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Abstract
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag
varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms
of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p
Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution
product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired
from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We
expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
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1. Introduction

Let G be a reductive algebraic group defined over a nonarchimedean local field F with finite residue
field of characteristic p. Fix a coefficient field k. For every compact open subgroup 𝐾 ⊂ 𝐺 (𝐹), let H𝐾

be the Hecke algebra of compactly supported functions 𝐾\𝐺 (𝐹)/𝐾 → 𝑘 . The Hecke algebras H𝐾 arise
naturally in the study of smooth representations of 𝐺 (𝐹) on k-vector spaces (see §1.2).

In the present paper, we focus on the case where k has characteristic p equal to that of the residue field
of F. Motivated by recent progress in the mod p Langlands program, as well as recent geometrization
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programs of Langlands Correspondences, we apply the geometry of Witt vector affine flag varieties
to obtain results on mod p Hecke algebras. Our methods are inspired by the geometric Langlands
program, especially the geometric Satake equivalence [Lus83, Gin90, MV07], and its analogue in
mixed characteristic [Zhu17a]. When K is a special parahoric subgroup, we recover the mod p Satake
isomorphism of Herzig [Her11b] and Henniart–Vignéras [HV15]. The Satake isomorphism in these
works is the mod p counterpart of the Satake isomorphism of Haines–Rostami [HR10] in characteristic
zero. Our methods also yield formulas for the inverse of the mod p Satake isomorphism in [Her11a,
Oll15, AHV22].

1.1. Main results

Let A be a maximal F-split torus in G and let f be a facet in the apartment 𝒜(𝐺, 𝐴, 𝐹) in the enlarged
building. Let O𝐹 be the ring of integers of F and let G be the parahoric O𝐹 -group scheme such that
𝐾 := G (O𝐹 ) is the connected fixer of f. Then K is a compact open subgroup of 𝐺 (𝐹), and we can
form the mod p Hecke algebra H𝐾 of compactly supported functions 𝐾\𝐺 (𝐹)/𝐾 → F𝑝 . The algebra
structure is given by the convolution product ∗ (see (3.2)).

1.1.1. Convolution
Let F𝑞 be the residue field of F. If F has characteristic zero, the Witt vector affine flag variety FℓG , first
constructed in [Zhu17a], is an increasing union of perfections of projective F𝑞-schemes [BS17] such
that FℓG (F𝑞) = 𝐺 (𝐹)/𝐾 . The closures of the left K-orbits in FℓG , called perfect Schubert schemes,
are enumerated by certain double cosets 𝑊f\𝑊

𝜎/𝑊f (see §2.1.5). Such Schubert schemes appear as
perfections of irreducible components of the mod p fibers of local models of Shimura varieties. If F has
characteristic p, for uniformity of exposition, we let FℓG be the perfection of the usual (power series)
affine flag variety associated to G.

For 𝑤 ∈ 𝑊f\𝑊
𝜎/𝑊f , let (F𝑝)𝑤 be the constant sheaf on the associated perfect Schubert scheme

Fℓ𝑤 . The function-sheaf dictionary associates {(F𝑝)𝑤 }𝑤 to a certain basis {𝜙𝑤 }𝑤 of H𝐾 . Specifically,
𝜙𝑤 is the sum of the characteristic functions of the double cosets in 𝐾\𝐺 (𝐹)/𝐾 associated to elements
in𝑊f\𝑊

𝜎/𝑊f bounded by w in the Bruhat order.
To state our first theorem, we need the convolution map 𝑚 : FℓG ×𝐿

+G FℓG → FℓG (see (2.8)) arising
from the multiplication map on𝐺 (𝐹). Here, 𝐿+G is the positive loop group (see (2.1)), which is a perfect
ind-scheme such that 𝐿+G (F𝑞) = 𝐾 . The sheaf functor 𝑅𝑚! corresponds to the convolution product ∗
for the Hecke algebra H𝐾 under the function-sheaf dictionary (Lemma 2.9, Lemma 3.1).

Theorem 1.1 (Theorem 3.4). Let 𝑤1, 𝑤2 ∈ 𝑊f\𝑊
𝜎/𝑊f , and let 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f be such that
𝑚(Fℓ𝑤1 ×

𝐿+G Fℓ𝑤2) = Fℓ𝑤 . Then

𝜙𝑤1 ∗ 𝜙𝑤2 = 𝜙𝑤 .

In particular, the convolution of two elements in {𝜙𝑤 }𝑤 is again an element in {𝜙𝑤 }𝑤 . For a given pair
(𝑤1, 𝑤2), the element w may be computed explicitly by combinatorial computations in the affine Weyl
group. The key geometric input in the proof of Theorem 1.1 is the Demazure scheme 𝜋 �𝑤 : 𝐷 �𝑤 → Fℓ𝑤
(2.4) for possibly non-reduced �𝑤. This allows one to show that the fibers of m are built out of Schubert
varieties, which in particular have the property that their number of F𝑞-points is congruent to 1 (mod 𝑝)
(see the proof of Theorem 2.10).

1.1.2. Satake transform
Now let M be a Levi subgroup of G given by the centralizer of a subtorus of A. To the facet f, we may
naturally associate a facet in the apartment 𝒜(𝑀, 𝐴, 𝐹) whose parahoric group scheme M satisfies
M(O𝐹 ) = 𝑀 (𝐹) ∩ 𝐾 [Ric16, A.2]. Let P be a parabolic subgroup of G with Levi factor M and
unipotent radical U. When K is special, Herzig [Her11b] and Henniart–Vignéras [HV15] defined a
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Satake transform1

S : H𝐾 → H𝑀 (𝐹 )∩𝐾 , S ( 𝑓 ) (𝑚) =
∑

𝑢∈𝑈 (𝐹 )/𝑈 (𝐹 )∩𝐾

𝑓 (𝑚𝑢), 𝑚 ∈ 𝑀 (𝐹).

Our second result is an explicit formula for S in the basis {𝜙𝑤 }𝑤 , where K is any parahoric subgroup.
To state it, note that there exists a cocharacter 𝜆 : G𝑚 → 𝐺 such that 𝑀 = 𝐺0 is the group of fixed points
under the corresponding conjugation action of G𝑚, and 𝑃 = 𝐺+ is the attractor for this G𝑚-action in
the sense of (2.10). For an action of the perfection (G𝑚)perf on a perfect F𝑞-scheme, we use the same
notation to denote the fixed points and attractors as functors on perfect F𝑞-schemes. Then there is an
induced action of (G𝑚)perf on FℓG such that FℓM ⊂ (FℓG)0. Here, (FℓG)0 decomposes as a disjoint
union of connected components, and FℓM is a union of some subset of these components. The natural
map 𝑞+ : (FℓG)+ → (FℓG)0, which is informally 𝑥 ↦→ lim𝑡→0 𝜆(𝑡) · 𝑥 · 𝜆(𝑡)

−1, induces a bijection on
connected components.

The geometrically connected components of FℓM are indexed by a certain group 𝜋1 (𝑀)
𝜎
𝐼 (see

§2.1.5). For 𝑐 ∈ 𝜋1 (𝑀)
𝜎
𝐼 and 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f , let (FℓM)𝑐 be the corresponding connected component
of FℓM. Let 𝜙𝑐,𝑤 ∈ HM be the characteristic function of the intersection (FℓM)𝑐 (F𝑞) ∩ Fℓ𝑤 (F𝑞).
Here, (FℓM)𝑐 ∩ Fℓ𝑤 is a (geometrically) connected component of (Fℓ𝑤 )+, i.e. an attractor, and the
irreducible components of this intersection are generalized versions of the Mirković–Vilonen cycles in
[MV07, Theorem 3.2].

Theorem 1.2 (Theorem 3.5). The Satake transform S : H𝐾 → H𝑀 (𝐹 )∩𝐾 satisfies

S (𝜙𝑤 ) =
{
𝜙𝑐,𝑤 , 𝑐 ∈ 𝜋1 (𝑀)

𝜎
𝐼 is such that (FℓM)𝑐 ∩ Fℓ𝑤 is closed in Fℓ𝑤

0, for all 𝑐 ∈ 𝜋1 (𝑀)
𝜎
𝐼 , (FℓM)𝑐 ∩ Fℓ𝑤 is not closed in Fℓ𝑤 .

Over an algebraic closure, (Fℓ𝑤,F𝑞 )
+ has a unique closed attractor (Theorem 2.17), so the element c

in Theorem 1.2 is unique if it exists. Furthermore, the element c is characterized by the property that
𝑞+ restricts to an isomorphism from the closed attractor onto its image. If K is special, there is always
such an element c, but in general, the inclusion FℓM ⊂ (FℓG)0 is strict. Informally, the idea behind the
proof of Theorem 1.2 is that point-counting (mod 𝑝) on Mirković–Vilonen cycles may be performed
on 𝐷 �𝑤 . Since the map (𝐷 �𝑤 )+ → (𝐷 �𝑤 )0 is a disjoint union of perfected affine bundles, the fibres (when
positive-dimensional) have vanishing compactly supported mod p étale cohomology. This makes the
point-counting more accessible.

1.1.3. Special parahorics
Now assume 𝑀 = 𝐶𝐺 (𝐴) is a minimal Levi subgroup and f is a special vertex. Then Λ :=
𝑀 (𝐹)/(𝑀 (𝐹) ∩ 𝐾) is a finitely generated abelian group, and H𝑀 (𝐹 )∩𝐾 is canonically isomorphic to
the group algebra F𝑝 [Λ] (see [HV15, §6] and [HR10, §11] for more details). For 𝑧 ∈ Λ, let 𝑒𝑧 ∈ F𝑝 [Λ]
be the associated element. The choice of P determines a set of anti-dominant representatives Λ− ⊂ Λ
for the orbits of the action of the finite Weyl group𝑊 (𝐺, 𝐴). Moreover, there is a canonical bijection of
sets Λ− � 𝑊f\𝑊

𝜎/𝑊f . In this case, Theorem 1.1 and Theorem 1.2 recover the following result, orig-
inally due to Herzig [Her11b, Theorem 1.2] when K is hyperspecial, and Henniart–Vignéras [HV15,
§1.5] when K is special. Moreover, we recover the explicit formulas in [Her11a, Proposition 5.1] and
[Oll15, Theorem 5.5] (where G is split and K is hyperspecial), and in [AHV22, Theorem 1.1] (where G
is arbitrary and K is special).

Theorem 1.3 (Theorem 3.6). If K is special, for 𝑧1, 𝑧2 ∈ Λ−, we have

𝑚(Fℓ𝑧1 ×
𝐿+G Fℓ𝑧2) = Fℓ𝑧1𝑧2 and 𝜙𝑧1 ∗ 𝜙𝑧2 = 𝜙𝑧1𝑧2 .

1The formula for S makes sense even when K is non-special, although it is not a homomorphism in this generality.
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In particular, H𝐾 is commutative. Moreover, the Satake transform S : H𝐾 → H𝑀 (𝐹 )∩𝐾 is injective,
identifies H𝐾 with F𝑝 [Λ−] and satisfies

S (𝜙𝑧) = 𝑒𝑧 , for all 𝑧 ∈ Λ−.

In comparison, when 𝑘 = C and K is special, the Hecke algebra H𝐾 is also commutative [HR10,
Theorem 1.0.1], and the Satake transform identifies it with the 𝑊 (𝐺, 𝐴)-invariants in C[Λ]. Once the
geometric preliminaries in Theorem 1.1 and Theorem 1.2 are established, Theorem 1.3 follows from
the identification Λ = 𝜋1 (𝑀)

𝜎
𝐼 [HR10, Proposition 1.0.2], and the following combinatorial fact [HV15,

§6.9]:

𝐾𝑧𝐾 ∩ 𝑧𝑈 (𝐹) = 𝑧(𝑈 (𝐹) ∩ 𝐾), 𝑧 ∈ Λ−. (1.1)

To make the connection with Theorem 1.2 explicit, note that when 𝑧 ∈ Λ− (which may be viewed as
a subset of both 𝜋1 (𝑀)

𝜎
𝐼 and𝑊f\𝑊

𝜎/𝑊f), we have 𝜙𝑧,𝑧 = 𝑒𝑧 . The unique closed attractor in (Fℓ𝑧)+ is
the single F𝑞-point corresponding to 𝑧 ∈ Λ−. Moreover, if 𝑃 ⊂ 𝑃′ ⊂ 𝐺 is any intermediate parabolic
with Levi factor 𝑀 ′, then 𝜋1 (𝑀

′)𝜎𝐼 is naturally identified with a submonoid of Λ containing Λ−. For
the (G𝑚)perf-action induced by a cocharacter such that 𝑃′ = 𝐺+, the unique closed attractor in (Fℓ𝑧)+ is
(FℓM′ )𝑧 ∩ Fℓ𝑧 .

Remark 1.4. Let V be a finite-dimensional representation of K over a field k of characteristic 𝑝 > 0.
Associated to V is the Hecke algebra H𝐾 (𝑉) of compactly supported functions 𝐺 (𝐹) → End𝑘 (𝑉)
which intertwine the left and right actions of K. Henniart–Vignéras [HV15, §1.8] established a Satake
isomorphism for H𝐾 (𝑉) similar to Theorem 1.3. When 𝑉 = F𝑝 is the trivial representation, we have
H𝐾 = H𝐾 (𝑉). It is an interesting question to geometrize these Hecke algebras H𝐾 (𝑉) with non-trivial
weights as well.

1.2. Background

We first comment on the appearance of Hecke algebras in the Local Langlands program, which predicts
a relationship between smooth representations of 𝐺 (𝐹) and representations of the Weil group of F in
the Langlands dual group 𝐿𝐺. An important tool in the study of smooth representations of 𝐺 (𝐹) is the
functor of K-invariants 𝑉 ↦→ 𝑉𝐾 , where V is a representation of 𝐺 (𝐹) over a field k and 𝐾 ⊂ 𝐺 (𝐹)
is a compact open subgroup. The space 𝑉𝐾 is naturally a module over the Hecke algebra H𝐾 . When
𝑘 = C, the functor 𝑉 ↦→ 𝑉𝐾 induces a bijection between isomorphism classes of irreducible smooth
representations of 𝐺 (𝐹) admitting a K-fixed vector, and irreducible modules over H𝐾 . When k has
characteristic 𝑝 > 0, the functor 𝑉 ↦→ 𝑉𝐾 no longer induces such a bijection. Nonetheless, the study of
mod p Hecke algebras plays an essential role in the mod p Langlands program.

For example, mod p Hecke algebras are used in the classification of irreducible admissible mod
p representations of 𝐺 (𝐹) in terms of supercuspidals [AHHV17, HV19]. Little is known about mod
p supercuspidal representations outside of a few small rank cases [Bre03, Abd14, Koz16]. However,
numerical evidence [Vig05, Oll10], later upgraded to a functor [GK16, GK18, GK20], suggests a
correspondence between supersingular modules over the pro-p Iwahori Hecke algebra and mod p Galois
representations.

The results in this paper are a first step toward a geometrization program of a mod p Local Langlands
Correspondence. We expect that our methods generalize to the pro-p Iwahori Hecke algebra, which is
geometrized by sheaves on the affine flag variety of a non-parahoric subgroup (the pro-unipotent radical
of the Iwahori loop group). Moreover, our affine flag varieties are the special fibers of Beilinson–Drinfeld
Grassmannians arising in p-adic geometry [SW20]. In this direction, Mann [Man22] has developed a
theory of p-adic étale sheaves which is expected to be useful in a p-adic version of the ground-breaking
work of Fargues–Scholze [FS21]. We thus expect a fruitful interplay between our work and the p-adic
Langlands correspondence [Col10], including groups beyond GL2 (Q𝑝). We also expect a connection
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with [PS23], which relates the Emerton–Gee stack [EG23] to a Kazhdan–Lusztig style parametrization
(as in [KL87]) of mod p Hecke modules for GL2(Q𝑝).

1.2.1. Geometric Satake
Our methods are inspired by Zhu’s geometric Satake equivalence [Zhu17a], where F has character-
istic zero. This relates the category 𝑃𝐿+G (FℓG) of 𝐿+G-equivariant perverse Qℓ-sheaves on FℓG to
algebraic representations of 𝐿𝐺 on finite-dimensional Qℓ-vector spaces. The function-sheaf dictio-
nary provides the connection with Hecke algebras by associating to each F ∈ 𝑃𝐿+G (FℓG) a function
FTr : 𝐾\𝐺 (𝐹)/𝐾 → Qℓ . The convolution map 𝑚 : FℓG ×𝐿

+G FℓG → FℓG encodes the convolution
product ∗ in the following way [Zhu17b, Lemma 5.6.1]: for F1, F2 ∈ 𝑃𝐿+G (FℓG), there is a perverse
sheaf F1�̃F2 on FℓG ×𝐿

+G FℓG which satisfies (𝑅𝑚! (F1�̃F2))
Tr = FTr

1 ∗ FTr
2 .

The papers [Cas22, CP24] established a similar story for perverse F𝑝-sheaves on the affine Grassman-
nian, where F has characteristic p (again for K hyperspecial). Notably, a monoid related to Spec(H𝐾 )

appears rather than 𝐿𝐺, and the simple perverse F𝑝-sheaves turn out to be constant sheaves supported on
Schubert varieties. This reflects the nature of the singularities of these Schubert varieties [Cas22, The-
orem 1.4, Theorem 1.7] – namely, their seminormalizations are Cohen-Macaulay and F-rational (see
also [FHLR22, Theorem 4.1]). No appropriate analogue of these properties is currently known for Witt
vector Schubert schemes, so in this paper, we work directly with constant sheaves rather than perverse
sheaves. Our results also generalize the mod p Hecke algebra results in [Cas22, CP24] (where F has
equal characteristic) to non-split groups and arbitrary parahoric subgroups. Due to the lack of smooth
G𝑚-equivariant deperfections of Witt vector Demazure schemes, we cannot apply all the foundational
results of [CP24, §2] (cf. the proof of Theorem 2.17).

In another direction, the papers [RS21a, RS21b] (for rational coefficients) and [CvdHS22] (for
integral coefficients and F of equal characteristic) gave a motivic refinement of the geometric Satake
equivalence for split reductive groups. The latter provides a geometrization of the generic hyperspecial
Hecke algebra, i.e. the Hecke algebra with coefficients in Z[q], where q is an indeterminate (see for
example [CvdHS22, §6.3]). Such generic Hecke algebras were first studied by Vignéras [Vig06] in the
Iwahori case, and by Pépin–Schmidt [PS23] when 𝐾 = GL2(O𝐹 ). Specialization along the quotient
map 𝑝 ↦→ q ↦→ 0 recovers the hyperspecial mod p Hecke algebra. It would be interesting to generalize
[CvdHS22] to F of mixed characteristic and to find a realization functor from motivic sheaves to the
mod p étale sheaves in the current paper which lifts the specialization map on Hecke algebras.

1.2.2. Constant terms
Recall the parabolic with Levi decomposition 𝑃 = 𝑀𝑈 arising from the cocharacter 𝜆. Associated to
K there are integral models P of P and M of M. The natural maps M ← P , P → G and the fixed
points (FℓG)0 and attractors (FℓG)+ for the resulting (G𝑚)perf-action on FℓG are related by the following
commutative diagram.

FℓM

𝑝0

��

FℓP
𝑞

��

𝑝+

��

𝜄 �� FℓG

id
��

(FℓG)0 (FℓG)+
𝑞+

�� 𝜄+ �� FℓG

The maps 𝑝0 and 𝑝+ are open and closed immersions [AGLR22, Theorem 5.2], so they are inclusions
of some connected components. The sheaf functor 𝑅𝑞! ◦ 𝜄

∗ is called a constant term functor in the
geometric Langlands program, and it corresponds to the Satake transform under the function-sheaf
dictionary (Theorem 2.22). In particular, the fibers of q are 𝑈 (𝐹)-orbits. The term ‘constant term
functor’ reflects the fact that 𝑅𝑞! ◦ 𝜄

∗ is a local analogue of a functor, obtained by replacing FℓG with the
moduli stack of G-bundles on a global curve in positive characteristic, which encodes the constant term
operation on automorphic functions under the function-sheaf dictionary [BG02, DG16]. In the text, we
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work only with the bottom row of this diagram, which is sufficient since 𝑅𝑞! ◦ 𝜄
∗ is a direct summand

of 𝑅𝑞+! ◦ (𝜄
+)∗. Furthermore, because the ∗-pullback of a constant sheaf is constant, we will focus our

attention on the functor 𝑅𝑞+! .

2. Geometric results

2.1. Witt vector affine flag varieties

2.1.1. Notations
Let F be a complete discrete valuation field with ring of integers O𝐹 and perfect residue field k of
characteristic 𝑝 > 0. We assume that k is a finite field or an algebraic closure thereof. Fix a uniformizer
𝜛 ∈ O𝐹 . If F has characteristic zero, for a k-algebra R, let 𝑊 (𝑅) be its ring of Witt vectors, and let
𝑊O𝐹 (𝑅) = 𝑊 (𝑅) ⊗𝑊 (𝑘) O𝐹 . Let 𝑊O𝐹 ,𝑛 (𝑅) = 𝑊 (𝑅) ⊗𝑊 (𝑘) O𝐹/𝜛

𝑛. If F has characteristic p, the
choice of 𝜛 induces an isomorphism 𝐹 � 𝑘 ((𝑡)). For a k-scheme X, we denote its perfection by

𝑋perf := lim(· · · Fr
−→ 𝑋

Fr
−→ 𝑋),

where Fr is the absolute Frobenius morphism. The underlying topological spaces of X and 𝑋perf are
canonically isomorphic. Moreover, there is a natural equivalence of small étale sites 𝑋ét � (𝑋perf)ét
[Sta24, Tag 04DY]. In particular, the étale cohomology groups of X and 𝑋perf are canonically isomorphic.

2.1.2. The affine flag variety
Let G be a connected reductive group over F and let ℬ(𝐺, 𝐹) be its Bruhat–Tits building. For each
facet f ⊂ ℬ(𝐺, 𝐹), let G := Gf be the parahoric O𝐹 -group scheme with generic fiber G as in [BT84,
Définition 5.2.6 ff.]. Let 𝐾 := G (O𝐹 ). If F has characteristic zero, following [Zhu17a], we define the
following functors on perfect k-algebras:

𝐿𝐺 : 𝑅 ↦→ 𝐺 (𝑊O𝐹 (𝑅) [1/𝑝]), 𝐿+G : 𝑅 ↦→ G (𝑊O𝐹 (𝑅)). (2.1)

The functor 𝐿𝐺 is called the loop group, and 𝐿+G is called the positive loop group. We also define the
functor 𝐿𝑛G : 𝑅 ↦→ G (𝑊O𝐹 ,𝑛 (𝑅)). Then 𝐿+G = lim

←−
𝐿𝑛G. The affine flag variety of G is the functor on

perfect k-algebras given by the étale-quotient

FℓG = 𝐿𝐺/𝐿+G .

By [BS17], FℓG is represented by an increasing union of perfections of projective k-schemes.
If F has characteristic p, the loop group (resp. positive loop group) is 𝐿𝐺 (𝑅) = 𝐺 (𝑅((𝑡))) (resp.

𝐿+G (𝑅) = G (𝑅[[𝑡]]). We set 𝐿𝑛G (𝑅) = 𝐺 (𝑅[𝑡]/𝑡𝑛). These functors are usually defined on all k-
algebras, but for uniformity of exposition, we restrict to perfect k-algebras. Then the étale-quotient
FℓG = 𝐿𝐺/𝐿+G is represented by the perfection of the ind-projective k-scheme constructed in [PR08].

2.1.3. Greenberg functors
If F has characteristic zero, there is no canonical ind-projective k-scheme whose perfection is FℓG . The
problem is that the natural extension of the functor 𝐿𝐺 to non-perfect k-algebras is not well-behaved.
(For example, if R is non-perfect,𝑊O𝐹 (𝑅) can have p-torsion, in which case𝑊O𝐹 (𝑅) is not a submodule
of 𝑊O𝐹 (𝑅) [1/𝑝].) However, as observed by Greenberg [Gre61], the functor 𝐿+G is well-behaved on
all k-algebras. Following [Zhu17a], we define the following functors on all k-algebras:

𝐿+𝑝G : 𝑅 ↦→ 𝐺 (𝑊O𝐹 (𝑅)), 𝐿𝑛𝑝G : 𝑅 ↦→ G (𝑊O𝐹 ,𝑛 (𝑅)), 𝑛 ≥ 1.

Then 𝐿+𝑝G = lim
←−
𝐿𝑛𝑝G and 𝐿+G = (𝐿+𝑝G)perf . The functor 𝐿𝑛𝑝G is represented by a k-scheme of finite-

type. If F has characteristic p, let 𝐿𝑝𝐺, 𝐿+𝑝G, and 𝐿𝑛𝑝G be the extensions of 𝐿𝐺, 𝐿+G, and 𝐿𝑛G to all
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k-algebras. There are no issues with 𝐿𝑝𝐺 because 𝑅[[𝑡]] never has t-torsion. We will use these functors
to construct deperfections of finite-dimensional subschemes of FℓG , i.e., finite-type k-schemes whose
perfections are subschemes of FℓG .

2.1.4. Rational points
Let �̆� be the completion of a maximal unramified extension of F and let 𝑘 be its residue field. Since 𝑘
is local for the étale topology,

FℓG (𝑘) = 𝐿𝐺 (𝑘)/𝐿+G (𝑘) = 𝐺 (�̆�)/G (O�̆� ).

Lemma 2.1. We have FℓG (𝑘) = 𝐺 (𝐹)/G (O𝐹 ).

Proof. This follows from the fact that 𝐻1 (Gal(𝑘/𝑘),G (O�̆� )) = 0 [KP23, Lemma 8.1.4] and the exact
sequence in Galois cohomology [Ser94, Proposition 36]. �

2.1.5. Perfect Schubert schemes
Choose a maximal F-split torus A such that f is contained in the apartment 𝒜(𝐺, 𝐴, 𝐹). Let f ′ ⊂
𝒜(𝐺, 𝐴, 𝐹) be another facet. For 𝑤 ∈ 𝐿+Gf′ (𝑘)\𝐿𝐺 (𝑘)/𝐿

+Gf (𝑘), define the orbit

Fℓ◦𝑤 (f ′, f) := 𝐿+Gf′ · 𝑤 · 𝑒 ⊂ FℓG ,

where 𝑤 ∈ 𝐿𝐺 (𝑘) is any lift of w and e is the basepoint of FℓGf . Let Fℓ𝑤 (f ′, f) be the closure of
Fℓ◦𝑤 (f ′, f). The stabilizer of 𝑤 · 𝑒 in 𝐿+Gf′ is the positive loop group of the parahoric O𝐹 -group scheme
associated to f ′∪𝑤f (cf. [AGLR22, Proposition 3.7]). It follows thatFℓ◦𝑤 (f ′, f) is canonically isomorphic
to the perfection of a smooth quasi-projective k-scheme. Furthermore, Fℓ𝑤 (f ′, f) is the perfection of a
projective k-scheme by [BS17] (if F has characteristic zero) and [PR08] (if F has characteristic p). We
call Fℓ◦𝑤 (f ′, f) a perfect Schubert cell and Fℓ𝑤 (f ′, f) a perfect Schubert scheme.

Following [HR08, AGLR22], the perfect Schubert schemes can be parametrized as follows. Fix a
maximal �̆�-split torus 𝑆 ⊂ 𝐺 containing A and let 𝑇 = 𝐶𝐺 (𝑆). Then T is a maximal torus, and we obtain
a chain of F-tori 𝐴 ⊂ 𝑆 ⊂ 𝑇. The connected Néron model T of T over O𝐹 is contained in G[KP23,
Proposition 8.2.4], and T (O�̆� ) is the unique parahoric subgroup of 𝑇 (�̆�). The Iwahori–Weyl group is

𝑊 := 𝑁𝐺 (𝑆) (�̆�)/T (O�̆� ). (2.2)

Choose an alcove a in the apartment 𝒜(𝐺, 𝐴, 𝐹). This determines a splitting𝑊 = 𝑊af � 𝜋1 (𝐺)𝐼 . Here,
𝑊af ⊂ 𝑊 is the affine Weyl group, I is the inertia group of F, and 𝜋1 (𝐺) is the algebraic fundamental
group. As𝑊af is a Coxeter group, we may use this splitting to extend the length function ℓ and partial
Bruhat order to W by declaring elements of 𝜋1 (𝐺)𝐼 to have length 0. The Iwahori group scheme over
O𝐹 associated to the alcove a will be denoted by I := Ga.

The facets f, f ′ are contained in unique facets f̆, f̆ ′ in 𝒜(𝐺, �̆�, 𝑆). Then Gf̆ = Gf × Spec(O�̆� ). Let
𝑊f̆ = (𝑁𝐺 (𝑆) (�̆�) ∩ Gf (O�̆� ))/T (O�̆� ). By the Bruhat decomposition (see [HR08, Proposition 8]),

𝑊f̆′\𝑊/𝑊f̆ = 𝐿
+Gf′ (𝑘)\𝐿𝐺 (𝑘)/𝐿

+Gf (𝑘).

Let 𝜎 ∈ Gal(𝑘/𝑘) be a geometric Frobenius element (if 𝑘 = 𝑘 , then we let 𝜎 be the identity) and let
𝑊f := 𝑊𝜎

f̆
. By [HR08, Remark 9], passing to 𝜎-invariants induces a bijection

𝑊f′\𝑊
𝜎/𝑊f = 𝐿

+Gf′ (𝑘)\𝐿𝐺 (𝑘)/𝐿
+Gf (𝑘). (2.3)

2.1.6. Closure relations and dimensions
From now on, we assume that f and f ′ are contained in the closure of the alcove a. By the reduction
steps in [HR23, §3.1], over 𝑘 , every Fℓ𝑤 (f ′, f) is isomorphic to a perfect Schubert scheme for a pair
(f ′, f) satisfying this assumption.
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For the remainder of Section 2, we assume 𝑘 = 𝑘 unless otherwise stated. This implies 𝐹 = �̆�.
The results still apply when k is finite if we restrict to perfect Schubert schemes defined over k. In this
subsection, we recall one of the main results in [Ric13]. We note that the results in op. cit. are stated in
the case where F has equal characteristic, but the proofs apply verbatim in mixed characteristic.

By [Ric13, Lemma 1.6], for 𝑤 ∈ 𝑊 , there is a unique element 𝑤f of minimal length in 𝑤𝑊f , and a
unique element f′𝑤

f of maximal length in {(𝑣𝑤)f : 𝑣 ∈ 𝑊f′ }. Taking equivalence classes gives a natural
bijection

f′𝑊
f := {f′𝑤f : 𝑤 ∈ 𝑊} � 𝑊f′\𝑊/𝑊f .

Lemma 2.2. The perfect Schubert scheme Fℓ𝑤 (f ′, f) is set-theoretically the following union of locally
closed perfect Schubert cells.

Fℓ𝑤 (f ′, f) =
⊔

𝑣 ∈f′𝑊
f

𝑣≤f′𝑤
f

Fℓ◦𝑣 (f ′, f).

The dimension of Fℓ𝑤 (f ′, f) is ℓ(f′𝑤f).

Proof. This is [Ric13, Proposition 2.8]. When f = a, this is proved using the Demazure resolution (2.4).
For general f, one analyzes the fibers of FℓI → FℓG using that 𝐿+G/𝐿+I is the perfection of a flag
variety 𝑃red

/𝐵 (see, for example, (2.7)). �

2.1.7. Deperfections
An integral domain A is said to be p-closed if for every 𝑎 ∈ Frac(𝐴) such that 𝑎𝑝 ∈ 𝐴, we have 𝑎 ∈ 𝐴.
An integral scheme is p-closed if it has a covering by open affines which are p-closed. We recall the
following special case of the construction in [Zhu17a, Proposition A.15].

Proposition 2.3. Let X be a perfect scheme over k which is isomorphic to the perfection of an integral
projective k-scheme, and let 𝑘 (𝑋) be the field of rational functions on X.

Then for each subfield 𝐿 ⊂ 𝑘 (𝑋) which is finitely generated over k and whose perfection is 𝑘 (𝑋),
there exists a unique p-closed2 projective k-scheme 𝑋 ′ such that 𝑘 (𝑋 ′) = 𝐿 and (𝑋 ′)perf = 𝑋 .

Proof. The scheme 𝑋 ′ is the ringed space with underlying topological space the same as X and the
sheaf of rings O𝑋 ′ (𝑈) = { 𝑓 ∈ O𝑋 (𝑈) : 𝑓 ∈ 𝐿}. By the proof of [Zhu17a, Proposition A.15], 𝑋 ′ is
the unique p-closed scheme such that 𝑘 (𝑋 ′) = 𝐿 and (𝑋 ′)perf = 𝑋 . It remains to see that 𝑋 ′ projective.
By assumption, X has an ample line bundle L. Because 𝑋 ′ is of finite-type, some power of L descends
along the natural map 𝑋 → 𝑋 ′. By [BS17, Lemma 3.6], the line bundle on 𝑋 ′ is ample. �

In [Zhu17a, §B.2], Zhu constructed canonical deperfections of Witt vector Schubert schemes when
G is a split reductive group and conjectured that these are normal and Cohen-Macaulay. Canonical
deperfections for general parahorics were constructed in [AGLR22]. In [AGLR22, Theorem 1.10], it
was shown that canonical deperfections occurring in the 𝜇-admissible locus of a minuscule cocharacter
𝜇 (with a minor technical assumption when 𝑝 = 2) satisfy Zhu’s conjecture. We now show that every
p-closed deperfection of a perfect Schubert scheme is normal (this result is also implicit in [AGLR22]).

Lemma 2.4. Let A be a domain of characteristic p that is p-closed. Then if 𝐴perf is normal, so is A.

Proof. Let 𝑓 (𝑥) ∈ 𝐴[𝑥] be a monic polynomial and let 𝑎 ∈ Frac(𝐴) be an element such that 𝑓 (𝑎) = 0.
Then 𝑎 ∈ 𝐴perf by normality, so 𝑎 ∈ 𝐴 because A is p-closed. �

Lemma 2.5. Every perfect Schubert scheme Fℓ𝑤 (f ′, f) is normal.

2By the remark after Proposition 1 in [Ito83], p-closure is equivalent to weak normality.
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Proof. This is stated in [AGLR22, Proposition 3.7] when f = f ′ and F has characteristic zero, but the
proof applies verbatim to the general case. The key ingredients are the fact that the Demazure resolution
𝐷 �𝑤 (2.4) is normal, satisfies 𝜋 �𝑤,∗(O𝐷 �𝑤 ) � OFℓ𝑤 (f′,f) , and the fact that the ring of global functions on
a normal scheme is normal [Sta24, Tag 0358]. �

Theorem 2.6. Every deperfection3 of Fℓ𝑤 (f ′, f) in the sense of Proposition 2.3 is normal.

Proof. Since every deperfection is p-closed, this follows from Lemmas 2.4 and 2.5. �

Remark 2.7. If F has characteristic p, Fℓ𝑤 (f ′, f) is isomorphic to the perfection of a canonical pro-
jective variety Fℓcan

𝑤 (f ′, f). To construct Fℓcan
𝑤 (f ′, f), form the affine flag variety as the étale quotient

(𝐿𝑝𝐺/𝐿
+
𝑝G)ét on all k-algebras. This is an ind-projective k-scheme by [PR08], and Fℓcan

𝑤 (f ′, f) is the
scheme-theoretic image of the 𝐿+𝑝G-orbit associated to w. If 𝑝 � |𝜋1 (𝐺der) | (and the relative root system
is reduced if 𝑝 = 2), Fℓcan

𝑤 (f ′, f) is normal by [FHLR22, Theorem 4.23] (see also [Fal03, Theorem 8]
and [PR08, Theorem 0.3]). In general, Fℓcan

𝑤 (f ′, f) need not be normal by [HLR24, Theorem 1.1], but the
seminormalization of Fℓcan

𝑤 (f ′, f) is normal by [FHLR22, Theorem 4.1]. The seminormalization [Sta24,
Tag 0EUK] is the universal scheme mapping universally homeomorphically onto Fℓcan

𝑤 (f ′, f) with the
same residue fields. The deperfection of Fℓ𝑤 (f ′, f) associated by Proposition 2.3 to the function field
of Fℓcan

𝑤 (f ′, f) is the seminormalization of Fℓcan
𝑤 (f ′, f).

2.2. Demazure resolutions and convolution Grassmannians

2.2.1. Demazure resolutions
Let 𝑤 ∈ 𝑊 and write 𝑤 = 𝑤af𝜏 for 𝑤af ∈ 𝑊af and 𝜏 ∈ 𝜋1 (𝐺)𝐼 . Choose a (not necessarily reduced)
decomposition �𝑤 = 𝑠1 · · · 𝑠𝑛 of 𝑤af as a product of simple reflections along the walls of a. For each i, let
P𝑖 be the minimal parahoric group scheme attached to 𝑠𝑖 , so that P𝑖 (O𝐹 ) = I (O𝐹 ) � I (O𝐹 )𝑠𝑖I (O𝐹 )

for any lift of 𝑠𝑖 to 𝑁𝐺 (𝑆) (𝐹). The perfect Demazure scheme associated to �𝑤 is

𝐷 �𝑤 := 𝐿+P1 ×
𝐿+I · · · ×𝐿

+I 𝐿+P𝑛/𝐿+I . (2.4)

Here, we have taken étale quotient of
∏𝑛
𝑖=1 𝐿

+P𝑖 by the right action of
∏𝑛
𝑖=1 𝐿

+I given by

(𝑖1, · · · , 𝑖𝑛) · (𝑝1, · · · , 𝑝𝑛) = (𝑝1𝑖1, 𝑖
−1
1 𝑝2𝑖2, · · · , 𝑖

−1
𝑛−1𝑝𝑛𝑖𝑛).

Since any lift of 𝜏 to 𝑁𝐺 (𝑆) (𝐹) normalizes 𝐿+I, the multiplication map (𝑝1, · · · , 𝑝𝑛) ↦→ 𝑝1 · · · 𝑝𝑛𝜏
induces a map 𝐷 �𝑤 → FℓGf . We define 𝜋 �𝑤 (𝐷 �𝑤 ) to be the image of this map, which is isomorphic to
Fℓ𝑤′ (a, f) for some 𝑤′ ∈ 𝑊 . Let

𝜋 �𝑤 : 𝐷 �𝑤 → 𝜋 �𝑤 (𝐷 �𝑤 ) (2.5)

be the resulting surjective map.
The following result is well-known in equal characteristic [Fal03, Lemma 9], [PR08, Proposition 9.7]

and in mixed-characteristic [HZ20, Proposition 3.8], [AGLR22, Proposition 3.7]. Below we assemble
the arguments in one place for the reader’s convenience.

Lemma 2.8. (1) The perfect Demazure scheme 𝐷 �𝑤 is the perfection of a smooth, projective k-scheme.
The multiplication map 𝜋 �𝑤 satisfies

𝑅𝜋 �𝑤,∗(O𝐷 �𝑤 ) � O𝜋 �𝑤 (𝐷 �𝑤 ) [0] and 𝑅𝜋 �𝑤,! (F𝑝) � F𝑝 [0] .

(2) Furthermore, if 𝑤 ∈ f′𝑊
f and �𝑤 is a reduced expression, then 𝜋 �𝑤 (𝐷 �𝑤 ) = Fℓ𝑤 (f ′, f) and 𝜋 �𝑤 is an

isomorphism over Fℓ◦𝑤 (f ′, f).

3We only consider p-closed deperfections in this paper, so we shall omit the adjective ‘p-closed’ from now on.
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Proof. By the arguments in [PR08, Proposition 8.7] (which apply verbatim in mixed characteristic),
𝐿𝑛𝑝P𝑖/𝐿𝑛𝑝I � P1

𝑘 for 𝑛 � 0, and this quotient admits sections Zariski-locally. As in [HZ20, Proposition
3.5], this implies that 𝐷 �𝑤 is the perfection of an iterated P1

𝑘 -bundle which is smooth and projective. By
[BS17, Lemma 6.9], to show that 𝑅𝜋 �𝑤,∗(O𝐷 �𝑤 ) � O𝜋 �𝑤 (𝐷 �𝑤 ) [0], it suffices to check this on geometric
fibers.

We first suppose f = f ′ = a, and we induct on the length of �𝑤. Let �𝑣 = 𝑠2 · · · 𝑠𝑛𝜏. Since 𝜋 �𝑣 (𝐷 �𝑣 )
is irreducible and 𝐿+I-stable, it is of the form Fℓ𝑣′ (a, a) for some 𝑣′ ∈ 𝑊 . As in [Fal03, Lemma 9],
by performing the multiplication in two steps (𝑝1, · · · , 𝑝𝑛) ↦→ (𝑝1, 𝑝2 · · · 𝑝𝑛𝜏) ↦→ 𝑝1 · · · 𝑝𝑛𝜏, we may
factor 𝜋 �𝑤 as

𝐷 �𝑤 −→ 𝐿+P1 ×
𝐿+I Fℓ𝑣′ (a, a) −→ 𝜋 �𝑤 (𝐷 �𝑤 ).

By induction, pushforward along the first map preserves the structure sheaf. By properties of Tits systems
[BT72, (1.2.6)] (especially T 3), if 𝑠1𝑣′ < 𝑣′, then 𝜋 �𝑤 (𝐷 �𝑤 ) = Fℓ𝑣′ (a, a), and the second map has fibers
isomorphic to (P1)perf . Otherwise, if 𝑠1𝑣′ > 𝑣′, then 𝜋 �𝑤 (𝐷 �𝑤 ) = Fℓ𝑠1𝑣′ (a, a). To describe the fibers in
this case, consider the union 𝑍 = ∪𝑣′′<𝑣′Fℓ𝑣′′ (a, a) of those perfect Schubert schemes in Fℓ𝑣′ (a, a) for
which 𝑠1𝑣′′ < 𝑣′′. Then the second map is an isomorphism away from Z and has fibers isomorphic
to (P1)perf over Z. Thus, in either case, the result follows since 𝑅Γ((P1

𝐿)perf ,O(P1
𝐿 )perf
) = 𝐿 [0] for any

perfect field L.
For general f, f ′, we factor 𝜋 �𝑤 as

𝐷 �𝑤 −→ FℓI −→ FℓGf , (2.6)

where the first map is a Demazure map with f = f ′ = a, and the second map is the quotient. The image
of the first map is of the form Fℓ𝑤′ (a, a) for some 𝑤′ ∈ 𝑊 . Thus, it suffices to show that pushforward
along the natural surjection 𝜋 : Fℓ𝑤′ (a, a) → 𝜋 �𝑤 (𝐷 �𝑤 ) preserves the structure sheaf. For this, let 𝑃red

be the maximal reductive quotient of the special fiber of Gf . By [Ric13, Remark 2.9], the image of the
special fiber of I → Gf in 𝑃red is a Borel subgroup 𝐵, and we have

𝐿+𝑝Gf/𝐿
+
𝑝I � 𝑃

red
/𝐵. (2.7)

Furthermore, the maximal F-split torus S has a natural O𝐹 -structure whose special fiber 𝑆 is a maximal
torus in 𝑃red. The group𝑊f identifies with the Weyl group of (𝑃red

, 𝑆). Thus, since 𝜋 is 𝐿+I-equivariant,
the fibers of 𝜋 are isomorphic to perfections of unions of 𝐵-orbit closures in 𝑃red

/𝐵. Such a union is
connected, so by normality of 𝜋 �𝑤 (𝐷 �𝑤 ) this implies that 𝜋∗(OFℓ𝑤′ (a,a) ) � O𝜋 �𝑤 (𝐷 �𝑤 ) . For the higher
direct images, it is well-known that the structure sheaves of 𝐵-orbit closures (i.e, Schubert varieties),
have vanishing higher cohomology. (For example, this follows because the Demazure resolution is
a rational resolution by an iterated P1-bundle [BK05, Theorem 3.3.4]). If our fiber in 𝑃red

/𝐵 is not
irreducible, we induct on its support in 𝑃red

/𝐵. Write an arbitrary union of 𝐵-orbit closures in terms of
its irreducible components as 𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑚. If 𝑌 = 𝑋2 ∪ · · · ∪ 𝑋𝑚, we conclude by induction and
the exact sequence4

0 −→ O𝑋1∪𝑌 −→ O𝑋1 ⊕ O𝑌 −→ O𝑋1∩𝑌 −→ 0.

This proves that 𝑅𝜋 �𝑤,∗(O𝐷 �𝑤 ) � O𝜋 �𝑤 (𝐷 �𝑤 ) for general f, f ′.5

4Intersections of unions of Schubert varieties are reduced by [BK05, Corollary 2.3.3] (see also [Ram85, Theorem 3]), but we
do not need this fact when working with perfections.

5A different proof for the step from f = a to general f appears in the final part of the proof of [HR23, Proposition 3.1 (i)].
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To compute 𝜋 �𝑤,! (F𝑝), we first note that since 𝜋 �𝑤 is the perfection of a proper map, we can replace
𝜋 �𝑤,! by 𝜋 �𝑤,∗. Then we apply 𝑅𝜋 �𝑤,∗ to the Artin–Schreier sequence

0 −→ F𝑝 −→ O𝐷 �𝑤

Frob− id
−−−−−−→ O𝐷 �𝑤 −→ 0.

Finally, the proof of [Ric13, Proposition 2.8] shows that

Fℓ◦𝑤 (f ′, f) = Fℓ◦
f′𝑤 f (a, f).

Thus, if 𝑤 ∈ f′𝑊
f and �𝑤 is a reduced expression, by tracing through our proof that 𝑅𝜋 �𝑤,∗(O𝐷 �𝑤 ) �

O𝜋 �𝑤 (𝐷 �𝑤 ) , it follows that 𝜋 �𝑤 (𝐷 �𝑤 ) = Fℓ𝑤 (f ′, f) and 𝜋 �𝑤 and is an isomorphism over Fℓ◦𝑤 (f ′, f). �

2.2.2. Convolution
In this subsection, we let G = Gf and Fℓ𝑤 = Fℓ𝑤 (f, f). The convolution diagram is as follows:

FℓG × FℓG
𝑝
←−− 𝐿𝐺 × FℓG

𝑞
−−→ 𝐿𝐺 ×𝐿

+G FℓG
𝑚
−−→ FℓG . (2.8)

Here, p is the quotient map on the first factor and the identity on the second, q is the quotient by
the diagonal action of 𝐿+G, and m is the multiplication map. The map 𝐿𝐺 ×𝐿+G FℓG → FℓG × FℓG ,
(𝑔1, 𝑔2) ↦→ (𝑔1, 𝑔1𝑔2) is an isomorphism, so the convolution Grassmannian 𝐿𝐺×𝐿+GFℓG is represented
by an increasing union of perfections of projective k-schemes.

Lemma 2.9. If k is a finite field or an algebraic closure thereof and 𝑥 ∈ FℓG (𝑘),

𝑚−1 (𝑥) = {(𝑦, 𝑦−1𝑥) : 𝑦 ∈ 𝐺 (𝐹)/𝐾} ⊂ 𝐺 (𝐹)/𝐾 × 𝐺 (𝐹)/𝐾.

Proof. This follows from the isomorphism 𝐿𝐺 ×𝐿
+G FℓG → FℓG × FℓG and Lemma 2.1 (cf. also

[Zhu17b, Lemma 5.6.1]). �

We now define the following finite-dimensional perfect subschemes (2.9) of the convolution Grass-
mannian. Fix 𝑤1, 𝑤2 ∈ 𝑊 . Let 𝑛 � 0 be an integer such that 𝐿+G acts on Fℓ𝑤2 through the quotient
𝐿+G → 𝐿𝑛G. Let 𝜋 (𝑛) : 𝐿 (𝑛)𝐺 → FℓG be the reduction of the 𝐿+G-torsor 𝐿𝐺 → FℓG to an 𝐿𝑛G-torsor.
Then we define

Fℓ𝑤1 ×
𝐿+G Fℓ𝑤2 := (𝜋 (𝑛) )−1(Fℓ𝑤1) ×

𝐿𝑛G Fℓ𝑤2 . (2.9)

This is a closed subscheme of 𝐿𝐺 × FℓG , isomorphic to the perfection of a projective k-scheme, and
independent of 𝑛 � 0.

Theorem 2.10. Let 𝑤1, 𝑤2 ∈ f𝑊
f . Fix reduced expressions �𝑤1 = 𝜏1𝑠1 · · · 𝑠𝑛 and �𝑤2 = 𝑡1 · · · 𝑡𝑚𝜏2, where

the 𝑠𝑖 , 𝑡 𝑗 are simple reflections and 𝜏𝑖 ∈ 𝜋1 (𝐺)𝐼 . Let �𝑤 = 𝑠1 · · · 𝑠𝑛𝑡1 · · · 𝑡𝑚𝜏2.

1. The image of the restriction of m to Fℓ𝑤1 ×
𝐿+G Fℓ𝑤2 is the left 𝜏1-translate 𝜏1 · 𝜋 �𝑤 (𝐷 �𝑤 ).

2. The resulting convolution map

𝑚 : Fℓ𝑤1 ×
𝐿+G Fℓ𝑤2 −→ 𝜏1 · 𝜋 �𝑤 (𝐷 �𝑤 )

satisfies 𝑅𝑚∗(OFℓ𝑤1×
𝐿+GFℓ𝑤2

) � O𝜏1 ·𝜋 �𝑤 (𝐷 �𝑤 ) [0] and 𝑅𝑚!(F𝑝) � F𝑝 [0].
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Proof. Any lift �̃�1 ∈ 𝑁𝐺 (𝑆) (𝐹) acts on FℓG by multiplication on the left, and this action preserves
𝐿+I-orbits, so 𝜏1 · 𝜋 �𝑤 (𝐷 �𝑤 ) is well-defined. Since m is 𝐿𝐺-equivariant, after multiplying on the left by
�̃�1, we can assume 𝑤1 ∈ 𝑊af . Now consider the following commutative diagram.

𝐷 �𝑤
𝜋 �𝑤 �� 𝜋 �𝑤 (𝐷 �𝑤 )

𝐷 �𝑤1 ×
𝐿+I 𝐷 �𝑤2

id×𝜋 �𝑤2�� 𝐷 �𝑤1 ×
𝐿+I Fℓ𝑤2

𝜋 �𝑤1×id
�� Fℓ𝑤1 ×

𝐿+G Fℓ𝑤2

𝑚

��

Here, we have factored 𝜋 �𝑤 as the composition

(𝑝1, · · · , 𝑝𝑛, 𝑞1, · · · , 𝑞𝑚) ↦→ (𝑝1, · · · , 𝑝𝑛, 𝑞1 · · · 𝑞𝑚𝜏2) ↦→ (𝑝1 · · · 𝑝𝑛, 𝑞1 · · · 𝑞𝑚𝜏2) ↦→ 𝑝1 · · · 𝑞𝑚𝜏2.

By Lemma 2.8, each map (except possibly m) is surjective, and pushforward preserves the structure
sheaf. For the bottom two maps, we also use flat base change and the fact that both properties can be
checked étale-locally. It follows that m maps Fℓ𝑤1 ×

𝐿+I Fℓ𝑤2 onto 𝜋 �𝑤 (𝐷 �𝑤 ), and 𝑅𝑚∗ preserves the
structure sheaf. It also follows that 𝑅𝑚! (F𝑝) � F𝑝 [0]. �

2.3. Geometry of generalized Mirković–Vilonen cycles

2.3.1. Attractors and fixed points
Let R be a ring, and let G𝑚 be the multiplicative group over Spec(𝑅). For an R-scheme X with an action
of G𝑚, we have the following functors on R-algebras (cf. [Dri13, Ric19]).

𝑋0 : 𝑅′ ↦→HomG𝑚

𝑅 (Spec(𝑅′), 𝑋), (2.10)

𝑋+ : 𝑅′ ↦→HomG𝑚

𝑅 (A
1
𝑅′ , 𝑋). (2.11)

Here, Spec(𝑅′) has the trivial G𝑚-action and A1
𝑅′ has the usual (multiplicative) action. These are the

functors of fixed-points and attractors, respectively (we will not need the repellers). There are natural
maps

𝑋0

𝜄0

��
𝑋+

𝑞+
��

𝜄+
�� 𝑋.

Here, 𝑞+ is induced by the zero section Spec(𝑅′) → A1
𝑅′ . If X is an (ind)-perfect k-scheme with an

action of (G𝑚)perf , we also use the notation 𝑋0 and 𝑋+ to denote the restriction of these functors to
perfect k-algebras. The domain of these functors will be clear from the context, and their formation
commutes with the passage from X to 𝑋perf .

For the rest of subsection 2.3.1, we assume 𝑅 = 𝑘 and that X is a separated k-scheme of finite-type.

Lemma 2.11. (1) The functors 𝑋0 and 𝑋+ are represented by k-schemes of finite-type.
(2) The map 𝜄0 is a closed immersion and 𝜄+ is a monomorphism.
(3) The map 𝑞+ is affine, has geometrically connected fibers, and induces a bijection 𝜋0 (𝑋

+) � 𝜋0 (𝑋
0).

Proof. This is [Dri13, 1.2.2, 1.3.3, 1.4.2] and [Ric19, Corollary 1.12]. �

We write the connected components of 𝑋+ as

𝑋+ =
⊔

𝑖∈𝜋0 (𝑋0)

𝑋+𝑖 .

Similarly, let {𝑋0
𝑖 }𝑖∈𝜋0 (𝑋0) be the connected components of 𝑋0. Let 𝑞+𝑖 : 𝑋+𝑖 → 𝑋0

𝑖 be the restriction of
𝑞+ to the corresponding connected component.
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A sequence 𝑍0 ⊂ 𝑍1 ⊂ · · · ⊂ 𝑍𝑛 = 𝑋 of closed subschemes is called a filtration of X, and the
schemes 𝑍𝑖 \ 𝑍𝑖−1 are the cells of the filtration. With additional assumptions, we can say more about 𝑋+
as in the following lemma.

Lemma 2.12. Suppose k is algebraically closed and that X is normal, projective and connected. Then
𝑞+ is bijective on points, and each 𝑞+𝑖 is a locally closed immersion. Furthermore, there exists a filtration
of X having the 𝑋+𝑖 as its cells.

Proof. This is a special case of [CP24, §2.3]. We mention that the hypotheses on X are used to ensure
that there exists a G𝑚-equivariant embedding of X into a projective space P(𝑉), where G𝑚 acts linearly
on V. The existence of such an embedding is a result of Sumihiro [Sum74]. Since the G𝑚-action on
V can be diagonalized, the filtration can be explicitly constructed as in the works of Białynicki-Birula
[BB73, BB76]. �

For applications to mod p Hecke algebras, we will apply the following result to a deperfection of the
Demazure resolution (2.5) in Proposition 2.17 when F has characteristic p. When F has characteristic
zero, we will verify directly that the conclusion of the lemma is still true for the perfect Witt vector
Demazure resolution.

Lemma 2.13. In addition to the assumptions of Lemma 2.12, suppose moreover that there exists a
smooth projective k-scheme 𝑋 equipped with a G𝑚-action and a G𝑚-equivariant surjection 𝜋 : 𝑋 → 𝑋 .
(1) There is exactly one 𝑖0 ∈ 𝜋0 (𝑋

+) such that 𝑋+𝑖0 is closed in X, and it is characterized by the property
that 𝑞+𝑖0 is a universal homeomorphism. (2) Furthermore, if 𝑅𝜋! (F𝑝) = F𝑝 [0], we have

𝑅𝑞+𝑖!(F𝑝) =

{
F𝑝 [0], 𝑖 = 𝑖0
0, otherwise.

Proof. This is [CP24, Corollary 2.3.5]; we sketch the argument here. For (1), we note that by
Lemma 2.12, there exists some 𝑖0 ∈ 𝜋0 (𝑋

+) such that 𝑋+𝑖0 is closed in X. For general 𝑖 ∈ 𝜋0 (𝑋
+),

the fiber 𝜋−1 (𝑋𝑖) is a union of connected components of 𝑋+. Since 𝜋−1 (𝑋𝑖0) is projective, it contains
a closed attractor by [BB76], which is necessarily also closed in 𝑋 . As 𝑋 is smooth and projective, it
has a unique closed attractor by [BB73, §4], so 𝑖0 is uniquely determined. By Lemma 2.11 (3), the re-
striction of 𝑞+ to any connected component of 𝑋+ which is also proper maps bijectively onto its image
in 𝑋0. Since 𝑞+ admits a section, it follows that 𝑖0 is uniquely characterized by property that 𝑞+𝑖0 is an
isomorphism on reduced loci and hence is a universal homeomorphism.

For (2), 𝑅𝑞+𝑖0! (F𝑝) = F𝑝 [0] because 𝑞+𝑖0 is a universal homeomorphism. It remains to show that
𝑅𝑞+𝑖!(F𝑝) = F𝑝 [0] for all other i. Let 𝜋𝑖 be the restriction of 𝜋 to 𝜋−1(𝑋𝑖). For 𝑗 ∈ 𝜋0 ((𝜋

−1 (𝑋𝑖))
+),

let 𝑞+𝑗 : 𝑋+𝑗 → 𝑋0
𝑗 be the restriction of 𝑞+ : 𝑋+ → 𝑋0 to 𝑋+𝑗 . Let �̃� : 𝑋0 → 𝑋 be the inclusion. By

Lemma 2.12, 𝜋−1 (𝑋𝑖) has a filtration with cells isomorphic to the 𝑋+𝑗 (obtained by intersecting a
filtration of 𝑋 with 𝜋−1 (𝑋𝑖)). Since 𝑅𝜋! (F𝑝) = F𝑝 [0], then 𝑅𝑞+𝑖!(F𝑝) = 𝑅𝜋𝑖!(𝑅𝑞

+
𝑖!(F𝑝)). Hence, by

excision, the object 𝑅𝑞+𝑖!(F𝑝) ∈ 𝐷 ét (𝑋
0
𝑖 , F𝑝) lies in the subcategory generated under taking cones of

morphisms between the objects 𝑅𝜋! ◦ �̃�! ◦ 𝑅𝑞
+
𝑗! (F𝑝) for 𝑗 ∈ 𝜋0 ((𝜋

−1 (𝑋𝑖))
+) (see also [CP24, Corollary

2.3.5] for an argument using exact sequences). It therefore suffices to prove that 𝑅𝑞+𝑗! (F𝑝) = 0. For this,
we note that because 𝑋 is smooth, then 𝑞+𝑗 is an affine bundle by [BB73, §4], and because 𝑖 ≠ 𝑖0, then 𝑞+𝑗
has positive relative dimension. The desired vanishing then follows from the fact that 𝑅Γ𝑐 (A𝑛, F𝑝) = 0
if 𝑛 > 0, which may be computed from excision and the quasi-coherent cohomology of P𝑛 (cf. [CP24,
Lemma 2.1.1]). �

2.3.2. Parabolic subgroups
For the rest of the paper, we assume f = f ′. We let G = Gf and Fℓ𝑤 = Fℓ𝑤 (f, f).
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Fix a semi-standard F-Levi subgroup 𝑀 ⊂ 𝐺, i.e., the centralizer of a subtorus of A. Let 𝜆 : G𝑚 → 𝑇
be a cocharacter defined over F. By conjugation, this gives rise to a G𝑚-action on G. Then the attractor
𝑃 := 𝐺+ as in (2.11) is a parabolic F-subgroup of G. We may choose 𝜆 so that𝐺0 = 𝑀 is the fixed point
functor as in (2.10) for this G𝑚-action defined by 𝜆. The k-points of the unipotent radical𝑈 ⊂ 𝑃 are

𝑈 (𝑘) = {𝑔 ∈ 𝐺 (𝑘) : lim
𝑡−→0

𝜆(𝑡) · 𝑔 · 𝜆(𝑡)−1 = 1}. (2.12)

Lemma 2.14. Let P := G+ and M := G0 for the unique extension of 𝜆 to a cocharacter G𝑚,O𝐹 → T .
Suppose k is a finite field or an algebraic closure thereof.

(1) The attractor functor P and fixed-point functor M are smooth, closed subgroup schemes of G
with geometrically connected fibers.

(2) Furthermore, M is a parahoric group scheme for M, the natural map FℓM → FℓG is a closed
immersion and M(O𝐹 ) = G (O𝐹 ) ∩ 𝑀 (𝐹).

Proof. The first part follows from [HR21, Lemma 4.5, Lemma 4.6]. The proof that FℓM → FℓG
is a closed immersion in equal characteristic applies verbatim in mixed characteristic (cf. [Zhu17a,
Proposition 1.20]). Finally, the description of M(O𝐹 ) is [Ric16, Lemma A.1]. �

If F has characteristic zero, the Teichmüller map induces a homomorphism (G𝑚)perf → 𝐿+G𝑚. The
cocharacter 𝜆 : G𝑚,O𝐹 → T also induces a homomorphism 𝐿+G𝑚 → 𝐿+T . Since T ⊂ I and 𝐿+I
acts on FℓG , this induces a (G𝑚)perf-action on FℓG . We may then define the fixed points (FℓG)0 and
attractors (FℓG)+ as functors on perfect k-algebras. If F has characteristic p, we replace the Teichmüller
map with natural inclusion of units 𝑅× = G𝑚(𝑅) → G𝑚(𝑅[[𝑡]]) = 𝐿+G𝑚 (𝑅) for a k-algebra R.

2.3.3. Equivariant resolutions
Theorem 2.15. Let 𝑤 ∈ f𝑊

f and fix a reduced decomposition �𝑤 as in 2.2.1. Then there exists a G𝑚-
equivariant deperfection (2.13) of the map 𝜋 �𝑤 : 𝐷 �𝑤 → Fℓ𝑤 .

Proof. First, assume F has characteristic p. Then 𝐷 �𝑤 has a canonical deperfection

𝐷
dep
�𝑤 := 𝐿+P1, 𝑝 ×

𝐿+𝑝I · · · ×𝐿
+
𝑝I 𝐿+P𝑛,𝑝/𝐿+𝑝I .

This is a smooth, projective, iterated P1-bundle. By considering the birational map 𝜋 �𝑤 , we can view
𝑘 (𝐷

dep
�𝑤 ) as a subfield of 𝑘 (Fℓ𝑤 ). By Proposition 2.3, this gives us a particular deperfection Fℓdep

𝑤 of
Fℓ𝑤 , equipped with a birational map

𝜋
dep
�𝑤 : 𝐷dep

�𝑤 → Fℓdep
𝑤 , (2.13)

which is a deperfection of (2.5). In fact, Fℓdep
𝑤 is the seminormalization of the usual affine Schubert

variety associated to w as in [PR08]. Moreover, 𝜋dep
�𝑤 is 𝐿+𝑝I-equivariant, so it is also G𝑚-equivariant

for the action induced by

G𝑚 → 𝐿+𝑝G𝑚
𝐿+𝑝𝜆
−−−→ 𝐿+𝑝T → 𝐿+𝑝I . (2.14)

If F has characteristic zero, the maps 𝐿+𝑝I → 𝐿+P𝑖, 𝑝 have non-reduced kernels, so we cannot define
𝐷

dep
�𝑤 as above (the following method also works if F has characteristic p). Instead, let n be an integer

large enough so that 𝐿+I acts on 𝐷 �𝑤 and Fℓ𝑤 through the quotient 𝐿𝑛I. Let 𝐻 ⊂ 𝐿𝑛𝑝I be the unique
reduced closed subgroup whose perfection is the stabilizer of a chosen point in the open orbit in 𝐷 �𝑤
(and hence also in Fℓ𝑤 because 𝜋 �𝑤 is an isomorphism over the open orbit). Then H is a smooth affine k-
group by [Zhu17a, Lemma A.26]. Let 𝐷dep

�𝑤 and Fℓdep
𝑤 be the deperfections associated to 𝑘 (𝐿𝑛𝑝I/𝐻) by

Proposition 2.3. Since these deperfections are normal, they admit 𝐿𝑛𝑝I-actions which extend the action
over the open orbit (cf. [AGLR22, Proposition 3.3]). The map 𝜋 �𝑤 also deperfects to an 𝐿𝑛𝑝I-equivariant
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map as in (2.13) because 𝜋 �𝑤 is 𝐿𝑛I-equivariant and birational. Then we get the desiredG𝑚-action from
the composition (2.14). �

Remark 2.16. We do not assert that Fℓdep
𝑤 is the canonical deperfection of Fℓ𝑤 in [AGLR22], which is

constructed from the quotient of 𝐿+𝑝G by the stabilizer of its action on Fℓ◦𝑤 .

Theorem 2.17. The resolution constructed in (2.13) satisfies all the conclusions of Lemma 2.12 and
Lemma 2.13.

Proof. If F has characteristic p, (2.13) satisfies all the hypotheses of these lemmas. Here, we use
topological invariance of the étale site [Sta24, 04DY] which implies that 𝑅𝜋dep

�𝑤,! (F𝑝) � F𝑝 [0] can be
checked after passing to perfections, so it follows from Lemma 2.8.

If F has characteristic zero, (2.13) satisfies all the hypotheses of Lemma 2.12, but it is possible that
𝐷

dep
�𝑤 is not smooth. However, the proof of Lemma 2.13 applies verbatim provided that we verify the

following:

1. There is a unique closed attractor in (𝐷dep
�𝑤 )
+.

2. For each non-closed attractor 𝑋+𝑖 ⊂ (𝐷
dep
�𝑤 )
+, the map 𝑞+𝑖 : 𝑋+𝑖 → 𝑋0

𝑖 satisfies 𝑅𝑞+𝑖!(F𝑝) � F𝑝 [0] .

Both of these properties may be checked after passing to the (G𝑚)perf-action on 𝐷 �𝑤 . We proceed by
induction on the length of w. We may assume 𝑤 ∈ 𝑊af . Write �𝑤 = 𝑠1 . . . 𝑠𝑛. Then 𝐷 �𝑠𝑖 � (P1)perf ,
and we have a decomposition 𝐷 �𝑠𝑖 = Spec(𝑘) � A1

perf , where Spec(𝑘) is the k-point corresponding to
the identity coset 𝑒 ∈ P𝑠𝑖 (O𝐹 )/I (O𝐹 ) and A1

perf (𝑘) = I (O𝐹 )𝑠𝑖I (O𝐹 )/I (O𝐹 ). We always have {𝑒},
{𝑠𝑖} ∈ (𝐷 �𝑠𝑖 )

0. There are three possibilities, depending on whether (G𝑚)perf fixes, attracts or repels the
affine root group corresponding to 𝑠𝑖 , respectively:

◦ We have (𝐷 �𝑠𝑖 )0 = 𝐷 �𝑠𝑖 , or
◦ (G𝑚)perf attracts A1

perf − {𝑠𝑖} toward {𝑠𝑖}, or
◦ (G𝑚)perf repels A1

perf − {𝑠𝑖} toward {𝑒}.

In the last two cases, one attractor is a point, and the other is an (A1)perf-bundle over its fixed point.
Since 𝑅Γ𝑐 (A1

perf , F𝑝) = 0, this implies that (1) and (2) are satisfied when 𝑛 = 1. For the inductive step,
let 𝑡 = 𝑠1 · · · 𝑠𝑛−1 and let 𝜋 : 𝐷 �𝑤 = 𝐷 �𝑡 ×𝐿

+I 𝐷 �𝑠𝑛 → 𝐷 �𝑡 be the projection. If (𝐷 �𝑠𝑛 )0 = 𝐷 �𝑠𝑛 , then 𝜋−1

induces a bijection between 𝜋0 ((𝐷 �𝑡 )
0) and 𝜋0 ((𝐷 �𝑤 )

0). Furthermore, in this case, 𝜋 identifies fibers of
the map (𝐷 �𝑤 )+ → (𝐷 �𝑤 )0 with fibers of the map (𝐷 �𝑡 )+ → (𝐷 �𝑡 )0. Thus, by induction, we are done in
the first case.

In the other two cases, for each connected component 𝑌+𝑖 ⊂ (𝐷 �𝑡 )
+, 𝜋−1 (𝑌+𝑖 ) is a union of two

connected components 𝑋+𝑖1, 𝑋+𝑖2 of (𝐷 �𝑤 )+. The fixed points 𝑋0
𝑖1 and 𝑋0

𝑖2 each map isomorphically
under 𝜋 onto 𝑌0

𝑖 . One of the two connected components, say 𝑋+𝑖1, maps isomorphically under 𝜋 onto
its image 𝑌+𝑖 in (𝐷 �𝑡 )+. The other connected component 𝑋+𝑖2 has the structure of an (A1)perf-bundle
over 𝑌+𝑖 coming from the non-closed component of (𝐷 �𝑠𝑛 )+. The unique closed attractor in 𝐷 �𝑤 is the
connected component 𝑋+𝑖01 corresponding to the unique closed attractor 𝑌+𝑖0 ⊂ (𝐷 �𝑡 )

+. All other 𝑋𝑖1
satisfy 𝑅𝑞+𝑖1,!(F𝑝) = 0 by induction. Finally, 𝑅𝑞+𝑖2,! (F𝑝) = 0 for all i because the map 𝑞+𝑖2 factors through
an (A1)perf-bundle (by forgetting the last factor 𝐷 �𝑠𝑛 ) (cf. the last part of the proof of Lemma 2.13). �

Remark 2.18. The induction in the proof of Theorem 2.17 can be used to show that 𝐷 �𝑤 has a filtrable
decomposition by the connected components of 𝐷+�𝑤 without appealing to the existence of a G𝑚-
equivariant deperfection or [BB76]. Moreover, the induction also applies in equal characteristic. Thus,
in equal characteristic, there are two proofs of Theorem 2.17 (and hence of the main results in this
paper): one which appeals to abstract generalities on Białynicki-Birula maps and one which uses the
explicit nature of 𝐷 �𝑤 as much as possible.
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2.3.4. Description of the attractors
Since the partial order on a Coxeter group is directed, we may write FℓG = colimFℓ𝑤 , where the
colimit is over 𝑤 ∈ f𝑊

f , and the transition maps are closed immersions. The formation of fixed points
and attractors is compatible with filtered colimits of closed immersions [HR21, Theorem 2.1]. Thus,
(Fℓ𝐺)0 = colim(Fℓ𝑤 )0 and (Fℓ𝐺)+ = colim(Fℓ𝑤 )+. Here, (Fℓ𝐺)0 is a closed sub-ind-scheme of FℓG ,
and (Fℓ𝐺)+ is a disjoint union of locally closed sub-ind-schemes. The natural map (Fℓ𝐺)+ → (Fℓ𝐺)0
induces a bijection 𝜋0 ((Fℓ𝐺)+) � 𝜋0 ((Fℓ𝐺)0).

By the definition of M := G0, the closed immersion FℓM → FℓG factors through (FℓG)0. By
the proof of [AGLR22, Theorem 5.2], the map FℓM → (FℓG)0 identifies FℓM with a disjoint union
of connected components of (FℓG)0 (see also [HR21, Proposition 4.7, Lemma 4.11]). Furthermore,
by [AGLR22, Theorem 5.2], the connected components of (FℓG)0 can be described as follows. Let
𝑊𝑀 be the Iwahori–Weyl group of M and let 𝑊𝑀,af be its affine Weyl group. Then the inclusion
𝜋0 (FℓM) ↩→ 𝜋0 ((FℓG)0) identifies with the inclusion

𝑊𝑀,af\𝑊𝑀 ↩→ 𝑊𝑀,af\𝑊/𝑊f .

For 𝑐 ∈ 𝑊𝑀,af\𝑊/𝑊f , let 𝑆𝑐 be the corresponding connected component6 of (FℓG)+. This is a locally
closed sub-ind-scheme of FℓG . Then

FℓG =
⊔

𝑐∈𝑊𝑀,af\𝑊 /𝑊f

𝑆𝑐 .

The irreducible components of the 𝑆𝑐 ∩ Fℓ𝑤 generalize7 the Mirković–Vilonen cycles in [MV07,
Theorem 3.2]. The k-points of 𝑆𝑐 can be described as follows. Let 𝑀sc be the simply connected cover
of the derived group of M and let 𝑃sc = 𝑀sc � 𝑈. The following lemma also appears in the proof of
[AGLR22, Theorem 5.2].

Lemma 2.19. For 𝑐 ∈ 𝑊𝑀,af\𝑊/𝑊f , let �̃� ∈ FℓG (𝑘) be the image of a representative under the
embedding𝑊/𝑊f ↩→ FℓG (𝑘). Then 𝑆𝑐 (𝑘) = 𝑃sc (𝐹) · �̃�.

Proof. This follows from Lemma 2.1 and the definitions in 2.3.2. �

If 𝑐 ∈ 𝑊𝑀,af\𝑊𝑀 = 𝜋1 (𝑀)𝐼 , let (FℓM)𝑐 be the corresponding connected component of FℓM. Let

𝜋𝑐 : 𝑆𝑐 → (FℓM)𝑐

be the resulting map obtained by restriction from the map (FℓG)+ → (FℓG)0.

Lemma 2.20. Let 𝑚 ∈ FℓM(𝑘) and let 𝑚 ∈ 𝑀 (𝐹) be a representative. If m lies in (FℓM)𝑐 , then

𝜋−1
𝑐 (𝑚) = {[𝑚 · 𝑢] : 𝑢 ∈ 𝑈 (𝐹)/(𝑈 (𝐹) ∩ 𝐾)} ⊂ 𝐺 (𝐹)/𝐾.

In the above, [𝑚 · 𝑢] is the equivalence class of 𝑚 · 𝑢 in FℓG (𝑘) for 𝑢 ∈ 𝑈 (𝐹), and [𝑚 · 𝑢1] = [𝑚 · 𝑢2]
if and only if 𝑢1 · (𝑈 (𝐹) ∩ 𝐾) = 𝑢2 · (𝑈 (𝐹) ∩ 𝐾).

Proof. This is a consequence of (2.12) and Lemma 2.19 (see also [HR21, Lemma 4.11]). �

2.3.5. Attractors over finite fields
In this subsection, we assume that k is finite, and we fix an element 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f . By (2.3), this
gives rise to a perfect Schubert scheme Fℓ𝑤 defined over k which admits a k-point. Also, fix a connected
component (FℓM)𝑐 of FℓM which is defined over k and admits a k-point (and is therefore geometrically
connected). Such connected components of FℓM are indexed by 𝑐 ∈ 𝜋1 (𝑀)

𝜎
𝐼 .

6Recall that we assume k is algebraically closed, so 𝑆𝑐 is in fact geometrically connected.
7In [MV07, Theorem 3.2], the group G is split and M is a maximal torus.
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The ind-schemes (FℓG)0 and (FℓG)+ are defined over k, as are the maps FℓM → (FℓG)0 → FℓG .
Let 𝑆𝑐 be the geometrically connected component of (FℓG)+ which maps to (FℓM)𝑐 under the map
(FℓG)+ → (FℓG)0.

Lemma 2.21. Let 𝑐 ∈ 𝜋1 (𝑀)
𝜎
𝐼 and 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f . Then (FℓM)𝑐 ∩Fℓ𝑤 is geometrically connected.

Proof. Over 𝑘 , the intersection is a closed union of 𝐿+MO�̆�
-orbits inside a single connected component

(FℓM,𝑘 )
𝑐 of FℓM,𝑘 . Every such union is connected because it contains the unique minimal Iwahori-

orbit in (FℓM,𝑘 )
𝑐 . �

Let 𝜋𝑐,𝑤 : 𝑆𝑐 ∩ Fℓ𝑤 → (FℓM)𝑐 ∩ Fℓ𝑤 be the restriction of the map 𝜋𝑐 : 𝑆𝑐 → (FℓM)𝑐 .

Theorem 2.22. Let 𝑐 ∈ 𝜋1 (𝑀)
𝜎
𝐼 and 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f . Let m be a k-point of (FℓM)𝑐 ∩ Fℓ𝑤 and let
𝑚 ∈ 𝑀 (𝐹) be a representative.

(1) At the level of k-points, we have

𝜋−1
𝑐,𝑤 (𝑚) = Fℓ𝑤 (𝑘) ∩ {[𝑚 · 𝑢] : 𝑢 ∈ 𝑈 (𝐹)/(𝑈 (𝐹) ∩ 𝐾)}.

In the above, [𝑚 · 𝑢] is the equivalence class of 𝑚 · 𝑢 in FℓG (𝑘) for 𝑢 ∈ 𝑈 (𝐹), and [𝑚 · 𝑢1] = [𝑚 · 𝑢2]
if and only if 𝑢1 · (𝑈 (𝐹) ∩ 𝐾) = 𝑢2 · (𝑈 (𝐹) ∩ 𝐾).

(2) Furthermore, we have

𝑅(𝜋𝑐,𝑤 )!(F𝑝) =

{
F𝑝 [0], (FℓM,𝑘 )

𝑐 ∩ Fℓ𝑤,𝑘 is the unique closed attractor in (Fℓ𝑤,𝑘 )+
0, otherwise.

Proof. Lemma 2.20 is valid if k is finite, so this gives the description of 𝜋−1
𝑐,𝑤 (𝑚). To check the formula

for 𝑅(𝜋𝑐,𝑤 )!(F𝑝), we may base-change to 𝑘 . By Theorem 2.17, we may then apply the conclusions of
Lemma 2.13. It remains to see that (FℓM,𝑘 )

𝑐 ∩ Fℓ𝑤,𝑘 , which is a priori a disjoint union of connected
components in (Fℓ𝑤,𝑘 )0, is connected. This follows from Lemma 2.21. �

Remark 2.23. If f is a special vertex, FℓM(𝑘) = (FℓG)0(𝑘) by the Iwasawa decomposition. If f is not
very special (i.e, if f is not special over �̆�), then FℓM(𝑘) � (FℓG)0(𝑘) in general.

3. Applications to mod p Hecke algebras

In Section 3, we assume that 𝑘 = F𝑞 is a finite field of characteristic 𝑝 > 0.

3.1. Mod p Hecke algebras

3.1.1. The function-sheaf dictionary
In this subsection, we recall the function-sheaf dictionary following [Del77, Rapport]. Let X be a
separated scheme of finite-type over k. Let F be a constructible sheaf of F𝑝-vector spaces on X (we
will only need the case where F is a constant sheaf). For each point 𝑥 ∈ 𝑋 (𝑘), the stalk F𝑥 is a
finite-dimensional representation of Gal(𝑘/𝑘). Taking the trace of the action of the geometric Frobenius
element 𝛾 ∈ Gal(𝑘/𝑘) gives a value Tr(𝛾,F𝑥) ∈ F𝑝 . In this way, we get a function

FTr : 𝑋 (𝑘) → F𝑝 𝑥 ↦→ Tr(𝛾,F𝑥). (3.1)

Moreover, if 𝑋𝑘 = 𝑋 × Spec(𝑘), there is a natural action of Gal(𝑘/𝑘) on the étale cohomology with
compact support 𝐻𝑖𝑐 (𝑋𝑘 ,F). The function-sheaf dictionary is the following relationship between these
actions.
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Lemma 3.1. We have ∑
𝑥∈𝑋 (𝑘)

Tr(𝛾,F𝑥) =
∑
𝑖

(−1)𝑖 Tr(𝛾, 𝐻𝑖𝑐 (𝑋𝑘 ,F)).

In particular, if F = F𝑝 is the constant sheaf,

|𝑋 (𝑘) | ≡
∑
𝑖

(−1)𝑖 Tr(𝛾, 𝐻𝑖𝑐 (𝑋𝑘 , F𝑝)) (mod 𝑝).

Proof. This follows from [Del77, Rapport, Theorem 4.1]. �

Example 3.2. If 𝑋 = P1 and F = F𝑝 , the left side of Lemma 3.1 is |P1 (F𝑞) | = 𝑞 + 1. Likewise,
𝑅Γ(P1

𝑘
, F𝑝) = F𝑝 [0] so the right side of Lemma 3.1 is Tr(𝛾, 𝐻0(P1

𝑘
, F𝑝)) = 1 ≡ 𝑞 + 1 (mod 𝑝) since

Gal(𝑘/𝑘) acts trivially on 𝐻0(P1
𝑘
, F𝑝). If 𝑋 = A1, then 𝑅Γ𝑐 (A1

𝑘
, F𝑝) = 0, which agrees with the fact

that |A1 (F𝑞) | = 𝑞 ≡ 0 (mod 𝑝).

3.1.2. Definitions and bases
The mod p Hecke algebra associated to K is the algebra H𝐾 of compactly supported functions
𝐾\𝐺 (𝐹)/𝐾 → F𝑝 . The multiplication is convolution:

( 𝑓1 ∗ 𝑓2) (𝑔) =
∑

ℎ∈𝐺 (𝐹 )/𝐾

𝑓1(ℎ) 𝑓2(ℎ
−1𝑔), 𝑓1, 𝑓2 ∈ H𝐾 , 𝑔 ∈ 𝐺 (𝐹). (3.2)

The algebra H𝐾 has a basis consisting of the characteristic functions of the double cosets 𝐾\𝐺 (𝐹)/𝐾 .
By (2.3), these double cosets are indexed by 𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f . Let 1𝑤 be the characteristic function of
the corresponding double coset.

There is another basis of H𝐾 more suitable for geometric arguments. For 𝑤 ∈ 𝑊f\𝑊
𝜎/𝑊f , let

𝜙𝑤 =
∑
𝑣 1𝑣 , where the sum runs over those 𝑣 ∈ 𝑊f\𝑊

𝜎/𝑊f such that f𝑣
f ≤ f𝑤

f . The basis 𝜙𝑤 arises
from the function-sheaf dictionary as follows. Let (F𝑝)𝑤 be the constant étale sheaf supported on Fℓ𝑤 .
Then by the closure relations in Lemma 2.2, we have

((F𝑝)𝑤 )
Tr = 𝜙𝑤 . (3.3)

Remark 3.3. In the case of split groups in equal characteristic, (F𝑝)𝑤 is a shift of the mod p intersection
cohomology sheaf of Fℓ𝑤 (by the perfected version of [Cas22, Theorem 1.5]). By [Cas22, Theorem
1.7], the same is true in mixed characteristic if Fℓ𝑤 has a deperfection by a scheme with F-rational
singularities. It is an interesting question whether such a deperfection exists for all w (for example, one
could ask whether or not Fℓdep

𝑤 is F-rational).

3.1.3. The Satake transform
Recall the Levi decomposition 𝑃 = 𝑀𝑈 arising from the cocharacter 𝜆. The Satake transform with
respect to P is the following map.

S : HG → H𝑀 (𝐹 )∩𝐾 , S ( 𝑓 ) (𝑚) =
∑

𝑢∈𝑈 (𝐹 )/𝑈 (𝐹 )∩𝐾

𝑓 (𝑚𝑢), 𝑚 ∈ 𝑀 (𝐹). (3.4)

3.2. Explicit formulas

Let 𝑤1, 𝑤2 ∈ 𝑊f\𝑊
𝜎/𝑊f . The image of the convolution map 𝑚 : Fℓ𝑤1 ×

𝐿+I Fℓ𝑤2 → FℓG is geomet-
rically irreducible, closed, 𝐿+G-stable, and it is defined over k. Thus, it is of the form Fℓ𝑤 for some
𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f . Moreover, by Theorem 2.10, Fℓ𝑤,𝑘 is the image of a certain Demazure map, and w
may be computed explicitly by tracing through the steps in the proof of Lemma 2.8.
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Theorem 3.4. Let𝑤1, 𝑤2 ∈ 𝑊f\𝑊
𝜎/𝑊f , and let𝑤 ∈ 𝑊f\𝑊

𝜎/𝑊f be the element such that𝑚(Fℓ𝑤1×
𝐿+G

Fℓ𝑤2) = Fℓ𝑤 . Then
𝜙𝑤1 ∗ 𝜙𝑤2 = 𝜙𝑤 .

Proof. By Lemma 2.9, for each 𝑥 ∈ FℓG (𝑘), we have

𝑚−1 (𝑥) = {(𝑦, 𝑦−1𝑥) : 𝑦 ∈ Fℓ𝑤1 (𝑘), 𝑦
−1𝑥 ∈ Fℓ𝑤2 (𝑘)}.

Recall that ((F𝑝)𝑤𝑖 )
Tr = 𝜙𝑤𝑖 by (3.3). Thus, for any �̃� ∈ 𝐺 (𝐹) a lift of x,

(𝜙𝑤1 ∗ 𝜙𝑤2) (�̃�) = |𝑚
−1 (𝑥) | (mod 𝑝).

Additionally, 𝑅𝑚! (F𝑝) � (F𝑝)𝑤 by Theorem 2.10. Note that 𝑚−1 (𝑥) is nonempty if and only
if 𝑥 ∈ Fℓ𝑤 (𝑘), in which case it follows that 𝑅Γ𝑐 (𝑚−1 (𝑥), F𝑝) = F𝑝 [0], where we view
𝑚−1 (𝑥) as a k-scheme. Now we conclude by applying the function-sheaf dictionary, using that∑
𝑖 (−1)𝑖 Tr(𝛾, 𝐻𝑖𝑐 (𝑚−1 (𝑥)𝑘 , F𝑝)) = Tr(𝛾, 𝐻0

𝑐 (𝑚
−1 (𝑥)𝑘 , F𝑝)) = 1. Here, we use the topological invari-

ance of the étale site [Sta24, Tag 04DY] to conclude that Lemma 3.1 is also valid for the perfection of a
finite-type k-scheme. �

For 𝑐 ∈ 𝜋1 (𝑀)
𝜎
𝐼 , let 𝜙𝑐,𝑤 ∈ H𝑀 (𝐹 )∩𝐾 be the characteristic function of the intersection

(FℓM)𝑐 (F𝑞) ∩ Fℓ𝑤 (F𝑞). Recall that 𝑀 (𝐹) ∩ 𝐾 = M(O𝐹 ) by Lemma 2.14.
Theorem 3.5. The Satake transform S : HG → H𝑀 (𝐹 )∩𝐾 satisfies

S (𝜙𝑤 ) =
{
𝜙𝑐,𝑤 , (FℓM,𝑘 )

𝑐 ∩ Fℓ𝑤,𝑘 is the unique closed attractor in (Fℓ𝑤,𝑘 )+
0, the closed attractor in (Fℓ𝑤,𝑘 )+does not admit a𝑘-point in FℓM.

Proof. Thanks to Theorem 2.22, the proof is analogous to that of Theorem 3.4. �

3.3. The case of a special parahoric

Throughout this section, we assume that M is a minimal Levi subgroup and that f is a special vertex.
Since we assumed that M is semi-standard, this implies that 𝑀 = 𝐶𝐺 (𝐴). By [HV15, §6], the group
Λ := 𝑀 (𝐹)/(𝑀 (𝐹) ∩𝐾) is a finitely generated abelian group. The Hecke algebra H𝑀 (𝐹 )∩𝐾 is naturally
identified with the group algebra F𝑝 [Λ]. We denote the canonical basis elements by 𝑒𝑧 for 𝑧 ∈ Λ.

The relative Weyl group𝑊 (𝐺, 𝐴) acts on Λ. Furthermore, the map

Λ→ 𝐾\𝐺 (𝐹)/𝐾, 𝑧 ↦→ 𝐾𝑧𝐾

induces a bijection between𝑊 (𝐺, 𝐴)-orbits in Λ and the double cosets 𝐾\𝐺 (𝐹)/𝐾 . To describe these
orbits, we note that there is a natural homomorphism of groups 𝜈𝑀 : 𝑀 (𝐹) → Hom(𝑋∗(𝑀)Gal(𝐹/𝐹 ) ,Z)
characterized by the requirement

𝜈𝑀 (𝑚) (𝜒) = val𝐹 (𝜒(𝑚)), for all 𝑚 ∈ 𝑀 (𝐹), 𝜒 ∈ 𝑋∗(𝑀)Gal(𝐹/𝐹 ) .

Here, val𝐹 is the normalized valuation on F. The restriction map 𝑋∗(𝑀)Gal(𝐹/𝐹 ) → 𝑋∗(𝐴) induces
an isomorphism 𝑋∗(𝐴) ⊗ Q � Hom(𝑋∗(𝑀)Gal(𝐹/𝐹 ) ,Z) ⊗ Q, and hence, we may view 𝜈M as a
homomorphism

𝜈𝑀 : 𝑀 (𝐹) → 𝑋∗(𝐴) ⊗ Q.

The map 𝜈𝑀 is𝑊 (𝐺, 𝐴)-equivariant and identifies Λ/Λtor with a lattice in 𝑋∗(𝐴) ⊗ Q.
The minimal parabolic P containing M corresponds to a choice of positive roots Φ+ for G in 𝑋∗(𝐴).

This determines an anti-dominant Weyl chamber C ⊂ 𝑋∗(𝐴) ⊗ Q, defined by the requirement that
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〈𝛼, 𝜈〉 ≤ 0 for all 𝛼 ∈ Φ+ and 𝜈 ∈ C. Let Λ− be the preimage of C in Λ. We call the elements of Λ−anti-
dominant. Each𝑊 (𝐺, 𝐴)-orbit in Λ contains a unique anti-dominant element, so we get bijections

Λ−
∼
−−→ 𝐾\𝐺 (𝐹)/𝐾

∼
←−− 𝑊f\𝑊

𝜎/𝑊f .

For 𝑧 ∈ Λ−, let Fℓ𝑧 ⊂ FℓG be the corresponding perfect Schubert scheme, and let 𝜙𝑧 = ((F𝑝)𝑧)
Tr be

corresponding basis element of 𝐻𝐾 .
The following theorem recovers [Her11b, Theorem 1.2] (where K is hyperspecial), and [HV15,

§1.5] (where K is special). Moreover, we recover the explicit formulas in [Her11a, Proposition 5.1] and
[Oll15, Theorem 5.5] (where G is split and K is hyperspecial), and in [AHV22, Theorem 1.1] (where G
is arbitrary and K is special).

Theorem 3.6. (1) If K is special, for 𝑧1, 𝑧2 ∈ Λ−, we have

𝑚(Fℓ𝑧1 ×
𝐿+G Fℓ𝑧2) = Fℓ𝑧1𝑧2 and 𝜙𝑧1 ∗ 𝜙𝑧2 = 𝜙𝑧1𝑧2 .

In particular, H𝐾 is commutative.
(2) Moreover, the Satake transform S : H𝐾 → H𝑀 (𝐹 )∩𝐾 is injective, identifies H𝐾 with F𝑝 [Λ−], and
satisfies

S (𝜙𝑧) = 𝑒𝑧 , for all 𝑧 ∈ Λ−.

Proof. By Theorem 3.4 and the fact that S is an algebra homomorphism, all of the statements follow
from the formula S (𝜙𝑧) = 𝑒𝑧 . To prove the formula, let (FℓM)𝑐 be the unique connected component
FℓM which contains the k-point 𝑧 ∈ Λ−, and let 𝑆𝑐 ⊂ FℓG be the corresponding attractor. Then we
have the map 𝜋𝑐,𝑧 : 𝑆𝑐 ∩Fℓ𝑧 → (FℓM)𝑐 ∩Fℓ𝑧 . Since affine Schubert schemes are (G𝑚)perf-stable, the
closure relations (Lemma 2.2) imply that 𝜋−1

𝑐,𝑧 ((FℓM)𝑐 ∩ Fℓ◦𝑧 ) ⊂ Fℓ◦𝑧 . By (1.1) and Theorem 2.22, at
the level of k-points, 𝜋−1

𝑐,𝑧 ({𝑧}) = {𝑧}. Then by the function-sheaf dictionary, 𝑅(𝜋𝑐,𝑧)!(F𝑝) ≠ 0. Thus,
(FℓM,𝑘 )

𝑐 ∩Fℓ𝑧,𝑘 is the unique closed attractor in (Fℓ𝑧,𝑘 )+. Note that Λ is naturally identified with the
𝜎-stable connected components of FℓM,𝑘 by [HR10, Proposition 1.0.2]. Thus, z is the only k-point of
(FℓM)𝑐 , so the formula follows from Theorem 3.5. �

Remark 3.7. A special vertex f is called very special if it remains special in ℬ(𝐺, �̆�). If f is very
special, Theorem 3.6 takes the following simpler form. First, by [Zhu15, Lemma 6.1], a special vertex
exists if and only if G is quasi-split over F. In this case, 𝑀 = 𝑇 is a maximal torus and 𝑃 = 𝐵 is an
F-rational Borel. Furthermore, Λ = 𝑋∗(𝑇)𝜎𝐼 by [HR10, Corollary 11.1.2]. Over �̆�, we have a splitting
𝑊 = 𝑋∗(𝑇)𝐼 �𝑊0, where𝑊0 = 𝑁𝐺 (𝑆) (�̆�)/𝑇 (�̆�). Then𝑊f̆ = 𝑊0 and𝑊f̆\𝑊/𝑊f̆ and consists of the image
of the anti-dominant elements 𝑋∗(𝑇)−, defined with respect to B, under the surjection 𝑋∗(𝑇) → 𝑋∗(𝑇)𝐼
[Ric13, Corollary 1.8]. Furthermore, the length ℓ is additive on these anti-dominant elements, so all
convolution maps for FℓG are birational.
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