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Abstract

Two different ordinary differential operators L, and L2 (not of the same order) defined on
two adjacent intervals /, and I2 , respectively, with certain mixed conditions at the interface
are considered. These problems are encountered in the study of 'acoustic waveguides in ocean',
'transverse vibrations in nonhomogeneous strings', etc. A complete set of physical conditions
on the system give rise to three types of (selfadjoint) boundary value problems associated with
the pair (L, , L2). In a series of papers, a systematic study of these new classes of problems
is being developed. In the present paper, we construct the fundamental systems and exhibit the
forms of solutions of nonhomogeneous problems associated with the pair (/.,, L2) .

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 34 A 99.

0. Introduction

In the studies of 'acoustic waveguides in ocean', 'optical fiber transmission',
'transverse vibrations of nonhomogeneous strings', 'one dimensional heat
conduction in composite rods', etc., we encounter a new class of problems of
the type
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defined on an interval /, and

f
r2 k=0

defined on the adjacent interval I2 where /, and I2 have a common bound-
ary point t = b, X is an unknown constant (eigenvalue), and the functions
x, y are required to satisfy certain mixed conditions at the interface t = b.
In most of the cases, the complete set of physical conditions on the system
give rise to selfadjoint boundary value problems associated with the pair
(L,, L2). We may broadly classify these boundary value problems into three
types, namely (i) where the values of x and y at the interface point t = b
are not explicitly related to each other, (ii) where x and y satisfy continu-
ity conditions at t = b, and (iii) where x and y satisfy certain matching
conditions at t = b. In the literature, to the authors' knowledge, there does
not exist a systematic mathematical study of these problems. In the present
work, we shall construct fundamental systems, and shall establish the forms
of solutions of nonhomogeneous equations associated with (L,, L2) for each
one of the three types of problems mentioned above.

In our earlier papers, we have studied the solutions of initial value prob-
lems [6], and characterized all selfadjoint boundary value problems [7] as-
sociated with the pair (L,, L2). The next fundamental aspect of this new
class of problems is the study of Green's functions and generalized Green's
functions associated with (L, , L2) which in turn helps the study of resol-
vents of selfajdoint boundary value problems associated with (L,, L2). But
before embarking upon these studies, it is essential to know about the fun-
damental systems, and the form of solutions of nonhomogeneous equations
for the pair (L, , L2), which we shall consider here. To know the physical
situations where these new classes of problems arise, we may refer to [1, 3,
4,5].

Before indicating the sectionwise splitup of the work we shall introduce a
few notations and make some assumptions. For an interval I of R and for
any positive integer k, let ACk(I) denote the space of all complex valued
functions / which have (k — 1) derivatives in / and the (k — 1) th derivative
is absolutely continuous over each compact subinterval of / . For a function
/ , let f^k) denote the k th derivative of / , if it exists. Let /, = [a, b] or
(a, b] and I2 = [b, c] or [b, c), —oo < a < b < c < +oo. For a function

/ G ACn(Ix), let / ( / ) = column(/(0, . . . , /n~l)(t)), r e / , , and for a
function / € ACm(I2), let / ( / ) = column(/(0, . . . , /m~l)(t)), t € I2. Let
/ = /, U I2 . For a function / defined on / , let /// , . denote the restriction
of / to It:, i = 1, 2 . Let C denote the fc-dimensional complex space
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[3] Nonhomogeneous equations 163

whose elements we take to be column vectors. If a € C*1 and /? e C*2,
then the column (a, /?) denotes the (kl + k2) column vector formed by the
components of a followed by the components of /? taken in that order.

ASSUMPTION 1. Let L, = i Z"k=QPkd
k/dtk and L2 = ± Y%=0Qkd

k:/dtk ,
where r{, Pk, k = 0, 1, . . . , n , are continuous complex valued functions
denned on /, with r,(f) > 0 and Pn{t) ^ 0 for all t e / , , and r2, Qk,
k = 0, 1, . . . , m, are continuous complex valued functions denned on I2

with r2{t) > 0 and Qm(t) ^ 0 for all t e I2 . For the sake of definiteness,
we assume that n> m .

ASSUMPTION 2. Let g be a Lebesgue measurable complex valued function
denned on / which is integrable over every compact subinterval of / . Let
gi = g/Iit 1 = 1,2.

ASSUMPTION 3. Let A and B be (m x n) and (m x m) matrices with
complex entries, respectively, such that the range of A equals the range of
B, and (hence) rank,4 = rankB — d (< m).

Consider the homogeneous equation

(1) ( L , , L 2 ) / = 0

and the nonhomogeneous equation

(2) (Ll,L2)f=g.

In Section 1, we shall construct three types of fundamental system (non-
explicitly mixed, continuous, matching) for equation (1). In Section 2, we
shall establish the forms of three types of solutions (nonexplicitly mixed,
continuous, matching) of equation (2).

1. Construction of fundamental systems for (L, , L2)f — 0

Let us recall the following definitions from [6].
DEFINITION 1. We call a complex valued function / , denned on the in-

terval / , a solution (nonexplicitly mixed) of the differential equation (2) if
(i) flIx=xeAC\lx),
(ii) x satisfies the equation L{x = #, for almost all t e Ix,
(iii) f/I2=yeACm(I2),

and
(iv) y satisfies the equation L2y = g2 for almost all t e /2 .
DEFINITION 2. We call a complex valued function / defined on the inter-

val / , a continuous solution of the differential equation (2) if
(i) / is a solution of equation (2) in the sense of Definition 1,

and
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(ii) the functions / / / , = x and f/I2 = y satisfy continuity conditions at
the interface point t = b, namely,

xU)(b-)=yu\b+), j = 0,\,...,m-\.

DEFINITION 3. We call a complex valued function / denned on the inter-
val / , a matching solution of the differential equation (2) if

(i) / is a solution of equation (2) in the sense of Definition 1,
and

(ii) the functions / / / , = x and f/I2 = y satisfy the matching conditions
at the interface point t = b, given by

Ax(b-) = Bp(b+).

REMARK 1. All the above definitions carry over to equation (1) also.

DEFINITION 4. We say that the nontrivial functions / , , . . . , f defined on
/ (with possible jump discontinuities at t = b) are linearly independent if
for any set of scalars c,, . . . , c

and

i m p l y c, = c2 = • • • = cp = 0 .

DEFINITION 5. By a fundamental system (FS) (nonexplicitly mixed, con-
tinuous, matching) for equation (1), we mean a set of linearly independent
solutions (nonexplicitly mixed, continuous, matching) of equation (1) which
span the solution (nonexplicitly mixed, continuous, matching) space of equa-
tion (1).

(I) Nonexplicitly mixed fundamental system for (Ll, L2)f = 0
Let ax, ... ,an be a basis for Cw and fi{, ... , fim be a basis for C m .

Let tfSlj, i = 1 ,2 . Let x, e ACn{Ix) be the unique solution of Lxxi - 0,
xt{tx) = al;, / = 1 , . . . , « , and let yt e ACm(I2) be the unique solution of
L2yt = 0 , ^ ( * 2 ) = 0n i = \ , ... , m . C l e a r l y , x1,x2,...,xn f o r m a FS
for LyX = 0 , a n d y x , ... ,ym f o r m a FS fo r L2y = 0 . Def ine

f m _
Jn+iK) \y,{t), tel2,i=i,2,...,m.
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Then as shown in [6, Theorem 4], it can be verified that fx, ... , fn, fn+x,
..., fn+m form a nonexplicitly mixed fundamental system for (Lx, L2)f =
0.

NOTE 1. We note that the Wronskian of xx, ... , xn , namely,

for all t € / , , and the Wronskian of yx, ... , ym , namely, W(y{, . . . , ym){t)
= W{fH+l, • • • , fn+m)(t) * 0 for a l l t e l 2 . L e t Wt{fx,..., fn)(t) d e n o t e
the determinant obtained from W(f{,... , fn){t) by replacing the / th col-
umn by ( 0 , 0 , . . . , 0 , l ) e C \ i = l , . . . , « , a n d l e t Wt(fn+l,...,fn+m){t)
denote the determinant obtained from W(fn+l, . . . , fn+m){t) by replacing
the / th column by ( 0 , . . . , 0, 1) e Cm , i=\, ... ,m.

(II) Continuous fundamental system for (L{, L2)f — 0
Let fi{, ... , fim be a basis for Cm and let y{, ... , yn_m be a basis for

C"~m . Then the vectors ax, ... , an defined by

_ J column(£., 0) , 0 e C " m , i = 1, . . . , m,
a* ~ \ column(0, y._m), 0 e Cm , i = m + 1, . . . , n,

form a basis for C" . Let x, e ACn(Ix) be the unique solution of Llxi = 0 ,
x^b - 1) = at;, i = 1 , ... , n . Let yt € ACm(I2) be the unique solution of
L 2 y t = 0 , p t ( b + ) = j 8 , , i = 1 , ... , m . C l e a r l y , x x , ... , x n f o r m a F S f o r
Lxx = 0 , and yx,... , ym form a FS for L2y — 0 . Define

•{
t), t€lx,

0, teI2,t^b,i = m + l,...,n.

Then as shown in [6, Theorem 5], it can be verified that / , , . . . , fm , fm+x,
... , fn form a continuous fundamental system for (Lx, L2)f = 0 .

NOTE 2. We note that W{fx, . . . , fn)(t) ^ 0 for all t e / , , and

for all t G I2. Let W^(/,, . . . , fn){t) denote the determinant obtained from
w(f\. • ••>/„)(') by replacing the i th column by (0, . . . , 0, 1) e C" , / =
I,... , n , and let ^ ( / j , . . . , fm){t) denote the determinant obtained from

W{fx,...,fm){t)

by replacing the i th column by (0, . . . , 0, 1) 6 Cm , i= I, ... , m.
(Ill) Matching fundamental system for (Lx, L2)f = 0
Since rank A = rank B = d (< m ) , there exist bases <*j, . . . , an for C"

and f}{, ... , /?m for Cm such that a , , . . . , an_d belong to the null space
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of A and /?,, . . . , fim_d belong to the null space of B. Also since the range
of A equals the range of B,

(3) s p a n ^ a , } ^ , = s p a n ^ / ? , . } ^ . ^ , .

Let x, e AC"(I{) be the unique solution of Lxt = 0, *,(£-) = ajt

i - 1, ... ,n, and let yt € ACm(I2) be the unique solution of L2yt =
0 ' Pj(b+) = /?,-, i = I, ... , m. By relation (3), we get that Aat -
Y^'jLm-d+i Q)BPj' i = n-d+l, ... , n, where 0j are some suitable scalars.
Clearly, x , , . . . , xn form a FS for L{x = 0 . Define

0,

and
0 ,

l
It was shown in [6, Theorem 6] that / , , . . . , fn , fn+l,..., fn+m_d form a
matchingly mixed fundamental system for ( L , , L2)f — 0 .

C L A I M . y , , . . . , y m _ d , Z]Lm_d+1 en-d+i
yj,..., E]Lm_d+i 0 > y form a

fundamental system for L2y = 0.
It is enough to verify that the above functions are linearly independent, so

let c,, . . . , cm be scalars such that

cy +•

(4)

Upon differentiation,

/» \j( r\ .1 1 _1_ , . .

(5)

Operating the matrix

relation (4)

+ c
m

j=m-d+l

n 2-^ j^j ~
j=m—d+l

implies

m

+ --- + Cm E 0

j=m—d+l

B on both sides of

that
m

n-d+l 2-/ j y'A
j=m—d+\

"p.(b+) = 0.

equation (5), we get that
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Since / , , . . . , fn+m_d form a matching fundamental system for (Lx, L2)f =
0, we get from relation (6) that

that is,

that is,

cm-d+iAxn_d+i(b-) + ••• + cmAxn{b-) = 0 ,

Axm_d+lxn_d+1(b-) + ••• + cmxn(b-)) = 0 ,

A(cm_d+lan_d+i + ••• + cman) = 0 ,

which implies that cm_d+lan_d+l H h cman belongs to the null space of
A and this is true only if cm_d+l = • •• cm = 0 . Now, relation (4) reduces to
clyl + • • -+cm_dym_d = 0 , and since yx, ... , ym_d are linearly independent,
we get that c, — •• • = cm_d = 0 . This proves the claim.

N O T E 3. We note that W{fx , . . . , / „ ) ( / ) ^ 0 for all t € / , , and

W{fn_d+{,...,fn,fn+x,...,fn+m_d){t)±0
for all t&I2. Let H^.(/j, . . . , fn){t) denote the determinant obtained from
W{fx, ... , fn){t) by replacing the /th column by (0, . . . , 0, 1) e C" , / =
1 , 2 , . . . , n, a n d l e t Wt(fn_d+X , . . . , / „ , fn+l,..., f n + m _ d ) ( t ) d e n o t e t h e
determinant obtained from W{fn_d+l, ... , fn+m_d)(t) by replacing the i th
column by (0, . . . , 0, 1) e Cm , / = 1, . . . , m .

2. Forms of solutions of , L2)f = g

THEOREM 1 (Variation of constants method for nonexplicitly mixed so-
lutions of (L,, L2)f = g). Let / , , . . . , fn+m be the nonexplicitly mixed
fundamental system for (L, , L2)f = 0 as defined in (I). Then all non-
explicitly mixed solutions f of (L, , L2)f = g are of the form f(t) =

T tel, where

1

o,

o,
b:-

t e l 2 , t £ b , i = l , . . . , n ,

> • • • ' fn+m)(S)

QJs)W(fn+i,... ,

a n d ax: ( i = 1 , . . . , « ) , b t { i — \ , . . . , m ) a r e s c a l a r s , a n d tf€ Ijt i = 1 , 2 .
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PROOF. By [6, Theorem 1], there exist nontrivial nonexplicitly mixed so-
lutions of equation (2). Let us assume a nonexplicitly mixed solution / of
equation (2) to be of the form

n+m

where the c( 's are to be determined by the variation of constants method.
Case (1): for f e / , , f(t) = £"_, cmfm = E"=1 c ,«*,M satisfies the

equation LJ = g, .
Therefore, by the variation of constants method we get that

where the at 's are scalars and t{ e /, (see [2, Theorem 3.6.4]). Extend
the functions ci to the interval I2 by denning ct{t) = 0, t € I2, t ^ b,
i=l,2,...,n.

Case (2): for t e /2 ,

n+m m

/(o=
satisfies the equation L2f = g2 .

Therefore by the variation of constants method, we get that

- b I f '
QJs)w(fn+l,...,

i = 1, 2, . . . , m,

where the bi 's are scalars and t2 e I2. Extend the functions cn+i to the
i n t e r v a l / , b y d e f i n i n g c n + i ( t ) = 0 , t G l x , t ^ b , i = I , ... , m . F i n a l l y ,
recalling the definitions of / , , . . . , fn, ... , fn+m , we see that the proof is
complete.

THEOREM 2 (Variation of constants method for continuous solutions of
(L,, L2)f - g). Let / , , . . . , / „ be the continuous fundamental system for
(L,, L2)f = 0 as defined in (II). Then all continuous solutions of (L,, L2)f =
g are of the form
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TO.-./,
(s) {s)ds

TO.-./,

TO.-.
tel7, i=l, ... , m,

and a(, i = I,... , n, are scalars and ( , 6 / , .

PROOF. By [6, Theorem 2], there exist nontrivial continuous solutions of
equation (2). Let us assume a continuous solution / of equation (2) to be
of the form

(7) tel,

where the ct 's are to be determined by the variation of constants method.
Case (1): for ( 6 / p f{t) = £"=1 c,.(f)/,(0 = £?=, c^x^t) satisfies the

equation L , / = g.
Therefore, by the variation of constants method we get that

(8)
W(f ... f )(s) \

t — i , . . . , ri ,
c(t)-a + f (

where the ai 's are scalars and tx € / , . We notice that the c. 's satisfy the
relation

ix,j = o , i , . . . , « - 2.(9)

Case (2): for t el2, f(t) = X™, c^f^t) = J2?=i c,(0^,(0 satisfies the
equation L 2 / = g2 .

Therefore, by the variation of constants method we get that
(10)

ci(t) = bi + j I <s)W(f'' " V )(s))r2(s)S2(s)ds, i=l,...,m,

where t he bt 's a re scalars . W e no t i ce t h a t cx, ... , cm satisfy t h e re la t ion

(11) V V ( I ) . / / ; ) ( < ) = 0 , t e I 2 , j = 0 , . . . , m - 2 .
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Since / is a continuous solution of equation (2), we have that f^J\b-) =
f(i\b+), 7 = 0, I, ... , m-l. Therefore, from relation (7), using relations
(9) and (11), we get that

i=i 1=1

which implies that

c,(b-) column^-), ... , fjm~x\b-)) = £ ci(b+)fi(b+),
i=i (=i

that is, (see (II)),

m m

(12) £c,(6-)/?; = £<#+)/?,..

Now, since filt ... , fim are linearly independent, we get from relation (12)
that ct(b-) = cj(b+), i = I, ... , m. Hence we choose the b 's such that
(13)

*!=«,-+ / P M w / r " M K . ^ . ^ ' 1 = 1 , . . . , Iff.

Substituting the values of Z>('s from relation (13) into relation (10), and
extending c m + 1 , . . . , cn to the interval I2 by denning

(14) c,.(0 = 0 , teI2,t?b,i = m + l , . . . , n ,

we see in view of relations (8), (10), (13), (14) and the definitions of / , , . . . ,
f that the proof is complete.

THEOREM 3 (Variation of constants method for matching solutions of
(L,, L2)f = g). Let / , , . . . , fn+m_d be the matching fundamental system
for (L, , L2)f = 0 as defined in (III). Then all matching solutions f of
(L,, L2)f = g are of the form

n+m—d
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€ / , , / = 1 , . . . , « ,

0,

-d+X ' ••• ' (s)ds,

, ... , n,

Cn-d+M) =

0,

a( (i = 1 , . . . , « ) , 6, (/ = 1, . . . , m) are scalars, and t{ € / , .

PROOF. By [6, Theorem 3], there exist nontrivial matching solutions of
equation (2). Let us assume a matching solution / of equation (2) to be of
the form

n+m—d

(15) tel,

where the c( 's are to be determined by the variation of constants method.
Case (I): for ( e / , ,

n+m—d

/=! (=1 1=1

satisfies the equation L , / = 0. Therefore, by the variation of constants
method we get that
(16)

where the at 's are scalars and /, e Ix. We notice that the ct 's satisfy the
relation

(17) = 0, t G / , , j = 0, 1, . . . , n - 2.
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Case (2): for t e I2 ,

n+m—d n+m~d

nt)= E cfr)fM)= E c/(o/,(o
i '=l i=n— d+\

n m m—d

= E *i(0 E »>/(')+E C«+*WJ\(0
i=n—d+\ j=m—d+\ i=l

satisfies the equation L 2 / = g2. Therefore, by the variation of constants
method we get that

/ = 1, 2, . . . , m,

where the ft, 's are scalars. We notice that c ( , / = n -d + I, ... , n + m-d
satisfy the relation

n+m—d

i=n—rf+l

Since / is a matching solution of equation (2), we have that Af(b-) =
Bf(b+). Therefore, from relation (15), using relations (17) and (19), we get
that

Af(b-) = E ^{b-W^b-) - E ct{b-)Af,{)>-) = Bf(b+)
i '=l i=n—d+l

n+m—d n

= E ci(b+)Bfi(b-)= E ci(b+)Bfi(b+),
i'=n—rf+l i=n—d+l

which implies that

(since Afi(b-) = Bfi(b+)),

that is,

( E (^-)-
that is,

(20) ^ ( E (c,(6-) - c,(ft+))a() = 0 (see (III)).
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Now, relation (20) implies that T,"=n-d+i(ci(b~) ~ £,-(*+))",• belongs to the
null space of A and this is the true only if c((b-) — ct{b+), i = n - d +
1 , . . . , n . Hence we choose bt(i — \ , . . . , d) such that

Substituting these values of the bt's from relation (21) into relation (18),

for / — 1 , . . . , d, and extending c{, ... , cn_d to the interval I2 by denning

c,.(0 = 0 , t € 72 , f / 6 , / = 1, . . . , n - d, and cn+x, ..., cn+m_d to the

interval Ix by defining ct(t) = 0, f e / , , t ^ b , i = n + 1 , . . . , n + m - d,

we see in view of relations (6), (18), (21) and definitions of / , , . . . , fn+m_d

that the proof is complete.

REMARK 2. In a subsequent paper, using the results developed here, we

shall construct Green's functions and generalized Green's functions for the

three types of boundary value problems associated with {L{, L2).
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