
JFP 12 (4 & 5): 293–294, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S095679680200922X Printed in the United Kingdom

293

Special Double Issue on Haskell

GRAHAM HUTTON

School of Computer Science and IT, University of Nottingham, Nottingham, UK

Since its inception in 1987, Haskell has provided a focal point for research in lazy

functional programming. During this time the language has continually evolved, as

a result of both theoretical advances and practical experience. Haskell has proved to

be a powerful tool for many kinds of programming tasks, and an excellent vehicle

for many aspects of computing pedagogy and research. The recent definition of

Haskell 98 provides a long-awaited stable version of the language, but there are

many exciting possibilities for future versions of Haskell.

This special issue of the Journal of Functional Programming is devoted to

Haskell, and follows on from a series of four workshops on the language that

were held during the period 1995–2000, and have continued to be held every

year since. Contributors to any of the four workshops were invited to submit full

articles to the special issue, but submission was open to everyone. The original

call solicited articles on any aspect of Haskell, including critiques of Haskell 98,

new proposals for Haskell, applications or case studies, programming techniques,

reasoning about programs, semantic issues, pedagogical issues, and implementation.

Six articles were selected for publication, each of which is briefly summarised

below:

• Faxén gives a more-or-less complete static semantics for Haskell 98 that

formally specifies the details of the type system;

• Marlow shows how to develop a web server using Haskell that is less than

1500 lines long but provides surprising performance;

• McBride shows how recent extensions to the Haskell type system can be used

to simulate certain aspects of dependent types;

• Peyton Jones and Marlow reveal the techniques and tricks used to build an

effective inliner for the Glasgow Haskell Compiler;

• Thiemann presents combinator libraries for generating HTML and XML

documents that guarantee certain validity properties;

• Trinder, Loidl and Pointon provide a comprehensive survey of current exten-

sions of Haskell for parallel and distributed programming.

These articles cover a diverse range of topics, but there are of course many other

areas of Haskell research that are not touched upon here. It is encouraging to note

that a special double issue was necessary to accommodate the accepted articles, and

that four of the six articles are already looking beyond Haskell 98 to the future,

by making essential use of additional language features such as multi-parameter

classes, functional dependencies, and concurrency.

I would like to thank the authors and the referees for their efforts in producing

https://doi.org/10.1017/S095679680200922X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200922X


294 Introduction

and reviewing the articles, and Phil Wadler for the opportunity to publish the articles

as a special issue of the Journal of Functional Programming.

Graham Hutton

School of Computer Science and IT

University of Nottingham

https://doi.org/10.1017/S095679680200922X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200922X

