

1.1. In Section 3, the numerical strategy for the finite interval case will be given by

providing comparison with the half-line case. In Section 4, some numerical examples

on the finite interval, with the different coupling constant α ∈ [0, 1] will be presented,

including an example with a piecewise-constant initial condition. In conclusion, we discuss

the numerical results and indicate future directions of investigation.

2 The integral representation of the solution and the global relation

The unified transform is a general methodology for studying boundary value problems for

linear and integrable non-linear PDEs in two independent variables. The particular case

of equation (1.1) considered in the present paper has been studied in detail in [4, 5]. We

refer to these works for more details, and limit ourselves to a brief summary containing

the main ideas of the method.

The starting point of the analysis is an alternative equivalent formulation of the PDE.

In the non-linear integrable case, that was the original motivation for this development,

this is known as a Lax pair formulation. In the linear evolution case, it is straightforward

to verify that any PDE of the general form

∂tq + w(−i∂x)q = 0, (2.1)

is equivalent, for suitable choice of X, to the differential formulation

(e−ikx+w(k)t q(x, t))t − (eikx+w(k)t X(x, t, k))x = 0, ∀k ∈ �. (2.2)

From this starting point, one can deduce two consequences:

• A constraint involving certain transforms of all initial and boundary values in terms of

a spectral parameter, k, is valid for k ∈ �. This constraint is usually called the global

relation, and it is the key ingredient of the method.
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• A complex contour integral representation for the function q(x, t) in terms of all initial

and boundary values. This obtained by a formal Fourier inversion and a contour

deformation in the k complex plane.

Rather than prove this methodology in general, we describe in brief detail how it is

implemented for the particular case under consideration, namely equation (1.1), which

corresponds to

w(k) = −ik3, X(x, t, k) = k2q − ikqx − qxx,

in formulations (2.1) and (2.2). We stress that the same approach works for any PDE of

the form (2.1).

We apply Green’s theorem to the differential form (2.2) in the convex domain [0, L] ×
[0, t] to obtain the global relation

ew(k)t

∫ L

0

e−ikxq(x, t)dx =

∫ t

0

e−ikL+w(k)sX(L, s, k)ds−
∫ t

0

ew(k)sX(0, s, k)ds+

∫ L

0

e−ikxq0(x)dx.

(2.3)

Define the following spectral functions, which are functions of the complex variable k:

q̂(k, t) =

∫ L

0

e−ikxq(x, t)dx, q̂0(k) =

∫ L

0

e−ikxq0(x)dx,

f̃(k, t) =

∫ t

0

ew(k)sX(0, s, k)ds =: k2f̃0(k, t) − ikf̃1(k, t) − f̃2(k, t),

g̃(k, t) =

∫ t

0

e−ikL+w(k)sX(L, s, k)ds =: k2g̃0(k, t) − ikg̃1(k, t) − g̃2(k, t),

where we have defined f̃0, f̃1, f̃2 and g̃0, g̃1, g̃2 through the definition of X and powers of

k. The global relation (2.3) can then be written as

f̃(k, t) − e−ikLg̃(k, t) = q̂0(k) − ew(k)tq̂(k, t). (2.4)

The solution representation is found by applying the inverse Fourier transform to (2.4),

and deforming contours-a procedure rigorously justified in this case by an application of

Jordan’s lemma. We then obtain

q(x, t) =
1

2π

{∫
�
eikx+ik3t q̂0(k) dk −

∫
∂D+

eikx+ik3t f̃(k, t) dk −
∫

∂D−
eik(x−L)+ik3t g̃(k, t) dk

}
,

(2.5)

where D± = {k ∈ �± : �(w(k)) � 0} and the orientation of the integration path is such

that the interior of the domain remains on the left, see Figure 1 for an illustration.

At this point, we have a complex contour integral representation of the solution q(x, t)

that still depends on all the boundary values, both known and unknown. Hence, this

representation is not yet explicit. The crucial step to arrive to an explicit representation in

terms only of the prescribed data of the problem lies in the analysis of the global relation.

Namely, we seek an expression for the integrand in (2.5) depending only the prescribed

initial and boundary conditions.
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D+

D−
1 D−

2

Figure 1. The regions D± = {k ∈ �± : �(w(k)) � 0}, where D− = D−
1 ∪ D−

2 .

2.1 Analysis of the global relation

Observe that the spectral functions q̂0, f̃0, g̃0 and g̃1 = αf̃1 are obtained as transforms of

the prescribed data, and are therefore known. However, the three functions f̃1, f̃2 and g̃2

cannot be computed from the given data.

Since we have three unknown functions, and only one equation, we seek additional

algebraic equations. The key is to exploit the invariance properties of the spectral functions

in the complex k plane. Observe that the functions f̃i, i = 1, 2, 3 are functions of k only

through w(k) = −ik3. Since w(k) is invariant under rotation by 2π/3, the substitutions

k → τk and k → τ2k leave these functions invariant, for τ = exp(2πi/3). Therefore,

evaluating the global relation at τk and τ2k, we find a system of three equations with

three unknowns:

(k2f̃0 − ikf̃1 − f̃2) − e−ikL(k2g̃0 − ikg̃1 − g̃2) = q̂0(k) − e−ik3t q̂(k, t),

(τ2k2f̃0 − iτkf̃1 − f̃2) − e−iτkL(τ2k2g̃0 − iτkg̃1 − g̃2) = q̂0(τk) − e−ik3t q̂(τk, t), (2.6)

(τ4k2f̃0 − iτ2kf̃1 − f̃2) − e−iτ2kL(τ4k2g̃0 − iτ2kg̃1 − g̃2) = q̂0(τ
2k) − e−ik3t q̂(τ2k, t).

After solving system (2.6) and substituting the result into the expressions for f̃(k, t) and

g̃(k, t), we obtain

f̃(k, t) = k2f̃0 +
1

Δ(k)

{
N(k, t)A1(k) − τ2N(τk, t)A2(k) −N(τ2k, t)A3(k)

}
,

g̃(k, t) = k2g̃0 +
1

Δ(k)

{
N(k, t)B1(k) − τ2N(τk, t)B2(k) −N(τ2k, t)B3(k)

}
,
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where

N(k, t) = Ndata(k, t) − e−ik3tq̂(k, t), Ndata(k, t) = q̂0(k) − k2f̃0 + e−ikLk2g̃0, (2.7)

Δ(k) = τ
{[

e−ikL + τe−iτkL + τ2e−iτ2kL
]

+ α
[
eikL + τeiτkL + τ2eiτ

2kL
]}

, (2.8)

and

A1(k) = ταeikL + τ2e−iτkL + e−iτ2kL, A2(k) = e−ikL − αeiτkL, A3(k) = e−ikL − αeiτ
2kL,

B1(k) = −τ− αe−iτkL − τ2αe−iτ2kL, B2(k) = 1 − αe−iτ2kL, B3(k) = 1 − αe−iτkL.

Note that the function Δ(k) has infinitely many zeros. The asymptotic location of these

zeros depends crucially on the specific value of α, and this will turn out to be critical for

our calculations.

These expressions for f̃ and g̃ are now in terms of data and q̂(k, t), so substituting these

expressions into equation (2.5) yields an integral representation of the solution depending

only on data and q̂(k, t):

2πq(x, t) =

∫
�
eikx+ik3t q̂0(k) dk −

∫
∂D+

eikx+ik3t

[
part of f̃(k, t)

depending on data

]
dk

−
∫

∂D−
eik(x−L)+ik3t

[
part of g̃(k, t)

depending on data

]
dk

+

∫
∂D+

eikx
q̂(k, t)A1(k) − τ2q̂(τk, t)A2(k) − q̂(τ2k, t)A3(k)

Δ(k)
dk

+

∫
∂D−

eik(x−L) q̂(k, t)B1(k) − τ2q̂(τk, t)B2(k) − q̂(τ2k, t)B3(k)

Δ(k)
dk. (2.9)

Of course, it must be justified that splitting the integral along ∂D+ (similarly the integral

along ∂D−) in this way yields convergent integrals. Assuming such a justification can be

provided, the aim would be to deduce that the latter two integrals of equation (2.9) give a

vanishing contribution, using analytic consideration, namely an asymptotic argument and

Jordan’s lemma. If this could be achieved, the first three integral terms of equation (2.9)

would provide a solution representation for q depending only upon the data of the

problem.

In order to justify the arguments sketched in the above paragraph, there are three

essential ingredients:

(A) The integrands in the latter four integrals of equation (2.9) are meromorphic functions

of k, which have poles only at non-trivial zeros of Δ.

(B) The zero of Δ at k = 0 corresponds to a removable singularity of each integrand. All

other zeros of Δ are exterior to D, i.e. strictly to the right of ∂D±.

(C) The part of the integrand excluding the first exponential factor, in the fourth (re-

spectively, fifth) integral of equation (2.9), decays as k → ∞ from within the closure

of D+ (respectively, the closure of D−).
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2.1.1 The case |α| < 1

Statement (A) follows from the definitions of N, Δ, Aj , Bj above. Applying the methods

of Langer [16], it can be shown that statement (B) holds if |α| < 1, see [4, 17]. Finally,

still assuming |α| < 1, statement (C) can be established using a geometric argument on

the relative growth rates of eiτ
jk for j = 0, 1, 2, together with an integration by parts style

asymptotic argument. Now (A) and (B) guarantee that there are no poles of the integrands

lying on or to the left of the contours for the latter two integrals of equation (2.9), so (C)

and Jordan’s lemma imply that both integrands evaluate to 0.

2.1.2 The case |α| = 1

In this case, statement (B), and therefore statement (C), are false. Indeed, it can be shown

that, for generic data, each non-trivial zero of Δ is a pole of the integrands of the latter

four integrals of (2.9). This means that the latter four integrals of (2.9) do not converge.

However, following a method suggested by [1] and implemented in [5] (see also [18]), we

modify the contours ∂D± in equation (2.5) by taking a semicircular path around each

zero, before making the substitution for f̃ and g̃, obtaining convergent integrals. As shown

in Figure 2(a), near each zero of Δ, this deformation to the contours of integration is such

that each zero lying on the original contour is avoided.

Indeed, choosing D̃± satisfying

D̃± = D± \
⋃

λ∈�\{0}:
Δ(λ)=0

a small neighbourhood of λ, (2.10)

by analyticity of f̃ and g̃, Cauchy’s theorem and equation (2.5), it holds that

q(x, t) =
1

2π

{∫
�
eikx+ik3t q̂0(k) dk −

∫
∂D̃+

eikx+ik3t f̃(k, t) dk −
∫

∂D̃−
eik(x−L)+ik3t g̃(k, t) dk

}
.

(2.11)

Then, because of the way we chose D̃±, the modified statement

(B’) Every zero of Δ is exterior to D̃±, i.e. strictly to the right of ∂D̃±

is immediate, and

(C’) The part of the integrand excluding the first exponential factor, in the fourth (re-

spectively, fifth) integral of equation (2.9) decays as k → ∞ from within the closure

of D̃+ (respectively, the closure of D̃−)

can be justified using an argument similar to that used for statement (C). In the same

way, as for |α| < 1 above. The statements (A), (B’) and (C’) then imply that the latter two

integrals of equation (2.9) vanish.

Note that, as Δ satisfies the symmetry Δ(τk) = Δ(k), we are free to choose D̃± in such

a way that D̃+ ∪ D̃− has the same rotational symmetry. Further, as shown in Figure 2, in

the case |α| < 1, by choosing small enough neighbourhoods of each non-trivial zero of Δ,

we can ensure D̃± = D±. Hence, for all |α| � 1, with D̃± defined by equation (2.10) using
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D̃+

D̃−
1 D̃−

2

D̃+ = D+

D̃−
1 = D−

1 D̃−
2 = D−

2

Figure 2. The new domains D̃± in the case |α| = 1. The dashed lines represent ∂D±, and the dots

correspond to zeros of Δ. Note that, as 0 is a removable singularity of all integrands, we may make

an arbitrary finite contour deformation near zero. (a) |α| = 1, (b) |α| < 1.

any choice of finite neighbourhoods, we can write equation (2.9) as

2πq(x, t) =

∫
�
eikx+ik3t q̂0(k) dk

−
∫

∂D̃+

eikx+ik3t

(
k2f̃0 +

Ndata(k, t)A1(k) − τ2Ndata(τk, t)A2(k) −Ndata(τ
2k, t)A3(k)

Δ(k)

)
dk

−
∫

∂D̃−
eik(x−L)+ik3t

(
k2g̃0 +

Ndata(k, t)B1(k) − τ2Ndata(τk, t)B2(k) −Ndata(τ
2k, t)B3(k)

Δ(k)

)
dk.

(2.12)

This representation depends only upon the data of the problem, and is the usual repres-

entation provided in the unified transform literature for this problem. It is not difficult

to justify the validity of this representation, pointwise, for data that are smooth and

compatible. In fact, this representation is valid in greater generality, for data in appro-

priate Sobolev spaces, see [12]. At points of discontinuity, a Gibbs-type phenomenon

introduces oscillation that are as well understood as in the case of the classical Fourier

transform [19].

This representation could be the beginning of a numerical strategy. However, in imple-

menting the numerical evaluation, we found that a more symmetric, alternative formula-

tion of (2.12) is a more effective starting point.

2.2 An alternative formulation of the integral representation

To rewrite the integral representation in a more elegant and symmetric way, we combine

integrands to define two new spectral functions, ζ+(k, t) and ζ−(k, t).
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Define

f̃data(k, t) = k2f̃0 +
1

Δ(k)

{
Ndata(k, t)A1(k) − τ2Ndata(τk, t)A2(k) −Ndata(τ

2k, t)A3(k)
}
,

g̃data(k, t) = k2g̃0 +
1

Δ(k)

{
Ndata(k, t)B1(k) − τ2Ndata(τk, t)B2(k) −Ndata(τ

2k, t)B3(k)
}
.

Then set

ζ+(k, t) := f̃data(k, t)Δ(k), ζ−(k, t) := g̃data(k, t)Δ(k). (2.13)

Proposition 1 The functions ζ± defined by (2.13) satisfy the relation

ζ+(k, t) − e−ikLζ−(k, t) = q̂0(k)Δ(k), k ∈ �. (2.14)

Proof Using the definition (2.7) of the function N(k) and rearranging terms, we find

ζ+(k, t) − e−ikLζ−(k, t)

=

[
q̂0(k)(A1 − e−ikLB1) − τ2q̂0(τk)(A2 − e−ikLB2) − q̂0(τ

2k)(A3 − e−ikLB3)

− k2f̃0 [(A1 − e−ikLB1) − τ(A2 − e−ikLB2) − τ(A3 − e−ikLB3) − Δ(k)]

+ k2g̃0 [e−ikL(A1 − e−ikLB1) − τe−iτkL(A2 − e−ikLB2)

− τe−iτ2kL(A3 − e−ikLB3) − e−ikLΔ(k)]

]
. (2.15)

A straightforward calculation then shows we have that

A1 − e−ikLB1 = Δ(k),

A2 − e−ikLB2 = 0 and

A3 − e−ikLB3 = 0.

(2.16)

Hence,

ζ+(k, t) − e−ikLζ−(k, t) = q̂0(k)Δ(k),

as required. �

Using the result of Proposition 1, we can simplify the evaluation of the integral represent-

ation solution equation (2.5), and absorb the first integral into the other two. The integral

representation thus obtained for the solution of the problem is given by

q(x, t) =
1

2π

{∫
∂Ẽ+

eikx+ik3t ζ
+(k, t)

Δ(k)
dk +

∫
∂Ẽ−

eik(x−L)+ik3t ζ
−(k, t)

Δ(k)
dk

}
(2.17)

where the domains Ẽ+ and Ẽ− are, essentially, the half-plane complements of the domains

D̃+ and D̃− (see Figure 3), with the usual orientation of the integration path around Ẽ+

and Ẽ−, leaving the domain always on the left.
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Ẽ−

Ẽ+Ẽ+

Ẽ− = E−

Ẽ+ = E+Ẽ+ = E+

Figure 3. The complex regions Ẽ+ and Ẽ−. The boundary of these regions is where the integral

(2.17) is evaluated. (a) |α| = 1, (b) |α| < 1.

2.3 Deformation of line integrals

Figure 3 suggests a particular choice of contours of integration ∂Ẽ±, for each value of α.

However, the arguments of Sections 2.1-2.2 do not require that any particular contour is

followed, only that the chosen contour passes each non-trivial zero of Δ on the same side as

does the corresponding contour on Figure 3. Therefore, we are free to choose our contours

in such a way that the numerical integration can be performed with optimal efficiency. In

order to select appropriate contours, we study the asymptotics of the integrands involved.

As soon as any contour of integration has been deformed away from the rays of τj�
for k 
 1, the rapid decay (or blow-up) of the exponential factor eik

3t determines the

asymptotics. Therefore, as a general principal, it is advantageous to “close” the contours

into E and away from D. Indeed, by doing so, the tail of the integrals is bounded, and the

error introduced by truncating the contours to a finite length is controlled. This procedure

will be described further in Section 4.

2.3.1 The case |α| = 1

In this case, the zeros of Δ are all on the lines τj� for j = 0, 1, 2, and are asymptotically

regularly distributed, so they have a finite infimal separation. Moreover, as k → ∞ within

any subset of �± bounded uniformly away from each zero of Δ, the ratio ζ±/Δ = O(|k|−1).

Therefore, using Jordan’s lemma and the decay of the exponential factor eik
3t, we can

deform the contours of integration as far as we choose into E±, provided we leave loops

about each non-trivial zero of Δ.

Each such loop integral corresponds to a residue at the pole. As the spatial differential

operator associated with this problem is self-adjoint, its eigenfunctions form a basis in

the space of admissible initial data, so the solution may be represented as a convergent

expansion in the eigenfunctions. By [11, 20], the non-trivial zeros of Δ are the cube roots

of the eigenvalues, and the series obtained by evaluating the corresponding residues is the

https://doi.org/10.1017/S0956792517000316 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000316


554 E. Kesici et al.

eigenfunction expansion. As this series converges, the error introduced by truncating the

series is controlled.

Using the above argument, we may ignore the contributions of all but a few residues

close to 0. So, for some N ∈ �, we choose infinite contours which

• lie within D close to 0, so that they enclose the N poles of the integrand that lie closest

to 0 on each ray, and the contributions from these poles are included,

• cross into E after the Nth but before the (N+1)st pole on each ray, so that the contours

do not pass through any of the poles,

• Extend to ∞, but remain bounded within E, thereby excluding the small contribution

from the remaining poles, but ensuring the integrand is rapidly decaying along this part

of the contour.

Finally, we truncate the contour soon after it enters E, as the contribution from the

remaining infinite part is very small.

2.3.2 The case 0 < |α| < 1

For these values of α, the same asymptotic results as in the |α| = 1 case hold on the decay

of ζ±/Δ, but now the zeros of Δ lie asymptotically on rays that lie within E (see Figure

2) and parallel to the lines τj� for j = 0, 1, 2. The distance between these rays and lines

is a strictly increasing function of 1/|α|. As the poles are now uniformly bounded inside

E±, we may choose to deform our contours of integration into E± in such a way that

they are still straight rays, and remain on the same side of each zero of Δ, but we can

take advantage of the decay of the exponential factor eik
3t. In this way, no analysis of the

residues is necessary, but we may still truncate the contours without introducing a large

error.

2.3.3 The case α = 0

The zeros of Δ now lie on the rays −iτj�+, for j = 0, 1, 2, but the ratios ζ±/Δ do not

decay as k → ∞ from within E±, even if k is uniformly bounded away from the zeros

of Δ. Certainly, the integrand grows exponentially as k → ∞ from within D±, because of

the eik
3t factor. Therefore, it is not possible to deform the contours of integration away

from the lines τj� at infinity. Of course, we can still make any finite deformation as long

as we do not cross any non-trivial zeros of Δ.

However, as k → ∞ along the rays τj/2�+ for j = 0, 1, 2, 3 (respectively, j = 4, 5),

ζ+/Δ = O(|k|−1) (respectively, ζ−/Δ = O(|k|−1)). Therefore, using the Riemann-Lebesgue

lemma, we can bound the error introduced by truncating the contours to a finite

length.

3 General numerical strategy and a comparison with the half-line problem

The numerical strategy we propose to compute the unified transform method solution in-

volves calculating line integrals defined on the complex k-plane. The numerical evaluation

of line integrals containing an exponential term with an analytic function in the integrand
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involves the implementation of parabolic, hyperbolic or cotangent contour specifications

given in [21]. By specifying line integrals around ∂Ẽ± as hyperbolic-type contours, we

may numerically approximate the solution to the equation (1.1) for 0 � α < 1. When

α = 1, a new kind of contour specification is required since all the poles are on the τj�
lines for j = 0, 1, 2.

After implementing the deformation mappings k(θ) to the integral representations

given by (2.17), the line integrals on the complex value k become real-valued integrals on

θ ∈ (−∞,∞). In application, we truncate the values θ can take by selecting a θmax such

that θ ∈ [−θmax, θmax]. We quantify the selection of θmax and benchmark our results by

implementing a forcing term to Airy’s equation. This allows us to choose a specific forcing

function so that q(x, t) is known. In all computations, the evaluation of the integrals

appearing in the series representation is obtained using the composite trapezoidal rule,

with particular care taken of products between exponentially growing or decreasing terms.

A full history of this quadrature approximation together with some of its more subtle

behaviours can be found in [22].

The Fokas transform method has been applied to the half-line problem for Airy’s

equation in [15]. In order to quantify the accuracy of simulations to the full BVP, we take

the opportunity to benchmark the deformation approximation according to different θmax

values on the half line. Also, the comparison of half-line problem and finite interval case

will be given in this section.

3.1 Half-line problem

Consider the non-homogeneous initial-boundary value problem for Airy’s equation

qt(x, t) + qxxx(x, t) = h(x, t), x ∈ [0,∞), t > 0,

q(x, 0) = q0(x),

q(0, t) = f0(t).

(3.1)

The Fokas integral representation solution of initial-boundary value problem (3.1) can be

computed as

q(x, t) =
1

2π

{∫
�
eikx+ik3t q̂0(k) dk −

∫
∂D+

eikx+ik3t ζ
+(k, t)

Δ(k)
dk +

∫
�
eikx+ik3t H(k, t) dk

}
, (3.2)

where the spectral functions q̂0(k) and ζ+(k, t) are defined in (2.4) and (2.13) and H(k, t) is

given by

H(k, t) =

∫ t

0

∫ ∞

0

e−ikx−ik3s h(x, s) dxds. (3.3)

Note that the original (not the symmetric form of) the Fokas integral representation is

used for the solution representation of the problem in the half line. Due to the nature of

the problem on the half line, there is no boundary value on the right which corresponds

line integral around the D− region. For the detailed analysis of the Fokas integral

representation solution of non-homogeneous linear evolution PDEs, see [23].
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Figure 4. A numerical benchmark of Airy’s equation posed on the half line with (x, t) ∈ [0,∞) ×
[0, 1], see example 1. Note that the error induced by truncating the deformation contour becomes

very small very quickly as θmax is increased. (a) the computation region and the deformation

mapping, (b) the numerical approximation with θmax = 50, (c) a plot of the error measured in the

Bochner norm L∞(0, 1;L2(0,∞)) against the contour truncation value.

Example 1 We select the initial, boundary and forcing conditions such that

q0(x) = 0

f0(t) = sin(2πt)

h(x, t) = 2πe−x cos (2πt) − e−x sin (2πt),

then the analytic solution of non-homogenous Airy’s equation defined by (3.1) is

q(x, t) = e−x sin (2πt).

It is important to note that in order to evaluate line integrals along � and ∂D+, we

can deform all of the line integrals with the same hyperbolic-type contour specification

k(θ) = i sin ( π
6
− iθ). By the nature of the problem, there are no poles in the half-line case.

We implement k(θ) as a deformation mapping for the solution given by equation (3.2). The

results illustrating the effect of varying θmax is given in Figure 4. As expected, the error

introduced by truncating the contour decreases when θmax increases, since the deformation

mapping stays in the region where both eikx and eik
3t are bounded.

3.2 Finite interval problem

The computation of the solution is far more complicated when Airy’s equation is posed

over a finite interval [0, L] than when it is posed on the half line. The fundamental

difference is the presence of poles inside the domain of integration or directly on the

integration contour. The contribution of these poles must be taken into account and

properly evaluated, and a suitable deformation of the integration contour to achieve this

was already described in Section 2.3. Here, we additionally need to make this deformation

suitable for the numerical evaluation, indeed the choice of an appropriate deformation

mapping is crucial to evaluate the Fokas integral representation solution (2.17). For
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the problem (1.1), we require that deformation mappings k(θ) must have the following

properties:

(1) The deformed contours should not pass through the poles which are zeros of Δ(k).

(2) The deformed contours should follow a trajectory such that any poles stay on the

left side of the direction of these mappings.

(3) When α = 0, the deformed contours must remain asymptotically on the τj� lines

for j = 0, 1, 2. Indeed, any deformation from these lines results in at least one of the

exponentials e±τjk , involved in the integrand, to be unbounded for large |k|, see e.g.

Figure 5.

(4) The numerical integral value should include the contributions of the residues of

sufficiently many of the poles lying on the τj� lines (j = 0, 1, 2) which are close to

0. When α = 1, this can be done by deforming the contours so that they remain

within the D± region near 0 and in E± otherwise, see Figure 6.

4 Numerical examples

In this section, we summarise extensive numerical experiments for Airy’s equation defined

on a finite interval [0, 1]. We study the effects of truncating the deformation contour and

varying the boundary coupling constant α ∈ [0, 1]. Different values of α result in different

positions of the poles. Hence, we take care to vary the deformation functions accordingly.

With that in mind, we present the results in separate cases: α = 0, 0 < α < 1 and α = 1.

4.1 When α = 0

In order to approximate the numerical solution of the initial-boundary value problem (1.1)

with α = 0, the complex contours are deformed by the following functions:

k1(θ) = τ2k3(θ), k2(θ) = τk3(θ), k3(θ) = −iη sin
(π

3
− iθ

)
, (4.1)

where k1(θ) and k2(θ) deform the boundary of the domain E+ and k3(θ) deforms the

boundary of E− (see Figure 3). The parameter η determines the distance of the curve

with respect to origin. To test the reliability of these deformation functions for α = 0 and

to justify the truncation of θ to a finite region, we compute the error by implementing a

forcing term in Airy’s equation similarly to our test in the half line (compare with example

1), i.e.

qt(x, t) + qxxx(x, t) = h(x, t), x ∈ [0, 1], t > 0,

q(x, 0) = q0(x), x ∈ [0, 1],

q(0, t) = f0(t), t > 0,

q(L, t) = g0(t), t > 0,

qx(L, t) = α qx(0, t), t > 0, α ∈ �.

(4.2)

This then allows us to specify a known q(x, t) function as an analytic solution and

benchmark appropriately.
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Figure 5. Deformation effects on eikL, eiτkL and eiτ
2kL terms.

∂Ẽ−

∂Ẽ+
1∂Ẽ+

2

Figure 6. An example of a deformed contour that accounts for information of residues near the

origin.

The integral representation of equation (4.2) is given by

q(x, t) =
1

2π

{∫
�
eikx+ik3t [ q̂0(k) + H(k, t) ] dk −

∫
∂D̃+

eikx+ik3t ζ
+(k, t)

Δ(k)
dk

−
∫

∂D̃−
eik(x−L)+ik3t ζ

−(k, t)

Δ(k)
dk

}
, (4.3)

where the spectral functions q̂0(k), ζ
±(k, t) and H(k, t) are defined in (2.4), (2.13) and (3.3),

respectively. It should be noted that adding the forcing function to the equation adds

one term to the function Ndata which changes the f̃data and g̃data functions, and thus the
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definition of ζ±(k, t) function given in (2.13) is updated accordingly with

Ndata(k) = q̂0(k) − k2f̃0 + e−ikLk2g̃0 + H(k).

Moreover, the integral from 0 to ∞ in the definition of the function H(k, t) given in (3.3)

should be replaced with the integral from 0 to 1, since x ∈ [0, 1].

The integral representation solution with forcing term can be also simplified to the

symmetric form by absorbing the first integral into the other two integrals, with the similar

argument done above. Then, the alternative formulation of the integral representation with

forcing term is obtained by

q(x, t) =
1

2π

{∫
∂Ẽ+

eikx+ik3t ζ
+(k, t)

Δ(k)
dk +

∫
∂Ẽ−

eik(x−L)+ik3t ζ
−(k, t)

Δ(k)
dk

}
. (4.4)

Example 2 We select initial, boundary and forcing conditions such that

q(x, 0) = 0,

q(0, t) = 0,

q(1, t) = sin(2πt) ,

qx(1, t) = 0,

h(x, t) = 2π (2x− x2) cos(2πt),

then the analytic solution of the non-homogeneous Airy’s equation is given by

q(x, t) = (2x− x2) sin (2πt).

We implement these initial, boundary and forcing terms into (4.4) and make use of

the contour deformations specified in (4.1). We vary the truncation of the integral and

illustrate the behaviour of the approximation in Figure 7. It is important to note that the

truncation value of θmax for α = 0 is far less than the half-line case.

4.2 When 0 < α < 1

As can be seen from Figure 8, the position of the poles changes when α varies between

zero and one. We choose the complex contour deformations defined by the following

functions:

k1(θ) = τ2k3(θ), k2(θ) = τk3(θ), k3(θ) = −iη sin
(π

3
− iθ

)
, (4.5)

where k1(θ) and k2(θ) deform the boundary of the domain E+ and k3(θ) deforms the

boundary of E− (see Figure 3). The η parameter determines the distance between the

curve and the origin. We will proceed as in the previous subsection, validating these

deformation mappings for 0 < α < 1 by adding a forcing function, computing the q(x, t)

and then investigating the behaviour of the solution for various initial and boundary

conditions. Note also that the truncation value of θmax for 0 < α < 1 is the same as the

α = 0 case, since the deformation functions used in both cases are the same.
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Figure 7. A numerical benchmark of Airy’s equation posed on a finite interval (4.2). Initial,

boundary and forcing functions are given in example 2. Here, α = 0 and η = 1/2. We test the

effect of varying the truncation of the contour integrals in (4.4) with (x, t) ∈ [0, 1] × [0, 1]. Notice

that as the contour length increases the error decreases quickly, as expected. (a) the computational

region and the deformation mappings, (b) the location of the poles with respect to the deformation

mapping, (c) the numerical approximation with θmax = 12, (d) a plot of the error measured in the

Bochner norm L∞(0, 1;L2(0, 1)) against the contour truncation value.

Example 3 Here, we examine α = 1/3. We select initial, boundary and forcing conditions

such that

q(x, 0) = 0,

q(0, t) = 0,

q(1, t) = 2 sin (2πt),

qx(1, t) =
1

3
qx(0, t),

h(x, t) = 2π (3x− x2) cos (2πt),
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Figure 8. The location of the poles for the solution to Airy’s equation for some specific α ∈ (0, 1)

with η = 1/2. (a) α = 0.001, (b) α = 0.1, (c) α = 0.47, (d) α = 0.8.

so that the analytic solution of the non-homogeneous Airy’s equation is given by

q(x, t) = (3x− x2) sin (2πt).

We substitute these initial, boundary and forcing terms into (4.4) and make use of

the contour deformations specified in (4.1). We vary the truncation of the integral and

illustrate the behaviour of the approximation in Figure 9.

4.3 When α = 1

As can be seen from Figure 10, the problem is extremely challenging when α = 1. The

poles lie on the boundaries of the regions we wish to integrate. We make use of the
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Figure 9. A numerical benchmark of Airy’s equation posed on a finite interval (4.2). Initial,

boundary and forcing functions are given in example 3. Here, α = 1/3 and η = 1/2. We test the

effect of varying the truncation of the contour integrals in (4.4) with (x, t) ∈ [0, 1] × [0, 1]. Notice

that as the contour length increases, the error decreases quickly, as expected. (a) the computational

region and the deformation mappings, (b) the location of the poles with respect to the deformation

mappings, (c) the numerical approximation with θmax = 12, (d) a plot of the error measured in the

Bochner norm L∞(0, 1;L2(0, 1)) against the contour truncation value.

following deformation function:

k3(θ) = −θ+γi{tanh(βπ − θ) + tanh(βπ + θ) − 1} − 3

2
i{tanh(1 − θ) + tanh(1 + θ)}

+

√
3

2
iθ tanh(5θ){tanh(1 − θ) + tanh(1 + θ) − 2} ,

(4.6)

k1(θ) = τ2 k3(θ), k2(θ) = τ k3(θ),

where γ and β are the positive real constants. The parameter γ determines the distance

between the curve and the poles. We will set γ = min { 1

200 3
√
t
, 0.5} to guarantee minimum

passage through D± regions in which eik
3t is unbounded for larger time values. The
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parameter β determines the number of poles added to the numerical computation by

shifting the curve from D± regions to the E± regions. As mentioned before, the poles are

placed on the τj� lines for j = 0, 1, 2 when α = 1.

Example 4 Here, we examine the case α = 1. We select initial, boundary and forcing con-

ditions such that

q(x, 0) = sin (2πx),

q(0, t) = 0,

q(1, t) = 0,

qx(1, t) = qx(0, t),

h(x, t) = −(2π)3 cos (2πx),

(4.7)

then the analytic solution of the non-homogeneous Airy’s equation is given by

q(x, t) = sin (2πx).

We implement these initial and boundary values into (4.4) and make use of the contour

deformations specified in (4.6). We vary the truncation of the integral and the number

of poles taken into account and illustrate the behaviour of the approximation in Figure

(10(d)). The truncation value of θmax when α = 1 is larger than when α = 0 or 0 < α < 1.

After including contributions from the poles located on the τj� lines for j = 0, 1, 2, the

contour stays inside the E± regions in which the integrands of the integral representation are

bounded.

Example 5 In this example, we show the approximate solution for a specific choice of

initial and boundary conditions. We will examine the effect of varying α on the solution.

Note in all cases there is no forcing term. We select initial and boundary conditions such

that

q(x, 0) = sin(2πx),

q(0, t) = 0,

q(1, t) = 0,

qx(1, t) = αqx(0, t).

(4.8)

The numerical approximation computed by the deformations defined for α = 1 above is given

in Figure 11(a). A slice of the solution is taken at time t = 0.1 for various values of α, and

is shown in Figure 11(b).

Example 6 In this final example, we show the approximate solution for a specific choice

of non-smooth initial conditions with α = 1. We select initial and boundary conditions such
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Figure 10. A numerical benchmark of Airy’s equation posed on a finite interval (4.2). Initial,

boundary and forcing functions are given in example 3. Here, α = 1. We test the effect of varying

the truncation of the contour integrals in (4.6) with γ = min { 1

200 3√t
, 0.5} and the parameter β. Notice

that as the contour length increases, the error decreases quickly, as expected. It is also observed

that to achieve good approximability, it is extremely important that enough poles are taken into

account in the positioning of the contour, that is β is not too small. (a) the deformation for β = 1,

(b) the deformation for β = 1, (c) the deformation k2(θ) for various values of β, (d) a plot of the

error for various values of β measured in the Bochner norm L∞(0, 1;L2(0, 1)) against the contour

truncation value.

that

q(x, 0) =

{
1 if x ∈ [ 1

4
, 3

4
]

0 otherwise,

q(0, t) = 0,

q(1, t) = 0,

qx(1, t) = qx(0, t).

(4.9)
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Figure 11. Examples of numerical approximations to Airy’s equation using the Fokas transform

method. The parameters of the deformations are chosen as γ = min { 1

200 3√t
, 0.5}, β = 3 and

θmax = 50. (a) the solution given by the initial conditions (4.8) for α = 1, (b) the solution given by

the initial conditions (4.8) sliced at t = 0.1 for various values of α.
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Figure 12. Examples of numerical approximations to Airy’s equation using the Fokas transform

method. The parameters of the deformations are chosen as γ = min { 1

200 3√t
, 0.5}, β = 3 and

θmax = 50. (a) the numerical approximation with initial conditions (4.9) and α = 1, (b) local

temporal slices of the numerical approximation with initial conditions (4.9).

We compute the approximation using the contour given in (4.6) and show the solution over

the temporal range [0, 100] in Figure 12.

5 Conclusions

We have conducted a careful numerical evaluation of the solution of a variety of boundary

value problems for the third-order PDE (1.1), and shown how this evaluation is extremely

sensitive to the choice of integration contour. We also demonstrated that the optimal

strategy for choosing the contour depends on the particular boundary conditions, namely
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it depends on the location of the poles of the integrand, and on how many of these poles

lie to the left of the cntour—which is equivalent to the residue at the pole being included

in the final result of the computation. Note that these poles correspond to cube roots

of the eigenvalues of the spatial linear differential operator defined by the PDE and the

boundary conditions.

Owing to the fast exponential decay of the integrand, in every case, only a few poles need

be included. This should be contrasted with the slow convergence of series representations

of the solutions of such problems when such a representation exists. The present numerical

strategy is the only general one in existence, to our knowledge, for the evaluation of the

solution of a third-order two-point boundary value problems at arbitrary (x, t). This is

possible by using an exact solution representation in cases where no such representation

was available. This strategy is also a competitive one for evaluating the solution of more

classical two-point boundary value problems for well-known equations such as the heat

equation. We have not given a rigorous proof that our choice is optimal, and we do not

claim it to be. The rigorous study of the optimal strategy for choosing the deformation

is a fundamental and interesting mathematical question, but it is outside the scope of the

present study.

The ability to conduct such numerical computations enables the study of the behaviour

of the solution of such problems also in the case that the initial condition is a piecewise

constant function. This is the case studied by Olver for periodic boundary conditions, and

displaying the phenomenon of dispersive quantisation. For general boundary conditions,

the eigenvalues cannot be computed explicitly as they are the roots of a transcendental

equation. Therefore, it is not possible to verify analytically by an analogous computation

to the one performed by Olver in his paper whether dispersive quantisation is expected

to occur. A numerical study of the phenomenon is made possible by the results presented

in this paper. In closing, we mention how, by using the approach described in this paper,

we have been able in work in progress to detect numerically quantisation effects for

conservative but non-periodic boundary conditions for the linear Schrödinger equations,

in cases when the eigenvalues cannot be computed analytically. These results will be

presented in a follow-up article.
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