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SOME APPLICATIONS OF
WEDDERBURN’S FACTORISATION THEOREM

Yoav SEGEV

The structure of finite quotients of “large” subgroups of the multiplicative group of
a finite dimensional division algebra is interesting and is related to the Margulis-
Platonov conjecture. We develop machinery to handle such quotients and we
conjecture that finite quotients of the multiplicative group of a finite dimensional
division algebra are solvable. The proofs rely on Wedderburn’s Factorisation The-
orem.

0. INTRODUCTION

The purpose of this paper is to continue building up machinery to handle finite
quotients of various “large” subgroups of the multiplicative group of a finite dimensional
division algebra. In the paper [5] we developed some such machinery, and this was
applied in [6] to show that the multiplicative group of a finite dimensional division
algebra has no non-abelian finite simple quotients. This, in turn, solved the Margulis—
Platonov conjecture for inner forms of anistropic algebraic groups of type A, (see [6,
5,3) and [2, Chapter 9]). The techniques of this paper are very different from the
techniques developed in [5] (and are easier in some sense). We hope that together
with [5] and additional machinery, yet to be discovered, we shall have enough theory
to attack the last remaining open case of the Margulis-Platonov conjecture — the outer
forms of anistropic algebraic groups of type A, (see [2, Chapter 9]), which is a major
goal we have in mind. In addition, we get results on finite dimensional division algebras
over any field, and not only over number fields.

Since we are dealing with machinery, the nature of our two main theorems is
somewhat technical. However, the applications are already at hand; initial results
using ideas incorporated in Theorem 1 below were used in [4] where we proved that the
finite quotients of the multiplicative group of a division algebra of degree 3 are solvable.
Further applications are deferred to a later paper. Hopefully a strengthening of these
theorems will prove the conjecture we formulate below.
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Throughout this paper D is a finite dimensional division algebra over its centre
F := Z(D). We denote D* = D\{0} and we let G = D*, the multiplicative group of
D. We set F* = F\{0}. We let N be a normal subgroup of G such that FX ¢ N
and G/N is finite. We use the following notational convention. We denote G* = G/N
and for a € G, we let a* denote its image in G* under the canonical homomorphism,
that is a* = Na. In what follows A is a commutative indeterminate over D and all
polynomials are taken from D[A]-the ring of polynomials over D.

THEOREM 1. Let a € D\N and let |a*| be the order of a* in G*. Let m,(})
be the minimal polynomial of a over F. Suppose |a*| is an odd prime and that
1 < ks, ..., ki <|a*| are distinct integers and satisfy: (a‘)kj is conjugate to a* in G*,
2 £ j € t. Then we can write

ma(A) = A(AYA = di)(A —di1) - (A = dy)

where d1 = a, and d} = (a*)™, 2<j <.

Theorem 1 is of course related to Wedderburn’s Factorisation Theorem (see The-
orem 1.1 in Section 1), it says that to a certain extent we can “control” the images in
G* of the elements d; appearing in a factorisation. As a corollary to Theorem 1 we get
the following Theorem 2, which, as the reader can observe, already invites applications.
In Theorem 2, Autg- ({(a*)) is the normaliser of (a*) modulo the centraliser of (a*) in
G*. Also deg(a) is the degree of the minimal polynomial of a.

THEOREM 2. Let a € G\N be such that |a*| = p is an odd prime. Let a =
|Autg- ({a*))|. Then either a =1 or a <deg(a) — 1, or a = deg (a).

Finally we mention that by [6], the Margulis-Platonov conjecture holds for inner
forms of anisotropic algebraic groups of type A,,, in particular, if F is a number field
(= finite extension of Q), then finite quotients of D* are solvable. Further in [6] we
proved that finite quotients of D* are never nonabelian simple. In view of this, the
results in [4] and Theorem 2, we formulate the following conjecture.

CoNJECTURE F.80.Q. (Finite Solvable Quotients) Finite quotients of the multiplica-
tive group of a finite dimensional division algebra are solvable.

1. THE PROOF OF THEOREM 1 AND THEOREM 2

We continue with the notation of the introduction. In particular, D, F, G, N and
G* are as in the introduction.

REMARK 1.1. Note that since F* { N, forall a € G and a € F*, (ca)” = a*. We
shall use this fact without further reference.
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Recall from the introduction that A is a commutative indeterminate over D and
all polynomials are taken from D[A]-the ring of polynomials over D. Given a € G\F,
we denote by mg(A) € F[)A], the (monic) minimal polynomial of @ over F and by
deg (a), the degree of m4(\). Given a group H and elements z, y € H, ¥ := y ™ lzy.

The following theorem is due to Wedderburn (7], except that part (3) is an im-
provement due to Haile and Rowen [1], where they show that not only does there exist
a factorisation as in (3) of the theorem (Wedderburn factorisation) but all factorisations
are like this.

THEOREM 1.2. (Wedderburn and Haile-Rowen.) Let a € D\F with deg(a) =
m. Then

(1) There exists a = dy, da, ..., dy € D such that
Ma(A) = (A —dm)(A —dm-1) - (A = dy).
Given a factorisation as in (1) set
f) = —d)A—dia) (A —d), 1< i< m.

(2) Given a factorisation as in (1), let 1 € i < m and write mga(A) =
h(A)f:(A). Let = € G be such that f‘-(a‘”_l) # 0 and let y

f,-(a”_l)a:. Then a¥~' is a root of h(\). In particular, ms()) =

q(A)(A - a’/_l)fi(/\), for some polynomial q(}).
(3) Given a factorisation as in (1), there are elements z,, 3, ... , Zm;m—1 € G
such that if we set

-1
yi=f.'(a’* ):v;, 1€ig<m-1

-1
then y; #0 and  d;; = a¥i , 1<i<m-1.

1.3. Let a € D\F. Let
Mmeg(A) = (A —dp)(A —dm-1) - (A —d1)

be a factorisation of m,(A) and let the notation be as in Theorem (1.2) (1). Let
1i<mandlet z€G. For 1< j<i,set v; = f,-(a’-l)z and let vg = z. Then

(%) vj =vj1a—djvj-, 1<j <
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PrOOF: For j =1, it is easy to check that () holds. Let 1 < j < ¢ andlet b € D.
Then £;(b) = f;_1(b)b — d; fj_1(b). Replacing b by a*~ we get

i) (@) = £ (027) e —difyoa (7).

Multiplying both sides of the equality (i) by z on the right gives the lemma. 1]

PROPOSITION 1.4. Let a € D\F be such that |a*| = p is an odd prime. Sup-
pose mg(A) = h(A) fi(A), with 1 < i < deg(a), fi(A) = (A —di)(A—di_1)--- (A = d1),
di=a,dj = (a‘)kf yand 2 < kj < la*|, 2 <j < i. Suppose further that ks, ... , k; are

distinct. Let z € G be such that (am“) = (a*)*, with k distinct from 1, ka, ... , ki
modulo p. Then

1) f£i(a=) #o0.
@ Let disy = a5 Then my() = g - disn) i) and
diyy = (a‘)k-
PrROOF: For 1 £ j <1, let
Q) =(A—-d){(A-dj_1)--- (A —di),
vj 1= fj(az_l)z, 1<7<4
vy = T.

By 1.3,

(i) v; =vj1e—divi_q, 1<j<i

-1

Suppose f; (a‘”-l) = 0. Let iy be minimal subject to f;, (az ) = 0. Since k #
1(mod p), it follows that ip > 1. By (i), 0 = v, = viy—18 — diyvi;—1. Thus di, =

-1 -1 *
a'i0-1, By induction on i, di, = (a"‘O‘l) = (a*)*. But di, = (a*)*°, contradicting

the choice of k. This shows (1).
Now by (i)

-1
(ii) v; = vi_1a — d;Vj_1 = (aui-ldi_l - l)d,-'vi_l.
Also by induction on ¢ (or in the case ¢ = 1, by definition),

(iii) (aui__ll) * _ (a‘)k-
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-1 * A -1
Thus (a”i-ld,-‘ 1) = (a*)*%. Note now that (a”i—ld,.' 1 1) commutes with

-1
(a"i-ld,-'l) in G, so

. -1 *

(iv) (a*)*~* commutes with (a""—ld'.“1 - 1) .

Using (ii), (iii) and (iv) we get

((ak_k,.)u;l> ‘- <(ak_ki),,‘,—_1l)'({(a"‘-"lld.-"-l)di}_‘)'

= (ak<k—k,~))‘({("v‘—l""—l‘l)"‘}_l)' = (a")**R),

where the last equality follows from (iv) and the fact that d} = (a‘)k‘ (for 2 > 1
and d} = a*). Thus we see that (v})™" acts like (z*)”' on ((@*)*7*) and hence
also on (a*) (since |e¢*| is a prime). Finally, by Theorem 1.2(2), since f; (a”_l) #0,
ma(X) = g(A)(A — dis1) fi(). 0

Notice that Theorem 1 of the introduction is an immediate corollary of Proposition
1.4. We now prove Theorem 2 of the introduction.

THEOREM 2. Let a € G\N be such that |a*| = p is an odd prime. Let a =
|Autg~ ((a*))|. Then either a =1 or a < deg(a) — 1, or a = deg(a).

PROOF: Suppose & > 1. Set deg(a) = m and suppose that « > m — 1 and
a # m. Let ¢ be a generator of Autg. ((a*}). Without loss of generality we may

assume that p(a*) = (a‘)d, for some d | p—1. Define ks, ..., ky—1 by k; =d?7 1. If
m—1
a > m, define kp =d™"!. Now 1+ Y ki = (d™"1-1)/(d—1). So
i=2
m—1
(i) if a =m — 1, then p divides 1 + Z ki,
i=2
while
ii if , then 1 k; = dpd t divi i
(ii) if @ > m, then +'z=; ’ 71 and p does no 1v1de1+i=zzk,
By Theorem 1 we can choose a = dy, ds, ..., dy such that

ma(/\) = (/\ - dm)(/\ ot dm—l) e (/\ - dl)
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and
(iii) dr = (@)%, for2<i<m-1.

Further if @ > m, then we can take d,, such that d}, = (a‘)k"‘. Note now that

(dmdm-1, -- -, d1)" = 1*. But by (i) and (iii), if @ = m—1, then (dm-1, ..., d1)" = 1%,

so dy, = 1*, which is false since dj, in conjugate to a*; while if o > m, then by (ii)

and (iii) (dmdm-1, --- > d1)" # 1*, a contradiction. This proves the theorem.
REFERENCES

{1] D.E. Haile and L.H. Rowen, ‘Factorization of polynomials over division algebras’, Algebra
Colloguium 2 (1995), 145-156.

(2] V. Platonov and A. Rapinchuk, Algebraic groups and number theory (Nauka Publishers,
Moscow, 1991). (English translation: Pure and Applied Mathematics 139 (Academic
Press, Boston MA, 1993)).

[3] A. Potapchik and A. Rapinchuk, ‘Normal subgroups of SL;,p and the classification of
finite simple groups’, Proc. Indian Acad. Sci. Math. Sci 106 (1996), 329-368.

[4] L. Rowen and Y. Segev, ‘The finite quotients of the multiplicative group of a division
algebra of degree 3 are solvable’, Israel J. Math. (to appear).

[6] Y. Segev, ‘On finite homomorphic images of the multiplicative group of a division algebra’,
Ann. Math (to appear).

[6] Y. Segev and G.M. Seitz, ‘Anistropic groups of type A, and the commuting graph of
finite simple groups’, (submitted).

(7] J.H.M. Wedderburn, ‘On division algebras’, Trans. Amer. Math. Soc. 22 (1921), 129-135.

Department of Mathematics
Ben-Gurion University
Beer-Sheva 84105

Israel

https://doi.org/10.1017/50004972700032640 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032640

