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SCATTERING OF WATER WAVES BY A SUBMERGED THIN
VERTICAL WALL WITH A GAP

SUDESHNA BANERJEA1 and B. N. MANDAL2

(Received 15 February 1995; revised 12 March 1996)

Abstract

A train of surface water waves normally incident on a thin vertical wall completely sub-
merged in deep water and having a gap, experiences reflection by the wall and transmission
through the gaps above and in the wall. Using Havelock's expansion of water wave poten-
tial, two different integral equation formulations of the problem are presented. While the
first formulation involves multiple integral equations which are solved here by reducing
them to a singular integral equation with Cauchy kernel in a double interval, the second
formulation involves a first-kind singular integral equation in a double interval with a com-
bination of logarithmic and Cauchy kernel, the solution of which is obtained by utilizing the
solution of a singular integral equation with Cauchy kernel in (0, oo) and also in a double
interval. The reflection coefficient is evaluated by both the methods.

1. Introduction

Assuming linear theory, water wave scattering problems involving thin vertical bar-
riers in deep water for a normally incident surface wave train are amongst the few
which admit of exact solutions. Many researchers have contributed significantly to
these problems by utilizing a variety of mathematical methods. Dean [3] first con-
sidered the problem of water-wave scattering by a thin vertical barrier completely
submerged in deep water by using complex variable theory. Later Ursell [7] con-
sidered the complementary problem of a partially immersed thin vertical barrier and
used an integral equation formulation based on Havelock's expansion of water wave
potential to solve it. Evans [4] considered the submerged vertical plate problem and
used complex variable theory in conjunction with Riemann-Hilbert boundary-value
problem theory to solve it. Porter [6] investigated water wave scattering by a thin
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vertical wall with a submerged gap and used an integral equation formulation based on
a suitable application of Green's integral theorem and also complex variable theory.
The methods give rise to the same Riemann problem.

Recently Chakrabarti and Vijayabharati [2] considered the problem of water-wave
transmission through a gap in a thin vertical wall completely submerged in deep
water. They used complex variable theory to reduce the problem to two independent
Riemann-Hilbert problems. In the present paper this problem is reinvestigated by
using two different integral-equation formulations based on Havelock's expansion of
the water wave potential. The first formulation involves multiple integral equations
in the regions occupied by the wall and by the gaps above and in the wall. These
multiple integral equations are reduced to a singular-integral equation with a Cauchy
kernel in a double interval. The reflection coefficient is then evaluated. It agrees with
the result obtained in [2] by a different method, except for the signs of a few terms.

In the second formulation, a singular integral equation in a double interval is
obtained. Its kernel involves a combination of logarithmic and Cauchy-type singular-
ities. It may be noted here that for the partially immersed barrier problem considered
by Ursell [7], the same integral equation for a single infinite interval (a, oo) was
obtained, a being the depth to which the barrier is immersed, and because of this, it
could be reduced to another singular integral equation with Cauchy kernel. However,
in the present case such reduction is no longer possible, and as such it requires special
attention. This integral equation is solved here by utilizing the solution of a singular
integral equation with Cauchy kernel in (0, oo) and also in a double interval. The
reflection coefficient is then evaluated. This result agrees with that obtained by the
first approach.

2. Formulation of the problem

We consider irrotational motion of an incompressible inviscid fluid occupying the
region y > 0, where the y-axis is taken vertically downwards into the fluid and the
plane y = 0 represents the undisturbed free surface. A train of time-harmonic surface
waves with circular frequency a is incident from negative infinity on a thin vertical
submerged wall with a gap. The wall occupies the position x = 0, y e W where
W = (a, b)U{c, oo) while the wall's gap has the position x = 0, b < y < c. If the
fluid motion is described by the velocity potential Re{(p(x, y)e~""}, then assuming
linear theory, <$> satisfies

in _y>0, (2.1)

0 in y = 0. (2.2)
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Here K = a2/g, g being the acceleration due to gravity,

4>x=0 on x = 0,yeW, (2.3)

r'/2V</> is bounded as r -> 0, (2.4)

where r is the distance from the submerged edges of the wall, viz., the points
(0,fl),(0,fc)and(0,c),

V0 ->• 0 as y ^ oo (2.5)

and

[Te-Ky+iKz a s _>. QQ

0 ~M (2.6)
^-Afv-HK* + Re-Ky-lKx a s J ^ - Q O ,

where 7 and /? are respectively the unknown transmission and reflection coefficients
which will be determined in the course of solution. Here e-

K>+iKx represents the
velocity potential for the incident wave train.

The boundary-value problem represented by (2.1) to (2.6) is now solved by two
methods as described in the next section.

3. Method of solution

(a) Method based on reduction to multiple integral equations. By Havelock's
expansion of water-wave potential a suitable representation of 4>(x, y) satisfying (2.1),
(2.2), (2.5) and (2.6) is given by

/<OO

(f)(x, y) = Te-Ky+iKx + / A{k)L{k, y)e~kx dk for x > 0,
Jo

<(>(x, y) = e~Ky+iKx + Re-Ky-'Kx + f B(k)L(k, y)ekx dk for x < 0,
Jo (3.1)

where

L(k, y) = k cos ky - K sin ky. (3.2)

The continuity of the horizontal velocity across x = 0 for all _y > 0 produces, by
Havelock's inversion theorem,

T = 1 - R, A(k) = -B(k). (3.3)
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Use of (3.1) in (2.3) produces

kA(k)L(k, y) dk = iKTe'Ky for yeW. (3.4)
o

Again, the continuity of <j)(x, y) across the gaps above and in the wall produces after
using (3.3)

/
Jo

A(k)L(k,y)dk = Re-ky for y e&, (3.5)

where <g = (0, a)U(b, c). It may be noted that &UW = (0, oo). Application of the
operator ^ + K to (3.4) and (3.5) gives rise to the multiple integral equations

/•OO

/ kD(k) sin kydk = 0 for y € W, (3.6)
Jo

/>OO

/ D(A:)sinA:>'^ = 0 for y e &, (3.7)
Jo

where

D{k) = (k2 + K2)A(k). (3.8)

Integration of (3.6) with respect to y produces

f ' \CJj f D { k ) co* kydk=\CJ ^ a<y<h' (3.9)i

Ci for c < y < oo,

where C, and C2 are arbitrary constants.
Let

f°°
/ D(k) sin kydk = h(y) for yeW, (3.10)

Jo

where h(y) is unknown. Then by Fourier inversion, (3.7) and (3.10) produce

D(k) = - f h(t) sinktdt. (3.11)

Substitution of (3.11) in (3.9) gives

2thU)dt=inCl for a<y<b, & m
- v2 \

y I n C2 for c < y < 00,
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f
Jo

sinkt sxnky
dk = - In

y-t

has been utilized. Now, for consistency, C2 in (3.12) must be taken to be zero, since
the left side of (3.12) tends to zero as y —> oo. Thus the multiple integral equations
(3.6) and (3.7) reduce to a singular integral equation with a Cauchy kernel in a double
interval, given by

2th(t)
 dt _ \nCl

t2-y2 |0

for a < y < b,

for c < y < oo.
(3.13)

The solution of (3.13) depends essentially on the behaviour of h (t) near the end points
a, b, c. To ascertain this behaviour, it is noted that for y e W

h{y)
/»O

Jo
K2)A(k) sin ky dk

'y) dk -

- * ( - ° ' 30)

so that h(y) = —{f'(y) + Kf(y)}/2, where f(y) is the difference of potential across
the wall.

Thus, in view of (2.4),

h(y) = O((y-dy/2) as y -»• d,

where d represents any one of a, b and c.
The solution of (3-13) satisfying (3.14) is given by

(3.14)

h(t) =

HO
Pit)

HO
P(O

for a < t < b

for c < t < oo
(3.15)

(see Appendix), where

= \(t2-a2)(b2-t2)(c2-t2)\"2 (3.16)
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and

A.(0 = Bo + B,t2 + — F{a,b,t), (3.17)
n

with

F(a,b,t)= I ^p^-dv (3.18)
J 2 t2

and Bo, B\ arbitrary constants determined below.
Substitution from (3.15) into (3.11) produces

,3,9)

By (3.8), A(k) is now obtained in terms of the unknown constants C\, Bo, B\. To
determine these constants, A{k) is now substituted in (3.5). This gives after some
manipulations

r rb x(u)e~K" f°° k(u)e~K" 1
Re~Ky = — / du + / du e~Ky for 0 < y < a

L A P(u) Jc P(u) J ( 3 2 0 )

and

r rb\(,A r°°\(,Ao-Ku 1
~Ky for b < y < c.

(3.21)

Equations (3.20) and (3.21) produce two expressions for #, and as they must be the
same, it is found that

f ^ * . = 0 0.22)
Ja P(«)

so that

fb X(u)e-K" f°° X(u)e-Ku

R = - y ' du+ ' du. (3.23)
Ja P(U) Jc P(U)

Equations (3.22) and (3.23) give two relations connecting the four unknowns R, Bo, B\
and C\. The other two relations can similarly be obtained by substituting A{k) in (3.4).
This gives after some simplification

i(\-R)e -icy f f Hu)e~K" , fc

K> = \ ——du-
LJ_fl p(u) Jb

p(u)

-£L(e-K'-eK°-e-Kb)\e-Kr for a < y < b (3.24)
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K
- eKa - , / C f c l ~Ky for c < y < oo.

(3.25)

Now (3.24) and (3.25) produce two expressions for /(I — R), and as they must be the
same,

f
Jb

K u
„ .

(3.26)

so that

K

From the four relations (3.22), (3.23), (3.26) and (3.27), the four unknowns
R, Bo, B\ and C\ can be calculated. Hence <p(x, y) can be fully determined from
(3.1). The final expression for R is given by

D : _ +S2A2~ ^

where

— S\G\ — 87G2

A, = a2(-K) - a4(-K), A2 = a'^-K) - a'l(-K),

A3 = a2(-K,F)-a4(-K,F);

G, = ad-K) - a3(-K) - i{a2(-K) - an(-K)},

G2 = a'U-K) - a'H-K) - i{a^-K) - < ( -

(3.28)

(3.29)

G3 = - [ « , ( - * , F) - ct3(-K, F) - i{a2(-K, F) - a4(-K, F)}]
n

- —ie-Ka - eKa - e-Kb);

82 = - -a3{K)a2(K, F) - a2{K) — + - o 3 ( ^ , F)
n

n
,Kb

K n

(3.30)

(3.31)

A = a3(K)a'l{K) - a'3'(K)a2{Ky,
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eKu fb F(a b u)eK"f" F(a, b, u)eKu fb

at(K,F) = V ' / du, a2(K,F)=
J-a P(«) Ja

F(a, b, u)eK
K ' J d u ,

fe F(a,b,u)eK" J [°° F(a,b,u)eKu
 J

a3(K,F)= — du, a4(K,F) = — du,
Jb P(u) Jc P(u)

= a,(K,l) and a?(K) = ^—a,(K),i = 1,2,3,4. (3-32)

The expression for R given in (3.28) coincides with that in [2] except for some signs
in the expressions for A, A, and a4(K, F).

(b) Method based on reduction to a singular integral equation with a combination
of logarithmic and Cauchy kernels. If g(y) denotes the horizontal component
of velocity across the gaps, then it is easy to see that

g(y) = O (| y - d rl/2) as y^d, (3.33)

where d is any of a, b and c,

T = \-R = -2i f g(t)e~Kt dt,
2 (3.34)

A(k) = -B(k) = / g(t)L(k,t)dt

and g(t) satisfies the following singular integral equation with a combination of
logarithmic and Cauchy kernels in the double interval:

f g(t) \K In -—- + —!— + -—] dt = 0 for ye <£. (3.35)
h L y + t y-> y + t]

Also, for y e ^,

-lRe-
K> = f" .t

L.tk:yl2A f 8(0L(k,t)dt\ dk. (3.36)
2 Jo k(k2 + K2) \Jcg J

To solve the singular integral equation (3.35), let

Jm for , e * . ,
10 for f £ #

and

(O for
(3.38)

for (eF,
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where hi(t) is unknown. Thus (3.35) is now equivalent to

[9]

J G{t)\lC\n y-t
y + t

l l

y-t y+t
dt = H(y) for 0 < y < oo.

The function h\(t) has the behaviour

h,(t) = O ( | t - d r ' / 2 ) as t ^ d,

where d is any of a, b and c.
The solution of (3.39) is given by (cf. [1])

G(y) = - f \e-K" (ye-K>- [eK» I -% H™. dt+Si } du] for 0 < y
dy L Jo Jo [ *2Jo t 2 - u 2 J J

(3.39)

(3.40)

< oo,
(3.41)

where 5| is an unknown constant and H(t) involves the unknown function h\{t). An
integral equation for h\ (t) is obtained by observing that G(y) — 0 for y e W so that
(3.41) gives

[ S2e
Ky for a < y < b,

SieKy for c < y < oo,Jo L^2 ^o t2 - u2 J

where 52, 53 are arbitrary constants. Noting (3.38), this produces

2tht C3

c4

for a < y < b

for c < j < oo,
(3.42)

where

C3 =

- 5 , , (3.43)

so that C3, C4 are arbitrary constants. However, for consistency we must have

C4 = 0 (3.44)

since the left side of (3.42) tends to zero as y -> oo. The solution of the singular
integral equation (3.42) in the double interval W is given by

h>(y) =

Hy)
P(y)

A(y)

P(y)

for a < y < b,

for c < y < oo,
(3.45)
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(see Appendix), where

X(y)=nD0 + nD[y
2 + ^F(a,b,y) (3.46)

with p{y) and F(a, b, y) being defined by (3.16) and (3.18), Do, D\ being unknown
constants (the factor n in Do, D\ being taken for convenience). Thus A.(_y) in (3.46)
contains three arbitrary constants, Do, D, and C3. To determine these, we use the fact
that G(y) = 0 for y e W. This is equivalent to

/ ( ^ ^ ) - | ] - o for

For a < y < b, we obtain from (3.47) after using (3.42):

This produces

LJMtpnA^h (348,
Jo [Jwt2-u2 J 7r2A: K

Again, for c < y < oo, we obtain from (3.47) after using (3.48) that

dy I 1 n2K n2 Jb \Jw

so that

^ ^ o . (,49,
w t2 - u2 ] K

Finally, using (3.48) and (3.49), g{y) is obtained from (3.41) as

U^i^ic'^^T^^)^)] forb<y<c.

Substitution of h\(t) from (3.45) into (3.50) and (3.49) produces after simplification

8(y) =
forb<y<c

(3.51-2)
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with

b Piu)
. 2 C 3 {,b,u), (3.54)

n TTZ

where p(u) and F(a, b, u) are given in (3.16) and (3.18). Equation (3.53) gives a
relation between the constants Do, D\ and C3. The other relation connecting these
constants can be obtained by substituting g(y) from (3.51) and (3.52) into (3.36). It
is found that

-"'-"-'-'[-[
K" - eKu)

dup(u)

r°° k]{u)e~Ku 1
+ / du\ for 0 < y < a

Jc P(u) J

du+r
P(") Jc />(«)

so that

and

\ f b W K r k l M e - " \ for b < y < c,

(3.55)

R= - ^ du - / - ^ -^ rf«. (3.56)

Again, substituting g{y) from (3.51) and (3.52) into

1 - R= - 2 / / g(t)e-K'dt,
J'S

it is found that

and

Now, (3.53), (3.55), (3.56) and (3.57) give four relations connecting the four constants
Do, £>i, C3 and R, from which these can be calculated. It is verified that the expression
for R obtained here is exactly the same as given in (3.28). Finally, 4>(x, v) can be
determined from (3.1) after using g{t) in (3.52), (3.53).
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4. Conclusion

The present paper demonstrates the use of two different integral equation formula-
tions based on Havelock's expression of water wave potential to study the problem of
water wave scattering by a completely submerged vertical wall with a gap. Explicit
expressions for the reflection coefficient are obtained from both formulations.

Appendix

Here we obtain the solution of the singular integral equation

\M for a < y < b,
„. - . (Al)

t2 - p2 [ 0 for c<y <oo

in the double interval W = (a, b) U (c, oo) with the requirement that

p(t) = O(\t -d r l / 2 ) as t - • d, (A2)

where d is any of a,b and c,
Substitution of t2 = u, y2 = v reduces (Al) to

I p,(u) \M for A < v < B,
du = { (A3)

u - v [0 for C < D < O O ,

where

A = a2, B = b2, C = c2, p,(«) = p(ui/2), Wt = (A, B)U(C, oo). (A4)

Let

1 f P\(u) , , . .....
w(z) = / du, z = x + iy. (A5)

2ni JWiu-z
Use of the Plemelj formulae (cf. Muskhelishvili [5]) produces (after using (A3))

w+(x) + w~(x) = for x eWi, (A6)
ni

w+(x)-w-(x) = p,(x) for x e Wu (A7)

where

\M for A < x < oo,
N { x ) = \ n f r ( A 8 )

0 for C < x < oo
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and w±(x) = liniy-^io w(z) for x e W\. (A6) is a Riemann-Hilbert problem for the
sectionally analytic function w{z) in the complex z-plane cut along the real axis from
A to B and from C to oo. Its solution is given by

w(z) = wo(z) - + —- + — /
[2 2 2m+ / , +
[_ 2 2m Jw, TTIWQ(U)U -Z

(cf. [5]), where

wo(z) = {(z - a){z - b){z - c)}l/2 (A10)

and P, Q are arbitrary constants, WQ(X) = limv_»+ou;o(z), x eW\.
Applying the Plemelj formula to w(z) in (A9) and using the relation A(7), we

obtain p\ (x) and hence p(t) by (A4). Then p(x) is obtained as

p(x) = p(x)

P(x)

where

for a < x < b,

for c < x < oo,
(All)

2N
= P+Qx2 + —-F{a,b,x), (A12)

p(x) and F(a, b, x) being defined by (3.16) and (3.18).
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