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In this thesis the chief objects of study are hypersurface flows of fourth order,
with the speed of the flow varying from the Laplacian of the mean curvature, to
the more general constrained flows which include a function of time in the speed,
and satisfy various conditions. Our aim is to instigate a study of the regularity of
these flows, answering questions of local and global existence, and some preliminary
singularity analysis. Among our results are positive lower bounds for smooth
and regular existence, classification of stationary solutions, interior estimates, and
blowup asymptotics. Applying these results to a certain class of constrained surface
diffusion flows, we obtain long time existence and exponential convergence to spheres
for initial surfaces with small L2 norm of tracefree curvature. We present one
application of this theorem, using it to deduce the isoperimetric inequality with optimal
constant for 2-surfaces satisfying the above smallness condition. The long time
existence theorem can be thought of as a stability of spheres result, as the smallness
condition is an averaged distance from a standard round sphere to the initial manifold
in L2. This strengthens a related earlier result specialized to the surface diffusion
and Willmore flows [17], where the distance is small in C2,α , obtained through a
completely different method. Our techniques have more in common with [9–11],
from which we have drawn much inspiration. The results throughout this thesis are
new contributions for both surface diffusion flow, which has been considered by many
authors [1–8, 12, 16, 17], and the constrained flows, which have only recently been
considered [13–15, 18, 19].
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