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1. Introduction 

A non-perturbative general relativistic approach to global astrometry was de­
veloped by de Felice et al. (1998) to handle satellite astrometry data in a gen­
uine relativistic framework. In this contribution, the framework above has been 
further exploited to account for stellar motions and parallax. Because of the 
relevance that accurate knowledge (to 10 - 5 or better) of the relativistic parame­
ter 7 has to fundamental physics, a Parametrized Post-Newtonian (PPN) model 
has also been implemented, which allows the direct estimation of 7 along with 
the astrometric parameters. These models have been tested on end-to-end sim­
ulations of the mission GAIA. The results show that, within the limitation of 
the simulation and the assumptions of the adopted model, measurements accu­
rate to 100 /xarcsec of large arcs among stars repeated over a few years can be 
modelled to establish a dense reference frame with a precision of a few tens of 
/zarcseconds. Moreover, our experiments indicate that 7 can be estimated to 
better than 10~6. 

2. Relativistic effects in GAIA 

In the data reduction of the Hipparcos astrometric mission, the observations 
were pre-corrected for relativistic effects to (v/c)2 ~ GMQ/C2R® ~ 2 mas. The 
observation equations were then formulated in a three-dimensional Euclidean 
space. The expected astrometric precision for the GAIA mission is of the order 
of 100 /xarcsec for stars of magnitude V = 17, and ~ 10 ^tarcsec for V = 12 
(Lindegren and Perryman, 1996). To meet such goal, it is mandatory that the 
observations be modelled at the level of ~ 1 /xarcsec, in a framework which 
utilizes a relativistic theory of gravitation. 

Especially significant for the GAIA mission are metric perturbations due to 
the solar system planets which will affect the path of the photons reaching the 
satellite. The following table lists the light deflection angles due to the major 
planets at their closest approach to Earth, and for different elongations from the 
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light source. We have not considered the internal planets Venus and Mercury 
because they would be too close to the Sun to be observed by GAIA. The mass 
of the planet is denoted by M, r$ is the minimum distance planet-Earth, D the 
corresponding angular diameter of the planet and 6a the light deflection angle. 
It can be seen that the mass of Jupiter produces significant effects up to angular 
distances of ~ 15°, while Saturn needs to be considered up to ~ 2°. The mass 
of Uranus and Neptune might be important only for the brightest stars. 

Table 1. Deflections of a light ray due to solar system planets as seen 
from the Earth for a limb-grazing ray (Saig), and for 2 and 15 degrees 
of elongation. 

Planet 

Mars 
Jupiter 
Saturn 
Uranus 

Neptune 

M • lO - * 3 

kg 
6.4191 
18992 
5686.5 
868.49 
102.35 

r e •10~b 

km 
78.3 
628.7 
1277.4 
2720.0 
4347.0 

D 

(") 
8.94 
23.43 
9.76 
1.80 
1.06 

6ai6 

mas 
0.116 
16.289 
5.765 
2.235 
2.800 

Sa(2°) | «a(15°) 
//arcsec 

— 
53.0 
7.8 
— 
-

— 
7.0 
— 
— 
-

3. Modelling the observations 

The adopted mathematical model consists of a satellite (the observer orbiting on 
a spatially circular geodesic around the Sun. The latter is assumed non rotating, 
spherically symmetric and therefore generating a Schwarzschild space-time met­
ric, the Sun conciding with the barycenter of the satellite-Sun system. In this 
context it is convenient to adopt polar coordinates: the colatitude 0 G [0,TT], the 
azimuth <j> G [0,2TT] and the polar distance r €]0, oo[. When the Schwarzschild 
metric is expressed in the Parametrized Post-Newtonian (PPN) formalism and 
isotropic coordinates, the two new parameters 7 and j3 are explicitely intro­
duced (Misner et al, 1973). These parameters are equal to unity in the theory 
of General Relativity. 

The observable quantity for a GAIA-like mission is the light coming from 
two objects in different directions across the sky reaching the satellite at the 
same proper time r . In particular, the cosine ifiu of the angle between a star 
pair is given by (Brumberg, 1991): 

cos V>12 = — * * _ ! = = , (1) 
V " " 1 l y >lp(T^2 2 

where ki and hi are the null-geodesies from the two stars, hap = gap + uaup, is 
a tensor projecting in the rest frame of the observer, and ua is the four-velocity 
vector representing the observer's trajectory. Our aim is to express the observ­
able as function of same space coordinates, as well as of the PPN parameters 
in the post-Newtonian approximation. Equation 1 does not explicitely contain 
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such parameters, and they are introduced by integrating the path of the photons 
from the light source to the observer (de Felice et al., 2000). Finally, we obtain 
an equation of the form: 

cosVi2(r) = f(r1(t),01(t)Mt)Mt)Mt)MtY,l,P)- (2) 

We note that the time at which the angular separation of the star pair is 
observed is the proper time T of the observer. Since the catalog values of the 
star's parameters are referred to coordinate time, we have to convert r into t in 
order to compute the correct stellar position. 

The polar coordinates (r,6,4>) (the only ones appearing as arguments of 
the function / in a non-perturbative approach) are functionally related to the 
classical quantities parallax and proper motions, as described in the following 
section. 

4. The condition equation 

The motion of a distant star at coordinate time t can be formally described by 
using Taylor expansions with respect to an intial time to as: 

r(t) = r(t0) + r(t - t0) + 0.5 r(t - t0)
2 + ... 

< 9(t) = 6(to) + 6(t-t0) + 0.5 9(t-t0)
2 + ... (3) 

<f>(t) = 4>(to) + j>(t - t0) + 0.5 4>(t - t0)
2 + ... 

In principle, r, 8, and <f> are not directly observable; however, since r ~^> r«$, 
the above coordinates can be used to define the observable stellar parallax and 
proper motion, i.e., p = r$/r,rQ = IAU, /J,$ = 8, fi,/, = </>. To conveniently 
truncate the Taylor expansions, let us evaluate the rate of change of p, (i<f, and 
He, i.e., p — — ̂ f-r, fie = 8, and /i ,̂ = <j>. It can be seen that (Green, 1985) p = 
-0.2 Vrp

2 sinl", and (x = -0 .1 VrVtp
2 sinl", where /z = y/ne + (*4> 1S expressed 

in arcseconds/yr, Vr and Vt are the star's barycentric radial and tangential 
velocities in km/sec, and p is in arcseconds. Straightforward calculations show 
that, while p is negligible in virtually all cases, the effect of (i will be detected by 
GAIA for high-velocity stars (« 100 Km/sec) in the vicinity of the Sun (w 100 
pc), which represent a very low fraction of the total number of potential targets. 
Therefore, for the purpose of this experiment, the final model included the zero-
th-order term in r and up to the first-order terms in 8 and <f> of Equation 3. To 
estimate the astrometric parameters, along with the PPN parameters, from the 
measured arcs, we substitute Equation 3 in 2, linearize Equation 2 with respect 
to some a priori known values, then solve the linear system using a least-squares 
method. The resulting condition equation is the following: 

2 

- sin V>12^i2 = S (A*SPi + BiS6i + Ci6^ + Di6^i + EiSfi^) + F6i + G60, 
t = i 

(4) 
where the coefficients Ai, Bi, d, Di, Ei, F and G are partial derivatives of 
the function / calculated at catalog values. The quantity ^Vi2 is the difference 
between the measured and the catalog value of the angular separation between 
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the star pair. The small differences in the right-hand side of the condition 
equation represent corrections to the sought for parameters. 

At present, we have only developed the calculations to estimate 6f, though 
the inclusion of 6(3 does not represent a major difficulty in principle. 

5. Simulation of the observations 

The end-to-end simulation of the GAIA observations follows the same three-
step procedure used for the static case (de Felice et al., 1998), with the obvious 
complications due to the inclusion of stellar proper motions and parallaxes, and 
the introduction of the relativistic parameter 7. Measurements (arcs between 
stars) are generated by a satellite that sweeps the sky according to a Hipparcos-
like scanning law, and the option of three viewing directions (FOVs), studied 
for GAIA, is implemented. 

Stars are simulated within a uniform density sphere of radius 500 pc (i.e. 
p > 2 mas) and proper motions are computed for each star on the basis of its 
radial velocities, randomly generated with (vr) = 0 km/s and aVr = 15 km/s. 
Table 2 lists the numerical values adopted for the main simulation parameters. 

Table 2. Relevant parameters of the GAIA dynamic simulation. 

parameter 

satellite orbital radius 
satellite precession angle 
satellite spin period 
angles between FOVs 
amplitude of each FOV 
radius of the simulated sphere 
mean stars transverse velocity 
a of the transverse velocity distribution 
catalog error for parallaxes 
catalog error for angular coordinates 
catalog error for proper motions 

numerical value 

1.496 • 1011 m 
43° 

128 min 
54°, 78°5 

1°6 
2 mas 

0 km/s 
15 km/s 
2 mas 
2 mas 
2 mas 

6. Results and discussion 

Table 3 shows the final astrometric errors for seven different simulations of the 
non-perturbative dynamical model. The mission length varies from one to five 
years. The catalog reference (mean) time is always at half the mission lifetime 
(t0 = AT/2), which provides the most accurate positions, while the correlation 
between position and proper motion is minimized (Eichhorn and Googe, 1969). 
We note that the true errors of the five stellar parameters scale well with the 
square root of the number of observations (n0(,s). It is also evident that the model 
becomes inadequate below AT = 2 yr, as the relatively short time baseline makes 
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it difficult to disentangle the proper motion components of stellar motion from 
the parallax. 

Table 4 reports the astrometric results along with the estimation of 7 in the 
perturbative (PPN) case for a static sphere (only star positions are considered), 
and a mission duration of 1 year. With these runs we have tested the influence 
of the number of stars (JV„) on the estimation of 7. The results show that with 
a measurement error of 10 fiaicsec, an increase of JV» from 2000 to 5000 gives 
67 in the range 5 • 10~5 - 6 • 10 - 6 . These results made us confident that even 
better results will be achieved by GAIA; the inclusion of the PPN parameter /? 
can be done under the same framework with a little increase of mathematical 
complexity. Further experiments in this direction are underway. 

Table 3. Astrometric errors for the non-perturbative dynamic case. 
Additional input parameters are: aosa (single-measurement error) = 
100 /xarcsec and Nm (number of simulated stars) = 2000. 

AT 
(yr) 

5 
4 
3 

2.5 
2 

1.5 
1 

n0bs 

286431 
227869 
172150 
144063 
115218 
86028 
57892 

<76p 

{fias) 
15.79 
17.88 
20.73 
22.98 
29.75 

262.92 
3691.33 

{fias) 
9.49 

10.67 
12.97 
15.56 
21.06 

200.75 
1154.09 

<7&m0 6<j> 

{fias) 
13.54 
15.28 
17.88 
19.91 
26.64 

136.83 
1927.44 

°^9 
0tas/yr) 

6.58 
9.60 

15.65 
21.52 
67.32 

679.07 
5930.67 

^sm.9Sii,j, 

{fias/yv) 
7.84 

11.31 
19.34 
25.32 
52.69 

751.66 
6827.99 

Table 4. Final errors of astrometric parameters and the PPN-7 pa­
rameter for the perturbative (PPN) static case. Additional input pa­
rameters are: aoas = 10 /xarcsec and AT = 1 yr. 

N. 

2000 
2500 
3000 
3500 
4000 
4500 
5000 

n0bs 

58987 
92061 

132402 
177642 
230039 
289399 
358002 

(/xas/yr) 
-0.08 
-0.01 
-0.01 
0.06 
0.25 
0.03 

-0.07 

{fias/yv) 
4.69 
2.09 
2.37 
2.40 
1.59 
1.63 
2.95 

(an 9 64) 
(/xas/yr) 

-1.52 
-1.87 
-2.08 
2.26 
0.59 

-2.03 
3.90 

<7&m0 8<l> 

Oias/yr) 
10.95 
2.72 
2.51 
2.34 
1.90 
1.78 
2.46 

67 • 10a 

{it - 1c) 
0.0532 
0.0090 
0.0364 

-0.0269 
-0.0071 
-0.0097 
-0.0066 
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