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Direct numerical simulation of interaction
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The interaction between forward-facing steps of several heights and a pre-existing critical
stationary crossflow instability of a swept-wing boundary layer is analysed. Direct
numerical simulations (DNS) are performed of the incompressible three-dimensional
laminar base flow and the stationary distorted flow that arise from the interaction
between an imposed primary stationary crossflow perturbation and the steps. These DNS
are complemented with solutions of the linear and the nonlinear parabolised stability
equations, used towards identifying the influence of linearity and non-parallelism near the
step. A fully stationary solution of the Navier–Stokes equations is enforced numerically, in
order to isolate the mechanisms pertaining to the interaction of the stationary disturbance
with the step. Results provide insight into the salient modifications of the base laminar
boundary layer due to the step, and the response of the incoming crossflow instability to
these changes. The fundamental spanwise Fourier mode of the disturbance field gradually
lifts up as it approaches the step and passes over it. The flow environment around the
step is characterised by a sudden spanwise modulation of the base-flow streamlines.
Additional stationary perturbation structures are induced at the step, which manifest in
the form of spanwise-aligned velocity streaks near the wall. Shortly downstream of the
step, the fundamental component of the crossflow perturbation maintains a rather constant
amplification for the smallest steps studied. For the largest step, however, the fundamental
crossflow perturbation is stabilised significantly shortly downstream of the largest step.
This surprising result is ascribed to a modulation of the kinetic energy transfer between
the base flow and the fundamental perturbation field, which is brought forward as a new
step interaction mechanism. Possible non-modal growth effects at the step are discussed.
Furthermore, the results from DNS indicate significant amplification of the high-order
harmonic crossflow components downstream of the step.
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1. Introduction

Wind tunnel and flight tests have proved the feasibility of laminar flow control (LFC)
technology for laminar–turbulent transition delay in aerospace applications (Henke 1999;
Malik et al. 2015). However, preserving laminar flow over large swept surfaces such
as the wings of subsonic transport aircraft, whose skin friction drag can contribute
up to 18 % of the total drag (Schrauf 2005), remains a challenge. Despite successful
laboratory testing, generally it remains challenging to maintain laminar flow in operational
environments (Tufts et al. 2017; Eppink 2020). In many cases, this was ascribed to
surface roughness such as debris, insect contamination or imperfect joints, which can
promote laminar–turbulent transition and hinder the effectiveness of LFC techniques.
In recent years, numerous experimental and numerical studies have been conducted
to investigate the impact of surface roughness on premature boundary-layer transition.
Considering swept-wing flows, special emphasis has been put on roughness in the form
of spanwise-distributed steps and gaps, which arise at the junction between wing panels
and are especially detrimental in the leading-edge region. The focus of this paper is placed
specifically on forward-facing steps.

1.1. The crossflow instability
Three-dimensional subsonic laminar flow over a smooth swept wing supports four
types of instabilities: attachment line, Tollmien–Schlichting (TS), Görtler and crossflow
(Saric, Reed & White 2003). Considering a low-disturbance background, representative
of free-flight conditions, laminar–turbulent transition is initiated typically by modal
instability growth. In this scenario, the early stage of transition can be analysed based
on the evolution of small-amplitude perturbations superimposed on the laminar base flow
(Mack 1984; Arnal 1993; Reed & Saric 1996; Schmid & Henningson 2001; Theofilis
2003). The vector of state variables q representing the flow field is decomposed as

q = qB + q′, (1.1)

where qB is a steady laminar solution of the Navier–Stokes equations, the so-called base
flow, and q′ is the perturbation field. If the base flow is of unstable nature, then it supports
the exponential amplification of arbitrarily small perturbations.

The scope of this paper is restricted to crossflow-dominated boundary layers. Strong
crossflow instability growth is expected in regions of large favourable pressure gradient,
as for instance near the leading edge (Arnal 1993). In a swept-wing boundary layer, the
crossflow instability arises due to the combined effect of pressure gradient and sweep
angle. In the potential flow region, the inviscid streamlines follow a curved trajectory,
such that pressure and centrifugal forces are in equilibrium. This is not the case in the
boundary-layer region due to the reduced momentum of the fluid particles near the wall.
Pressure force excess creates a secondary flow that develops approximately normal to the
external inviscid streamlines, the so-called crossflow, while the resulting viscous shear
stress completes the balance.

Inherently, the (crossflow) velocity profile in the direction orthogonal to the trajectory
of the inviscid streamlines contains an inflection point. As such, it becomes inviscidly
unstable and susceptible to primary eigenmode amplification (Mack 1984; Saric et al.
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Crossflow instability interacting with forward-facing steps

2003). The associated instability, the crossflow instability, can manifest in the form of
either travelling or stationary (i.e. zero temporal frequency) wave-like perturbations.
Nevertheless, receptivity dictates the eventual dominance of stationary or travelling
crossflow. On smooth swept surfaces and high-turbulence environments, the travelling
crossflow instability dominates over the stationary one (Deyhle & Bippes 1996). In
contrast, elevated random or distributed surface roughness in combination with low
free-stream turbulence favours the development of stationary crossflow modes. In the
present work, we focus on stationary-crossflow effects, inasmuch as they play a more
relevant role in low-turbulence free-flight environments (Saric et al. 2003). The wavefronts
of the stationary wave-like perturbations are aligned approximately with the local direction
of the flow, which is in turn very close to the direction of the inviscid streamlines (Bippes
1999). Structurally, a crossflow instability developing on the laminar base flow manifests
as co-rotating vortices.

After an initial stage of exponential perturbation growth, the main transition route
towards turbulence involves nonlinear effects and primary mode saturation (Haynes &
Reed 2000). Due to their stationary nature, crossflow vortices deform significantly the
base flow and introduce shear layers that can support the growth of secondary instabilities.
In the last two decades, several numerical, theoretical and experimental studies have
characterised three main secondary instability kinds (Fischer & Dallmann 1991; Malik, Li
& Chang 1994; Malik et al. 1999; Wassermann & Kloker 2002; Bonfigli & Kloker 2007;
Serpieri & Kotsonis 2016). The type-I (or type-z) mechanism grows by extracting energy
from the spanwise shear in the outer part of the upwelling region (the shoulder) of the
primary crossflow vortex. The type-II (or type-y) mechanism is driven by the wall-normal
shear of the flow and develops on top of the crossflow vortex. Finally, the type-III
mechanism is associated with the nonlinear interaction between primary travelling and
stationary crossflow instabilities. The growth of secondary instabilities triggers laminar
breakdown ultimately.

1.2. Effect of two-dimensional roughness on boundary-layer stability and transition
Early studies on the effect of two-dimensional roughness on laminar–turbulent transition
considered two-dimensional (i.e. unswept) flows with zero-pressure gradient. Tests
performed on a flat surface with a cylindrical wire mounted on it showed that an
increase of the wire’s height or the free-stream velocity caused a forward shift of the
transition front (Fage & Preston 1941; Tani 1969). In the case of an aerofoil with realistic
spanwise roughness, such as hollows or bulges, the exact impact of roughness on transition
depends on the perturbation introduced by the surface imperfection and the stability of the
boundary layer downstream of the latter (Fage 1943).

The ability to predict the minimum roughness height that influences transition
observably is paramount to establish suitable manufacturing tolerances. As such,
many efforts have been made to determine critical heights for distributed as well as
isolated roughness. The roughness Reynolds number was reported initially as the most
successful correlation parameter for tests performed with two-dimensional wires (Smith &
Clutter 1959). It is defined as

Rehh = uhh
ν
, (1.2)

where h is the roughness height, ν is the kinematic viscosity, and uh is the velocity of the
undisturbed boundary layer at the element’s height. The critical Rehh, i.e. the value above
which the presence of the roughness element starts to affect transition noticeably, is found
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generally to be lower for two-dimensional roughness than for three-dimensional roughness
(Braslow 1960).

While a majority of early work was based on transition-correlation analyses, more recent
investigations have provided deeper insight into the relevant flow features introduced
by the roughness element. For instance, coupling between TS instabilities and the
acoustic disturbances scattered by small sudden geometry changes has been proposed as
a mechanism that can impact largely the subsequent unsteady flow evolution (Goldstein
1985). The effect of two-dimensional roughness on two-dimensional boundary layers is
now attributed generally to the generation of TS disturbances (Ergin & White 2006).

The scope of the present work, however, lies on the impact of roughness upon an already
pre-existing boundary layer instability. For a TS disturbance interacting with a localised
surface distortion, Wu & Hogg (2006) report that the incoming TS wave is scattered at
the roughness element. As a result, it experiences a change of amplitude. This effect is
quantified by Wu & Hogg (2006) through a transmission coefficient that expresses the
relative change in amplitude of the TS disturbance before and after the scattering process.
When evaluated for the separated flow over a two-dimensional hump, Xu et al. (2016)
report a strong increase of the transmission coefficient, as compared to an element of
smaller height. For an analogous scenario encompassing an incoming TS disturbance
and a hump, Park & Park (2013) conclude that their interaction is ruled by viscous and
inviscid instability mechanisms. The former is associated with the original TS mechanism,
whereas the latter is linked to the inflectional nature of the base-flow profiles in the vicinity
of the hump. Furthermore, Park & Park (2013) find discrepancies between disturbance
growth rate predictions when comparing the results of two classic stability methods: the
parabolised stability equations (PSE) (Bertolotti, Herbert & Spalart 1992; Herbert 1997)
and linear stability theory (LST).

For the case of a swept laminar separation bubble interacting with an incoming oblique
TS instability or a crossflow perturbation, a superior performance of PSE over LST in
terms of accuracy is pointed out by Hetsch & Rist (2009). Edelmann & Rist (2014) report
good agreement between direct numerical simulations (DNS) and LST in terms of the
perturbation amplification factor in two-dimensional forward-facing-step flows. Following
the work of Perraud et al. (2004) and Crouch, Kosorygin & Ng (2006), Edelmann
& Rist (2014) characterise the effect of the step by quantifying the correspondingly
modified perturbation amplification factor, relative to the reference no-step case. The
transitional-flow features downstream of a forward-facing step in unswept conditions have
been examined further by Rizzetta & Visbal (2014) using numerical simulations.

Surface roughness in the form of forward-facing steps is ubiquitous in a broad range
of engineering applications. As such, there is extensive past work examining the topology
and behaviour of flow over forward-facing steps, mainly in the presence of an incoming
two-dimensional boundary layer. The computational analysis of Wilhelm, Härtel &
Kleiser (2003) shows that the two-dimensional base flow can contain separation bubbles
upstream and downstream of the step. Emphasis is placed on detailing the mechanisms
through which the initially two-dimensional base flow eventually evolves towards a highly
three-dimensional one. Wilhelm et al. (2003) and later Marino & Luchini (2009) attribute
this transition to a sensitive response of the flow to disturbances present in the incoming
flow; the existence of an absolute instability in the separated-flow region is discarded by
the former. A Görtler type of instability (associated with the curvature of the near-wall
streamlines passing over the step) has also been proposed as a possible mechanism for
the loss of two-dimensionality in developed forward-facing-step flows (Chiba, Ishida &
Nakamura 1995).
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Downstream of a step in unswept conditions, experimental (Stüer, Gyr & Kinzelbach
1999) and numerical (Lanzerstorfer & Kuhlmann 2012) studies have reported the
existence of streaky structures. This has been ascribed by the latter to the lift-up effect
(Landahl 1975, 1980). In swept boundary layers without steps, velocity streaks have been
identified in scenarios involving non-modal growth (Breuer & Kuraishi 1994; Corbett
& Bottaro 2001; Tempelmann, Hanifi & Henningson 2010). Three-dimensional flows
with a strong crossflow component can sustain significant non-modal growth, which may
complement growth due to a modal crossflow instability since these two mechanisms
excite perturbations of similar structure (Breuer & Kuraishi 1994; Corbett & Bottaro 2001;
Tempelmann et al. 2010).

Among the vast literature on the effect of two-dimensional roughness on the
laminar–turbulent transition path, pressure-gradient effects have been neglected
historically. The sparse literature on this topic motivated a series of experiments
involving forward-facing steps mounted on unswept flat plates with a prescribed
favourable pressure gradient (Drake, Bender & Westphal 2008; Drake et al. 2010).
Duncan et al. (2013) extended the work of Drake et al. (2010) by adding sweep angle
to account for the instability mechanisms present in three-dimensional flows. In a
stationary-crossflow-dominated scenario, Duncan et al. (2013) report a reduction of the
critical roughness Reynolds number, when compared to the equivalent two-dimensional
case of Drake et al. (2010).

Following the aforementioned experiments, Tufts et al. (2017) investigate numerically
the interaction between a stationary crossflow instability and forward-facing steps of
several heights under the same flow conditions as Duncan et al. (2014) and Crawford et al.
(2015). The critical height at which steps start to affect transition notably is associated
by Tufts et al. (2017) with a strong and sudden amplification of the incoming stationary
crossflow perturbation at the step. In particular, the proposed mechanism responsible for
this amplification stage is linked to the constructive interaction between the incoming
crossflow vortices and step-induced recirculating flow. Nonetheless, lack of evidence
supporting this mechanism of interaction was reported in following investigations (Eppink
2018, 2020; Eppink & Casper 2019). At the same time, the universal validity of the model
proposed by Tufts et al. (2017) to determine critical step heights has been questioned by
Rius-Vidales & Kotsonis (2020).

Despite the scientific controversy with regard to the mechanism proposed by Tufts et al.
(2017), similarities in terms of perturbation organisation at the step have been reported
widely. The crossflow perturbation lifts up as it approaches the step, and the perturbation
profile, i.e. the perturbation shape in the wall-normal direction, develops a distinctive
secondary peak close to the wall (Tufts et al. 2017; Eppink 2018, 2020; Cooke et al. 2019;
Casacuberta, Hickel & Kotsonis 2021). A new set of secondary vortices induced locally at
the step has been identified by Eppink (2018, 2020), Rius-Vidales & Kotsonis (2021) and
Casacuberta et al. (2021).

There is a growing consensus that the incoming crossflow instability becomes amplified
at the step (Tufts et al. 2017; Eppink 2020; Rius-Vidales & Kotsonis 2021). However,
as opposed to Tufts et al. (2017), Eppink (2020) ascribes this to the destabilising effect
of the inflectional profiles accompanying the regions of flow separation and reversal
of the crossflow component in the near-step regime. Rius-Vidales & Kotsonis (2021)
report a strong spanwise modulation of the trajectory of the crossflow vortices, induced
potentially by the local step-flow motion. Moreover, a second stage of stationary crossflow
amplification is captured by Eppink (2020) further downstream of the step, at the end of
the flow-separation region. This is linked to nonlinear growth mechanisms triggered by the
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interaction of the harmonic perturbation components; the deformation of the separation
bubble under the action of the crossflow vortices introduces multiple streamwise-oriented
vortices with harmonic wavelengths (Eppink 2020). Enhancement of the harmonic activity
in this regime has been identified by Rius-Vidales & Kotsonis (2021) as well, who, on
the contrary, suggest amplification of the harmonic crossflow components via nonlinear
forcing of the fundamental component.

The aforementioned discrepancies on the role played by step-induced flow features
in modifying the properties of the crossflow perturbation have motivated the present
study. We perform DNS to compute the three-dimensional flow configuration that
arises from the interaction between a three-dimensional boundary layer with a critical
stationary crossflow perturbation prescribed at the inlet and forward-facing steps of
several heights. The analysis is restricted to the near-step regime and to mechanisms of
interaction of a stationary nature by enforcing a steady-state DNS solution. Unsteady
perturbation structures, including the secondary instabilities responsible ultimately for
laminar breakdown, are undesired here and thus not triggered in order to isolate pertinent
stationary mechanisms. We identify and analyse the main step-flow features responsible
for altering the behaviour of the pre-existing crossflow perturbation, and characterise
qualitatively and quantitatively the evolution of the stationary perturbation field at the
step.

This article is structured as follows. Section 2 introduces the flow problem, geometry
and notation, and describes the free-stream evolution and the DNS set-up. Furthermore,
it gives an overview of the perturbation evolution in the reference no-step case, and
presents analytical formulas to decompose the perturbation field relative to the base-flow
orientation. Section 3 describes the topology of the laminar base flow. Section 4
analyses the evolution of the perturbation field upstream of and at the step. The focus
is placed on the fundamental perturbation component, i.e. the primary mode of the
spanwise-Fourier-decomposed perturbation field. Section 5 extends the analysis of § 4
and characterises the perturbation behaviour downstream of the step. A summary and
concluding discussion are provided in § 6.

2. Methodology

2.1. Definition of flow problem
The incompressible Navier–Stokes equations are solved to study the interaction between
forward-facing steps and a stationary crossflow disturbance in a swept-wing boundary
layer. A sketch of the flow problem is depicted in figure 1. The swept-wing flow is
modelled as flat-plate flow (i.e. neglecting wall curvature) with a prescribed external
pressure distribution in the chordwise direction, x. The effect of sweep angle is accounted
for by expressing the incoming free-stream velocity into components normal, u∞, and
parallel, w∞, to the leading-edge direction (or spanwise direction), z. The wall-normal
coordinate is denoted by y. The computational domain is aligned with the swept main
coordinate system, x = [x y z]T.

The aerofoil-like external pressure distribution imposed at y = ymax is obtained from
independent experiments carried out at TU Delft on a 45◦ swept wing; see Rius-Vidales
& Kotsonis (2021) for further details on the experimental set-up. The wing model was
designed specifically and used extensively for the study of the crossflow instability; see
Serpieri & Kotsonis (2016) and Serpieri, Venkata & Kotsonis (2017), for instance. The
inlet of the computational domain is placed at a chordwise position x corresponding
to 5 % of the wing chord in the leading-edge-orthogonal direction. At this location,
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Figure 1. Sketch of the flow problem and the computational domain.

x = 0 and w∞/u∞ = −1.24. A three-dimensional laminar boundary layer obtained as
solution to the self-similar Falkner–Skan–Cooke equations is used as inflow boundary
condition for the base-flow calculation. The boundary layer develops in x and encounters
a nominal forward-facing step of height h, kept invariant along the spanwise direction.
The inflow boundary layer thickness, δ0 = 7.71 × 10−4 m, and the chordwise inflow
free-stream velocity, u∞ = 15.10 m s−1, are the characteristic length and velocity scales
used to non-dimensionalise all variables, and Re = u∞δ0/ν = 791.37. It is noted that δ0
corresponds to the wall-normal location at which the boundary layer reaches 99 % of the
chordwise inflow free-stream velocity.

First, DNS of the unperturbed laminar base flow qB are performed. The base-flow
computations are carried out under the infinite-span assumption, which justifies neglecting
any spanwise variations in state variables, i.e. ∂qB/∂z = 0. The base flow is then used as
initial condition for computing the steady-state solution that arises from the interaction
between a stationary crossflow instability and the step, q = qB + q′. In this second
stage, hereafter referred to as the developed flow field, a stationary crossflow mode,
pre-calculated using LST on the DNS base flow, is imposed for q′ at the inflow. The
crossflow perturbation is constrained to grow only in x through the application of periodic
boundary conditions in the transverse boundaries. The spanwise domain length is set equal
to the spanwise wavelength of the fundamental crossflow perturbation, λz = 2π/β0, where
β0 denotes the fundamental spanwise wavenumber. The present approach is largely similar
to the one followed by Wassermann & Kloker (2002).

Forward-facing steps of several heights are tested to investigate the effect of h on
the modified perturbation mechanisms. The DNS are performed for a smooth flat-plate
reference case and three different step configurations. Table 1 summarises the main
boundary layer parameters per step case. The parameter δ99,h denotes the unperturbed
boundary-layer thickness at the x-location of the step, and

Reh = u∞h
ν

(2.1)
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Case h/δ0 h/δ99,h uh/u∞ Reh Rehh

Step case I 0.59 0.33 0.78 470.26 368.17
Step case II 0.76 0.41 0.93 598.51 556.88
Step case III 0.97 0.53 1.08 769.51 832.08

Table 1. Boundary-layer parameters per step case.
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Figure 2. Stability diagram of the DNS base flow obtained from a linear local stability method. The colour
map expresses the perturbation chordwise growth rate −αOS

i , solid white lines are isolines of the amplification
factor in x, dash-dotted black lines are the neutral curve, the dashed yellow line indicates λz = 7.5 mm, and the
vertical black line illustrates the virtual step location.

is the step-height-based Reynolds number. The steps tested in our simulations attain
approximately between 30 % and 50 % of the undisturbed boundary-layer thickness. All
steps are located at the streamwise location x/δ0 = 177.62, which corresponds to 20 % of
the chord of the wing model used to characterise the free-stream properties. For the sake of
simplicity, we introduce the coordinate xst = x − 177.62 δ0 expressing a position relative
to the step.

The choice of the spanwise wavelength of the fundamental stationary crossflow mode
prescribed in the DNS, λz = 7.5 mm, is grounded on a critical mode with respect to the
amplification factor achieved at the end of the computational domain. For this purpose,
a linear local Orr–Sommerfeld analysis was performed on the DNS base flow for a
broad range of spanwise wavelength λz values. Linear local stability methods can predict
sufficiently the most amplified wavelength of stationary crossflow disturbances, despite
their inherent parallel-flow assumption (Bippes 1999). The results are summarised in
figure 2, where the colour map represents the local perturbation chordwise growth rate,
−αOS

i , and isolines characterise the associated amplification factor in x.

2.2. Governing equations and notation
Letting f be the incompressible Navier–Stokes operator applied to a vector of state
variables ξ , with adequate boundary and initial conditions, the momentum conservation
equations can be expressed as

ξ̇ = f (ξ), (2.2)
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where the dot indicates the time derivative. The unperturbed base-flow velocity field
is denoted by υB = [uB vB wB]T, with uB, vB, wB expressing velocity components in
the chordwise, wall-normal, and spanwise directions, respectively. The base-flow static
pressure is denoted by pB. The vector of state variables qB = [υB pB]T is the solution of
f (ξ) = 0 under the inflow boundary condition

υ in = υFSC, (2.3)

where υ in is the velocity vector prescribed at the inlet, and υFSC is a solution to the
Falkner–Skan–Cooke (FSC) equations. The system of equations f (qB) = 0 reads

−uB
∂uB

∂x
− vB

∂uB

∂y
− 1
ρ

∂pB

∂x
+ ν

(
∂2uB

∂x2 + ∂2uB

∂y2

)
= 0, (2.4)

−uB
∂vB

∂x
− vB

∂vB

∂y
− 1
ρ

∂pB

∂y
+ ν

(
∂2vB

∂x2 + ∂2vB

∂y2

)
= 0, (2.5)

−uB
∂wB

∂x
− vB

∂wB

∂y
+ ν

(
∂2wB

∂x2 + ∂2wB

∂y2

)
= 0, (2.6)

where ρ denotes density, and base-flow continuity is expressed as

∂uB

∂x
+ ∂vB

∂y
= 0. (2.7)

We denote by υ = [u v w]T the developed velocity field, and by p the corresponding
static pressure. The vector of state variables q = [υ p]T is the solution of f (ξ) = 0 subject
to the inflow boundary condition

υ in = υFSC + [u′
in v

′
in w′

in]T, (2.8)

where [u′
in v

′
in w′

in]T expresses a stationary crossflow disturbance computed from a
linear local stability analysis on the DNS base flow. Further details on the numerical
implementation of the boundary conditions are given in § 2.4.

The velocity-perturbation field is denoted by υ ′ = [u′ v′ w′]T and q′ = q − qB =
[υ ′ p′]T. The velocity-perturbation field is expressed as a sum of spanwise Fourier modes,
i.e.

υ ′(x, y, z) =
N∑

j=−N

υ̃(0,j)(x, y) exp(ijβ0z)︸ ︷︷ ︸
υ ′
(0,j)

, (2.9)

where υ̃(0,j) ∈ C are the Fourier coefficients, N is the number of modes considered, and
i2 = −1. The symmetric term υ ′

(0,−j) is the complex conjugate of υ ′
(0,j), which is hereafter

denoted by {·}†, and υ ′
(0,0) is the mean-flow distortion. The moduli of the components

of υ̃(0,j) are expressed as |ũ|(0,j), |ṽ|(0,j), |w̃|(0,j) and referred to as amplitude functions;
the associated phases are ϕu

(0,j), ϕ
v
(0,j), ϕ

w
(0,j). We use the nomenclature {·}(0,j) to refer to

perturbation quantities of spanwise wavenumber jβ0 of stationary nature, i.e. with zero
temporal frequency.

Considering the profile along y of a particular perturbation amplitude function, its global
maximum is typically associated with the perturbation amplitude. In the cases discussed
in this work, profiles of the amplitude functions may attain multiple local maxima in the
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region close to the step. Therefore, at every x, we distinguish between amplitude function
values measured at the global maxima, |q̃|max

(0,j), and at a second local maxima, |q̃|top
(0,j),

where q = {u, v,w} expresses a perturbation component. It will be shown below that the
second local maxima at the step can be associated with the original (i.e. baseline) main
peak, which develops far upstream of the step. It will become apparent later that near the
step, the former amplitude definition (i.e. |q̃|max

(0,j)) may not characterise properly stationary
crossflow growth. We denote the wall-normal position and amplitude values associated
with |q̃|top

(0,j) + |q̃†|top
(0,j) by ỹq

(0,j) = ỹq
(0,j)(x) and Aq

(0,j) = Aq
(0,j)(x), respectively. Finally, a

corresponding chordwise perturbation growth rate is defined as

α
q
i,(0,j) = − 1

Aq
(0,j)

d(Aq
(0,j))

dx
. (2.10)

2.3. Definition of the external inviscid streamline
The external chordwise velocity far from the wall, ue, increases along x since the
free stream is subject to a favourable pressure gradient. The external pressure is
denoted by pe, whilst p∞ expresses the inflow free-stream pressure. Under classic
boundary layer approximations, invariance of pressure and free-stream velocity along y
is assumed. However, in the present full Navier–Stokes representation with a realistic
pressure distribution, ue = ue(x, y) with ∂ue/∂x � ∂ue/∂y. As is common in studies of
swept-wing boundary layers, rigorous determination of the crossflow component requires
a proper definition of the orientation of a characteristic inviscid streamline. The velocity
non-uniformity in y poses the challenge of establishing such definition. To overcome
possible ambiguities, we characterise pseudo-free-stream properties, i.e. properties that
are representative of the inviscid-flow evolution and are functions of x only. For this
purpose, a numerically computed base-flow streamline is seeded initially at y/δ0 ≈ 5 at
the inflow. This value yields matching boundary-layer properties between the present DNS
and independent numerical solutions of the boundary-layer equations. The free-stream
properties measured along the streamline are assigned as pseudo-free-stream properties.
In particular, the pseudo-free-stream chordwise velocity ûe = ûe(x) is used to define the
horizontal deflection of the computed inviscid streamline,

φs(x) = arctan
(

w∞
ûe

)
, (2.11)

that is, the angle that a unit vector, which is tangent to the inviscid streamline projected in
the x–z plane, forms with x. The chordwise evolution of φs is illustrated in figure 3. The
base-flow crossflow component wB,s, and the velocity component parallel to the inviscid
streamline direction uB,s, are accordingly defined as

uB,s = uB cos(φs)+ wB sin(φs),

wB,s = wB cos(φs)− uB sin(φs).

}
(2.12)

2.4. Numerical set-up of DNS
The incompressible three-dimensional Navier–Stokes equations are solved numerically
with INCA, a conservative finite-volume solver (Hickel & Adams 2008; Hickel, Egerer
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Figure 3. Horizontal deflection of the characteristic inviscid streamline along (a) the domain, and (b) zoomed
in at the step, in the smooth case (thick solid black), step case I (dotted orange), step case II (dash-dotted blue),
and step case III (thin solid red).

Nx Ny Nz 
x+|st 
y+|st 
z+|st 
x+|out 
y+|out 
z+|out

6760 576 72 0.52 0.52 5.20 5.68 0.47 4.73

λz/
x|st λz/
y|st λz/
z|st λz/
x|out λz/
y|out λz/
z|out

720 720 72 60 720 72

Table 2. Grid parameters of the developed-flow computations in the smooth configuration: number of grid
partitions (Nx, Ny, Nz); grid spacing at the virtual location of the step (|st) and near the outflow (|out) expressed
in wall units (top) and relative to the fundamental spanwise wavelength (bottom).

& Larsson 2014). The present solver is well established in studies of flow instability
and perturbation dynamics; see, for instance, the transitional-flow mechanisms behind a
micro-ramp immersed in a quasi-incompressible boundary layer (Casacuberta et al. 2020).

DNS of both the base flow and the developed flow are carried out in a similar spatial and
numerical set-up, which is described next. The dimensions of the computational domain
are 0 ≤ x/δ0 ≤ 517, 0 ≤ y/δ0 ≤ 26, −4.86 ≤ z/δ0 ≤ 4.86. Four computational grids,
including the reference (i.e. no-step) case and three step configurations, are designed.
The structure of the grids is common among all cases; a smooth hyperbolic refinement
is applied in the chordwise direction, close to the location of the step, such that the region
encompassing the step is highly refined. For consistency, the reference case is treated
similarly. Hyperbolic refinement in the wall-normal direction is applied in the near-wall
region as well. The spanwise arrangement of the grid is treated differently for base-flow
and developed-flow calculations. Capitalising on the spanwise invariance of the base flow,
only two spanwise grid points (Nz = 2) are considered for its calculation, effectively
solving for a single x–y plane of the flow. In contrast, the developed flow is solved on
a grid of 72 points in the z-direction. The converged two-dimensional base flow is used as
the initial condition for the three-dimensional flow simulations. Table 2 summarises the
main parameters of the employed computational grid in the reference configuration for the
developed-flow computations. The grid spacing expressed in wall units is based on the
local friction velocity.

An explicit third-order Runge–Kutta method is used to march the Navier–Stokes
equations in time. The L2-norm of the temporal derivatives, ε, is used as convergence
criterion for the base-flow computations. We choose ε = 10−8. In the developed-flow
computations, the stationary nature of the numerical solution is enforced through the
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application of the selective frequency damping (SFD) method (Åkervik et al. 2006;
Casacuberta et al. 2018). The L2-norm of the difference between the instantaneous solution
and the low-pass filtered solution associated with the SFD formulation, εSFD, is used as
a convergence criterion for the developed-flow computations. We choose εSFD = 10−6;
εSFD > ε since the developed-flow computations are significantly more expensive than
the base-flow runs. We use a fifth-order upwind scheme to discretise the convective terms,
and a second-order central difference scheme for the treatment of the viscous terms. The
velocity components are defined on a staggered mesh and the BiCGstab method is used
for the solution of the pressure Poisson equation, with an L2-norm convergence criterion
εDIV = 10−9.

Three layers of ghost cells are added at the domain boundaries for the application of
boundary conditions, which are detailed next. As mentioned above, the inflow velocity
profile in the developed-flow computations is perturbed to trigger stationary crossflow
growth (2.8). The perturbation superimposed on the inflow FSC profile is a stationary
crossflow disturbance; consider the chordwise-velocity component

u′
in = A0

(
ũin

r

{
cos(αin

r x + β0z)
}

− ũin
i

{
sin(αin

r x + β0z)
})
, (2.13)

where A0 ∈ R is the initial amplitude, and ũin = ũin
r + iũin

i with max{abs(ũin)} = 1 and
αin

r ∈ R the normalised amplitude function and chordwise wavenumber of the crossflow
mode obtained as a solution to a linear local stability analysis on the inflow base-flow
profile. A treatment identical to (2.13) is considered for the perturbation components v′

in
and w′

in in (2.8). An initial amplitude A0 = 3.5 × 10−3u∞ for all cases is assigned, based
on preliminary analyses (§ 2.5).

To approximate the aforementioned experimental outer-flow evolution (§ 2.1), a
Dirichlet type of boundary condition for static pressure is prescribed at the top boundary,
based on a polynomial fit of logarithmic basis of the chordwise external velocity obtained
from the experiments of Rius-Vidales & Kotsonis (2021):

uexp
e /u∞ = 0.0023 ln4(x + c)+ 0.0377 ln3(x + c)+ 0.1752 ln2(x + c)

+ 0.5303 ln(x + c)+ 1.8574, (2.14)

with c = 0.0468 m. The static pressure distribution that is imposed ultimately at y =
ymax is computed using (2.14) and the irrotational-flow assumption. The condition for
velocity at the top boundary allows both inflow and outflow, and ensures that fluctuations
are quenched: the instantaneous velocity components are split into a spanwise mean
and fluctuation components. A second-order Neumann-type condition is applied for the
spanwise mean component, whereas the fluctuating part is damped out artificially; see
Hickel & Adams (2008) for further details on the technique employed. At the outlet,
the static pressure is prescribed and a second-order Neumann-type condition is used
for the velocity. Finally, the no-slip and no-penetration conditions are applied at the
wall.

2.5. DNS–NPSE cross-validation of the reference case
Prior to the analysis of the step results, it is instructive to establish the ability of the present
simulations to capture accurately the stability of the flow. As such, the chordwise evolution
of the stationary-crossflow amplitude obtained from DNS is compared to the results of an
independent stability analysis using the nonlinear parabolised stability equations (NPSE)

943 A46-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.456


Crossflow instability interacting with forward-facing steps

100

10–1

10–2

10–3

Au (0
,j)

/u
∞

10–4

0 50 100 150 200 250

x/δ0

300 350 400 450 500

Figure 4. Chordwise evolution of the amplitude of the crossflow perturbation in the smooth reference
case from LPSE (blue symbols), NPSE (white symbols), and DNS (solid lines): Fourier modes j = 1 − 5
(thick-to-thin) and j = 0 (dotted). The vertical red line indicates the virtual step location.

approach (Bertolotti et al. 1992; Haynes & Reed 2000) applied on the DNS base flow.
We refer to Westerbeek (2020) for details on the NPSE implementation used in this work.
While the DNS and NPSE solutions are both subject to truncation and discretisation errors,
such cross-validation provides confidence in both approaches.

The incompressible NPSE are solved on a grid containing 500 equispaced streamwise
stations and 80 Chebyshev collocation points in the wall-normal direction. The streamwise
derivatives are discretised using a first-order backward Euler scheme, and 11 stationary
spanwise Fourier modes (including the mean-flow distortion) have been considered for
the simulations. The initial condition for the fundamental crossflow mode is obtained
from LST evaluated on the local base-flow velocity profile from DNS. The high-order
harmonics are triggered automatically by the action of the nonlinear forcing terms and
introduced successively in the chordwise-marching scheme once their strength surpasses
the threshold of 10−8 in units of u∞; the measure of strength is based on the order of
magnitude of the associated nonlinear forcing term. When a new harmonic component
is added, its amplitude is assumed to be zero upstream of its point of introduction.
Strong initial growth is therefore perceived immediately downstream of it. Finally, inherent
to the PSE approximations, the complex streamwise wavenumber of each mode is
updated iteratively at each streamwise station to a threshold of 10−6/Re, ensuring slow
streamwise changes in perturbation shape function. The comparison between DNS and
NPSE amplitudes for the no-step case is shown in figure 4. By considering only a
single fundamental mode and disabling nonlinear interactions, the procedure provides
solutions to the linear parabolised stability equations (LPSE). In this case, the solutions
are independent of the initial-mode amplitude, which is matched arbitrarily to the NPSE
and DNS amplitude at the inflow.

Although possibly relevant, incoming-crossflow-amplitude effects in the interaction
with forward-facing steps are generally not a main subject of discussion in the existing
literature. The choice of initial (inflow) amplitude considered in this study, A0 =
3.5 × 10−3u∞ in (2.13), yields a largely linear evolution of the fundamental crossflow
perturbation in the DNS until approximately the virtual location of the step. This is
justified in that the trend from DNS matches the solution to LPSE at locations xst < 0
(figure 4). At the same time, the amplitude evolutions from DNS and NPSE are in
good agreement throughout the domain, including the stages of nonlinear crossflow
saturation.
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2.6. Decomposition of the perturbation field based on the local orientation of the base
flow

The formulation of the perturbation field introduced in § 2.2 entails a decomposition of
the total perturbation into components aligned to the flat-plate coordinate system (2.9).
Nevertheless, to gain further insight into the nature of the disturbance mechanisms and the
process by which the base flow feeds energy to perturbations, it is instructive to decompose
the perturbation field relative to the base-flow orientation (Albensoeder, Kuhlmann & Rath
2001; Marxen et al. 2009; Lanzerstorfer & Kuhlmann 2011, 2012; Loiseau, Robinet &
Leriche 2016; Picella et al. 2018). A formulation considering generic spanwise-invariant
three-dimensional base flows and stationary spanwise-periodic perturbations is presented
next.

In the flat-plate aligned coordinate system, the jth Fourier component of the perturbation
field, υ ′

(0,j), is expressed initially as

υ ′
(0,j) = u′

(0,j) ı̂ + v′
(0,j)ĵ + w′

(0,j)k̂, (2.15)

where u′
(0,j), v

′
(0,j),w′

(0,j) are the complex-valued perturbation components in the x-, y-

and z-directions, respectively, and ı̂ = [1 0 0]T, ĵ = [0 1 0]T, k̂ = [0 0 1]T. We now
decompose υ ′

(0,j) as the sum

υ ′
(0,j) = υ ′

t,(0,j) + υ ′
n,(0,j), (2.16)

of two vector fields that are complex orthogonal; see Appendix A. The field υ ′
t,(0,j) is

defined as
υ ′

t,(0,j) = τ ′
(0,j)t̂, (2.17)

i.e. as a complex-valued perturbation component τ ′
(0,j) in the direction of the vector t̂. The

latter is the three-dimensional real-valued unit vector that points in the base-flow direction:

t̂ = υB

‖υB‖ , (2.18)

where ‖υB‖ denotes the magnitude of υB. An expression for τ ′
(0,j) is obtained by evaluating

the projection of υ ′
(0,j) onto υB:

Re(τ ′
(0,j)) =

Re(υ ′
(0,j)) · υB

‖υB‖ , Im(τ ′
(0,j)) =

Im(υ ′
(0,j)) · υB

‖υB‖ , (2.19a,b)

where the dot denotes scalar product. Introducing ansatz (2.9) into (2.19a,b) yields

Re(τ ′
(0,j)) = 1

‖υB‖
(
γ+
(0,j) cos(jβ0z)+ γ−

(0,j) sin(jβ0z)
)
,

Im(τ ′
(0,j)) = 1

‖υB‖
(
γ+
(0,j) sin(jβ0z)− γ−

(0,j) cos(jβ0z)
)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

with

γ+
(0,j)(x, y) = uB |ũ|(0,j) cos(ϕu

(0,j))+ vB |ṽ|(0,j) cos(ϕv(0,j))+ wB |w̃|(0,j) cos(ϕw
(0,j)) (2.21)

and

γ−
(0,j)(x, y) = −uB |ũ|(0,j) sin(ϕu

(0,j))− vB |ṽ|(0,j) sin(ϕv(0,j))− wB |w̃|(0,j) sin(ϕw
(0,j)).

(2.22)
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Using the sum formulas for sine and cosine, (2.20) can be rewritten as

Re(τ ′
(0,j)) = 1

‖υB‖
√
(γ+
(0,j))

2 + (γ−
(0,j))

2 cos(jβ0z + ϕτ(0,j)),

Im(τ ′
(0,j)) = 1

‖υB‖
√
(γ+
(0,j))

2 + (γ−
(0,j))

2 sin(jβ0z + ϕτ(0,j)),

⎫⎪⎪⎬
⎪⎪⎭ (2.23)

with the phase ϕτ(0,j) associated with the perturbation component τ ′
(0,j) obtained as

tan(ϕτ(0,j)) = −
γ−
(0,j)

γ+
(0,j)

. (2.24)

From (2.23), it follows that

τ ′
(0,j) = 1

‖υB‖
√
(γ+
(0,j))

2 + (γ−
(0,j))

2 exp
(

i
(

jβ0z + ϕτ(0,j)

))
, (2.25)

thus

υ ′
t,(0,j) = 1

‖υB‖2

√
(γ+
(0,j))

2 + (γ−
(0,j))

2 exp
(

i
(

jβ0z + ϕτ(0,j)

))⎡⎣uB
vB
wB

⎤
⎦ . (2.26)

Following the nomenclature of the perturbation expressions in global coordinates, we
denote the modulus (or amplitude function) of τ ′

(0,j) by |τ̃ |(0,j). Since ‖t̂‖ = 1, |τ̃ |(0,j) =
‖υ ′

t,(0,j)‖ and therefore

|τ̃ |(0,j) =
√
(γ+
(0,j))

2 + (γ−
(0,j))

2

‖υB‖ . (2.27)

The norm of the total perturbation vector υ ′
(0,j) is

|ψ̃ |(0,j) = ‖υ ′
(0,j)‖ =

√
|ũ|2(0,j) + |ṽ|2(0,j) + |w̃|2(0,j). (2.28)

3. Topology of the base flow at the step

3.1. Evolution of the base-flow pressure and velocity
With the step present, the organisation of the incoming boundary layer is altered
significantly, and a pressure field different from that observed in the smooth case is induced
around the step. As detailed in § 2, the free stream features a favourable chordwise pressure
gradient throughout the DNS domain. However, whereas ∂pB/∂x < 0 everywhere in the
smooth reference case, this does not hold close to the step.

Figure 5(a) depicts ∂pB/∂x in step case II, which is representative of the trend observed
in all step cases. In line with the behaviour described by Duncan et al. (2014) and Tufts
et al. (2017), regions of adverse pressure gradient are induced upstream and downstream
of the step, whereas a strong region of favourable pressure gradient arises locally at
the step corner. Sufficiently downstream of xst = 0, the static pressure field gradually
relaxes back to that of the smooth case. This is illustrated in figure 5(b), portraying
the chordwise evolution of pressure along a streamline of the base flow. Furthermore,
figure 5(b) highlights that a fluid particle moving close to the step corner experiences
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Figure 5. (a) Base-flow chordwise pressure gradient (colour map) ∂pB/∂x = 0 (black dashed line), projected
base-flow streamline seeded at x/δ0 = 0, y/δ0 ≈ 0.2 (grey solid line) in step case II. (b) Static pressure along
the streamline in the smooth case (thick solid black), step case I (dotted orange), step case II (dash-dotted blue),
and step case III (thin solid red).

strong pressure variations in a short x-distance. It is also important to note that while the
step height is smaller than the incoming boundary-layer thickness, evidently the strong
pressure variations in the wall-normal direction extend beyond the boundary layer. This
has strong consequences in the ability of classic boundary-layer approximations, in which
pressure invariance along y is usually assumed, to describe such flows.

Compared to the relatively straightforward influence on pressure, the three-dimensional
organisation of the base flow at the step is more complex. Figure 6 displays profiles of
the base-flow velocity components near the step. Upstream of the step, uB and wB have
decelerated with respect to the smooth case, and upwash (i.e. vertical fluid motion with
vB) is induced away from the wall. When passing over the step, uB and wB experience a
local chordwise acceleration and deceleration within a short x-distance. When considering
uB, this trend is particularly prominent near the wall; the velocity profile first displays
a secondary maximum close to the surface, which decays in strength rapidly in x. In a
similar fashion, upwash induced upstream of the step is first enhanced and later suppressed
downstream of the step in the near-wall region. This is not the case for wB, whose profile
does not display abrupt variations in x close to the surface. The latter is attributed largely
to the lack of spanwise variations in pressure, inasmuch as the step geometry is invariant in
the z-direction. Nevertheless, the wB velocity component is affected implicitly by the step
through the coupling of all three components in the momentum conservation equations.

The notably different relative evolutions of uB and wB near the wall, a feature that
manifests in the experiments of Eppink (2020) as well, carries a significant horizontal
deflection (i.e. change of orientation in the x–z plane) of the base-flow streamlines, as
illustrated in figure 7. In absence of the step, the streamlines in the boundary layer are
practically aligned with the direction of the outer inviscid streamlines, as commonly
reported in the classical literature on swept-wing boundary layers (Bippes 1999). However,
when a step is present, the base-flow streamlines close to the wall deviate significantly
from the direction of the inviscid flow and bend outboard, i.e. towards the negative
z-direction, upstream of the step. Locally, in the vicinity of the step corner, the streamlines
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Figure 6. (a–d) Chordwise, (e–h) spanwise, and (i–l) wall-normal base-flow velocity profiles at (a,e,i)
xst/δ0 = −2.49, (b, f,j) xst/δ0 = 0.05, (c,g,k) xst/δ0 = 2.54, and (d,h,l) xst/δ0 = 5.02. Lines are smooth case
(thin solid black), step case I (dotted orange), step case II (dash-dotted blue), and step case III (thick solid red).

display an abrupt inboard turn, i.e. towards the positive z-direction. Further downstream, a
relaxation towards the inviscid streamline direction is observed. The importance of these
observations will be discussed in later sections.

The mechanisms responsible for the strong inboard/outboard motion of the base flow
near the step are further analysed. The local base-flow direction in the x–z plane is
characterised by σB corresponding to the angle that the unit vector locally tangent to a
base-flow streamline projected in the x–z plane forms with x:

tan (σB) = wB

uB
. (3.1)

The spatial rate of change of σB in x is

∂σB

∂x
=

uB
∂wB

∂x
− wB

∂uB

∂x
u2

B + w2
B

(3.2)
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Figure 7. Three-dimensional (a,b) and corresponding projected (c,d) base-flow streamlines with seeds placed
at (xst, y, z)/δ0 = (−6, (0, 0.4], 4.79) and x–y planes of chordwise velocity (z > 0) and spanwise velocity (z <
0) in step case I (a,c) and step case III (b,d). The dashed black line is an equivalent near-wall streamline in the
smooth case seeded at the same y-position as the lower streamline in the corresponding step case.

or, alternatively, by introducing (2.4) and (2.6) in (3.2),

∂σB

∂x
= 1

u2
B + w2

B

⎧⎪⎪⎪⎨
⎪⎪⎪⎩−vB

∂wB

∂y︸ ︷︷ ︸
Aw

+ ν
(
∂2wB

∂x2 + ∂2wB

∂y2

)
︸ ︷︷ ︸

Dw

−
(

wB

uB

)⎛
⎜⎜⎜⎝−vB

∂uB

∂y︸ ︷︷ ︸
Au

− 1
ρ

∂pB

∂x︸ ︷︷ ︸
P

+ ν
(
∂2uB

∂x2 + ∂2uB

∂y2

)
︸ ︷︷ ︸

Du

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (3.3)

Equation (3.3) expresses the spatial rate of change of the angle σB in x as a function of
the momentum-transport mechanisms in the x- and z-base-flow momentum conservation
equations. Since wB < 0 everywhere, σB < 0 in the coordinate system used here.
Considering that the current analysis is restricted to regions of non-separated flow,
i.e. where uB > 0, ∂σB/∂x > 0 signifies inboard-turning base-flow motion, whereas
∂σB/∂x < 0 signifies outboard-turning base-flow motion.

Figure 8(a) portrays the chordwise evolution of ∂σB/∂x at y = ỹu
(0,1) (§ 2.2), the

wall-normal location at which the core of the fundamental crossflow perturbation passes
over the step, ( y − h)/δ0 ≈ 0.5 at xst = 0. Figure 8(a) highlights that at this wall-normal
location, the base-flow motion at the step is inboard-dominated. Moreover, the inboard
motion appears to be a function of the step height.

Figures 8(c,d) represent additionally the decomposition of the rate of change in step case
III as a sum of contributions of the different momentum-transport mechanisms defined
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Figure 8. Rate of change in x of the horizontal deflection of base-flow streamlines, ∂σB/∂x, at (a) the
wall-normal location y = ỹu

(0,1), and (b) y/δ0 = h/δ0 + 0.12, in the smooth case (thin solid black), step case
I (dotted orange), step case II (dash-dotted dark blue), and step case III (thick solid red). Rate of change
decomposition for step case III (c,d corresponding to a,b, respectively) expressed as the contributions defined
in (3.3). (c,d) Plots for ∂σB/∂x (thick solid red), Aw (magenta and crosses), Dw (grey and triangles), Au (green
and squares), P (yellow and circles), and Du (light blue and diamonds).

in (3.3). On the one hand, the terms −vB ∂uB/∂y and −vB ∂wB/∂y act by decelerating
the uB and wB boundary-layer profiles; momentum advection in the wall-normal direction
moves low-momentum fluid towards upper portions of the boundary layer. However, these
terms yield a quasi-null total contribution in figure 8(c) since they act opposite to each
other and streamline bending results from an excess of uB over wB, or vice versa. On the
other hand, the pressure force accelerates uB in x since the region above the step corner
displays large ∂pB/∂x < 0 (figure 5). This causes an imbalance between uB and wB, which
manifests as inboard bending of the base-flow streamlines at the step, far from the wall. As
mentioned earlier, wB does not explicitly react to changes of pressure in the z-direction, as
the base flow is spanwise-invariant.

Furthermore, the effect of the step on the streamline bending appears to depend strongly
on the wall-normal location of interest. In the near-wall region, the motion of the base flow
in the x–z plane is more pronounced than in the region far from the wall. This is illustrated
in figure 8(b), characterising ∂σB/∂x at y/δ0 = h/δ0 + 0.12, when compared to figure 8(a).
Initially at xst = 0, the base-flow motion is inboard-dominated. Changing rapidly in x, it
displays a sharp outboard turn, whereas the streamlines far from the wall maintain a mild
inboard motion. This creates a strong diverging pattern of base-flow streamlines within a
short wall-normal distance.

The mechanisms leading to the sudden inboard–outboard streamline bending in the
near-wall regime are highlighted in figure 8(d) representing step case III. In a fashion
similar to the results of figure 8(c), the favourable pressure gradient induced at the step
corner first contributes largely to the sharp inboard turn. When moving downstream of
xst = 0, the effect of the pressure force reverses; the strong adverse pressure gradient close
to the wall (figure 5) decelerates uB in x. This effect, in combination with the imbalance
between the advection momentum transport mechanisms −vB ∂uB/∂y and −vB ∂wB/∂y,
cause the base-flow streamlines near the wall to bend outboard. Further downstream,
the step-induced upwash decays, and eventually, the viscous forces associated with the
gradients of uB take over as the dominant mechanism opposing the effect of pressure.
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Figure 9. (a) Base-flow chordwise velocity (colour map) with lines of constant streamfunction (solid black).
(b,c) Wall shear (duB/dy)|w: smooth case (thick solid black), step case I (dotted orange), step case II
(dash-dotted blue), and step case III (thin solid red).

3.2. Local flow reversal and modification of the crossflow component
Next to the strong spanwise streamline modulation, flow separation (i.e. reversal of uB)
is a main feature of the base flow near the step. The existence of step-induced regions of
recirculating flow in the three-dimensional swept-wing boundary layer and the associated
connection with the development of crossflow instabilities is a point of debate in recent
studies. Whereas flow reversal upstream of the step is expected and widely reported (Tufts
et al. 2017; Eppink 2020), discrepancies arise with regard to the downstream region. In
the present DNS, flow reversal downstream of the step is identified in all step cases, as
highlighted by the negative wall shear (duB/dy)|w measured in this region (figure 9).
However, in step case I, the strength of the reverse flow is significantly lower than in step
cases II and III; see table 3.

The topology of the regions of recirculating flow is analysed further by the use of a
streamfunction (ΨB) representation of the spanwise-invariant base flow in the x–y plane.
Figure 9 portrays isolines of ΨB in step case III. Their organisation is in agreement with
the widely reported behaviour of two-dimensional forward-facing-step flows; see Wilhelm
et al. (2003) and Marino & Luchini (2009), for instance. The region of recirculating flow
upstream of the step reattaches at the vertical face of the wall. A second smaller region
of flow separation arises immediately downstream of the step. It should be stressed that
in the present three-dimensional boundary-layer flow, the recirculating regions extend
infinitely in the spanwise direction, and the reattachment point in figure 9 ought to be
conceived as an attachment line along z. As noted by Tufts et al. (2017), the flow separation
in three-dimensional space represents helical flow that arises from the combination of
recirculation motion and spanwise velocity.
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Feature Property Step case I Step case II Step case III

Upstream
separation

Start: xst/δ0 = −0.67 −1.39 −2.82

Relative height: y/h = 0.44 0.50 0.58
Relative strength: −uBmin/ûe = 0.19 × 10−2 0.38 × 10−2 0.70 × 10−2

Downstream
separation

End: xst/δ0 = 0.12 0.53 2.09

Height: ( y − h)/δ0 = a 0.03 0.07
Relative strength: −uBmin/ûe = 0.10 × 10−2 1.44 × 10−2 2.67 × 10−2

Table 3. Properties of the flow recirculation regions at the step based on the dividing streamline. Here, a
indicates below grid resolution.

The geometrical properties of the separation regions upstream and downstream of the
step are characterised quantitatively by means of the corresponding projected dividing
streamline, i.e. the isoline of ΨB that connects the separation and reattachment points. A
summary of properties is given in table 3. An increase in step height leads to a significant
elongation of the separation zones in x, especially in the downstream region. However,
the cores of the reverse-flow regions are maintained rather close to xst = 0. The peak
reverse-flow velocity within the downstream recirculation regions is 1.4 % and 2.7 % in
step cases II and III, respectively, relative to the local pseudo-free-stream velocity. These
values are significantly lower than the threshold required for global or absolute instability
mechanisms to develop in classic pressure-induced separation bubbles (Alam & Sandham
2000; Rodríguez, Gennaro & Juniper 2013).

Previous investigations identify the regions of flow reversal as a key feature to explain
the modified properties of the incoming crossflow disturbance at the step. Tufts et al.
(2017) suggest interaction between the step-induced recirculating flow and the crossflow
vortices. As will be shown later, in §§ 4.3 and 4.4, there appears to be little evidence
in the present results to support the model proposed by Tufts et al. (2017). Stationary
crossflow growth at the step is ascribed by Eppink (2020) to the destabilising effect of the
inflectional profiles that develop due to flow separation and/or reversal of the crossflow
component. Crossflow reversal, i.e. change of sign of the crossflow velocity, is captured in
the present DNS as well. This phenomenon is linked to the abrupt change of orientation
of the near-wall streamlines discussed in the previous section.

The crossflow component, wB,s, as defined in (2.12), originates from the imbalance
between chordwise and spanwise momentum in the boundary layer, relative to the
orientation of the inviscid streamline. In the no-step case, the crossflow velocity is positive
in the coordinate system used here. In the vicinity of the step, the influence of the
step-induced pressure gradient is weak in the free-stream region. Consequently, the angle
φs (see (2.11)) between the inviscid streamline and x does not change significantly in x
(figure 3). The pronounced outboard bending of the streamlines in the near-wall region
upstream of the step reverses the crossflow velocity, which becomes negative in all step
configurations close to the wall. This is illustrated in figures 10(a,b). From (2.12), it can
be conceived as a consequence of the effective deceleration of uB, as compared to wB,
whereas φs ≈ −45◦ does not undergo large variations in x.

At the immediate downstream vicinity of the step, the flow behaviour follows an
opposite trend. The sudden inboard motion of the near-wall flow associated with the rapid
acceleration of uB (figure 6b) carries a strong acceleration of the crossflow component,
which becomes positive again. As highlighted in figure 10(c), the peak value of the
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Figure 10. Crossflow velocity profile near the step: smooth case (thin solid black), step case I (dotted orange),
step case II (dash-dotted blue), step case III (thick solid red) at (a) xst/δ0 = −9.56, (b) xst/δ0 = −0.97, (c)
xst/δ0 = 0.05, (d) xst/δ0 = 2.86.

crossflow component in the step cases attains more than twice the value in the smooth
case. When moving further downstream, uB decelerates in x close to the wall (figure 6c),
in the region of adverse pressure gradient. As a consequence, a second zone of crossflow
reversal emerges near the wall; see figure 10(d). Further from the wall, the excess of uB
relative to wB induced at the step corner maintains the crossflow component in the step
cases positive and stronger than in the smooth case.

4. Evolution of the perturbation field at the step

In classic studies of the stationary crossflow instability, special attention is paid to
the topology and behaviour of the characteristic co-rotating vortices that arise in the
developed flow field. The evolution of stationary crossflow vortices is accompanied by
a characteristic wavy fluid motion, i.e. a modulation of the flow field in the spanwise
and chordwise directions. Naturally, the wavy motion is accentuated as the perturbation
amplifies in x. A graphical representation of the developed chordwise velocity field in
the smooth reference case is provided as supplementary material available at https://
doi.org/10.1017/jfm.2022.456. It must be noted that the isolated form of the crossflow
instability as a perturbation structure manifests itself as patches of vorticity of alternating
sign in z (Bippes 1999; Hosseinverdi & Fasel 2016) accompanied by spanwise-distributed
regions of perturbation-velocity excess and deficit (see the supplementary material).
Since the activity of the harmonic components is weak at the x-position of the step
(§ 2.5), the fundamental perturbation component, u′

(0,1) + u′ †
(0,1), is very similar to the total

perturbation field near the step.
The presence of the forward-facing step and the associated changes on the underlying

base flow complicate further the identification of vortical structures. In particular, close to
the step, it is challenging to identify visually the structure of the developed crossflow
vortices using classical vortex-identification techniques such as the Q-criterion (Hunt,
Wray & Moin 1988). In step case I, the characteristic spanwise-modulated pattern in the
developed flow field is maintained rather invariant when passing the step in x (see the
supplementary material). This is not the case in step configuration III, as a strong distortion
of the developed-flow motion is evident, and the organisation of the total perturbation
field immediately downstream of the step is more pronounced (figures 11a,b) than in the
smooth case. At the same time, the total and fundamental perturbation fields in step case
III differ significantly from each other (figures 11b,c), suggesting an enhancement of the
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Figure 11. Organisation of the chordwise velocity of (a) the developed flow, (b) the total perturbation field,
and (c) the fundamental perturbation field, in step case III.

harmonic activity at the step. To segregate pertinent disturbance mechanisms, the analysis
is commenced by describing the evolution of the fundamental perturbation field, q′

(0,1).

4.1. Organisation of the fundamental perturbation field q′
(0,1)

For all cases, sufficiently upstream of the step, the profiles along y of the amplitude
function of the fundamental Fourier component, |ũ|(0,1), display the single-peaked
topology characteristic of the crossflow instability. Nevertheless, in the upstream vicinity
of the step, profiles of |ũ|(0,1) develop a secondary peak close to the wall; see
figures 12(a–c). When considering the corresponding three-dimensional perturbation
representation, u′

(0,1) + u′ †
(0,1), the secondary peak in the amplitude function manifests as
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Figure 12. Amplitude function |ũ|(0,1) profiles close to the step, with xst/δ0 values: (a) −2.04, (b) −0.45, (c)
−0.07, (d) 0.01, (e) 0.61, ( f ) 2, (g) 5, (h) 8. Smooth case (thin solid black), step case I (dotted orange), step
case II (dash-dotted blue), and step case III (thick solid red).

a system of velocity-perturbation streaks of alternating sign along the spanwise direction.
This is illustrated in figure 11(c).

Downstream of the step, a near-wall peak in the amplitude function |ũ|(0,1) co-existing
with the original primary peak is captured as well; see figures 12(d–h). The existence of
a secondary peak in the amplitude function profile is found for all xst > 0 in the near-step
regime and for all step cases. When moving downstream of xst = 0 in the largest step
case, the secondary peak exhibits strong growth in amplitude and eventually becomes
more prominent than the primary peak. This trend is reverted further downstream, as the
secondary peak decays in amplitude rapidly in x and merges back to the main profile. The
associated near-wall perturbation-streak system (figure 11c) behaves accordingly. Weak
manifestations of the secondary peak in the amplitude function |ũ|(0,1) develop in step
cases I and II as well, but never surpass the primary peak in strength.

The existence of a secondary near-wall peak in the perturbation shape has been
reported in previous investigations and pointed out as a relevant feature of the interaction
between the incoming crossflow instability and the step (Tufts et al. 2017; Eppink 2020;
Casacuberta et al. 2021). Furthermore, the aforementioned works, and more recently
Rius-Vidales & Kotsonis (2021), indicate that the incoming crossflow perturbation mode
deflects away from the wall when passing over the step. The present results support
this observation, as shown in figures 12(a–c). Additionally, Casacuberta et al. (2021)
observe that the near-wall streaks downstream of the step are accompanied by stationary
vortex-like perturbation structures that coexist with the incoming (crossflow) perturbation
structures at the step. Secondary near-wall perturbations that are structurally similar to
the ones reported by Casacuberta et al. (2021) are identified in the present study; these

943 A46-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.456


Crossflow instability interacting with forward-facing steps

–8 –7 –6 –5 –4 –3 –2 –1 0
0.08

0.09

0.10

0.11

0.12

0.13

xst /δ0

Au (0
,1

)/
u ∞

Figure 13. Amplitude of the fundamental chordwise-velocity perturbation component from DNS (lines) and
PSE (symbols) upstream of the step: smooth case (thin solid black line and circles), step case I (dash-dotted
orange line and triangles), step case II (dash-dotted blue line and diamonds), and step case III (thick solid red
line and squares). Vertical lines indicate the beginning of disagreement between DNS and PSE (1 % relative
error).

manifest as spanwise-distributed patches of opposite vorticity and have the same spanwise
wavenumber as the primary vortices. Nevertheless, these near-wall perturbation structures
accompanying the streaks are referred to hereafter as secondary since they are additional
elements not present in the smooth case.

4.2. Perturbation amplification upstream of the step
Next to describing the spatial evolution of the fundamental perturbation system q′

(0,1), a
main goal motivating the current analysis is to quantify the effect of the step in altering
the properties of the pre-existing stationary crossflow instability. In the present subsection,
the focus is put on effects upstream of the step.

A first metric employed to characterise the amplification of the fundamental crossflow
perturbation is the chordwise evolution of amplitude identified as the primary peak of
|ũ|(0,1). This amplitude definition is at present denoted by Au

(0,1) (§ 2.2); as pointed out
previously, a secondary peak in the perturbation amplitude function develops upstream of
the step but, unlike the downstream region, it does not surpass the primary peak in strength
in any step case. Thus |ũ|top

(0,1) = |ũ|max
(0,1) upstream of the step. It is emphasised that the latter

relation does not apply when considering the perturbation components w′
(0,1) and v′

(0,1)
since secondary peak(s) may become more prominent than the primary peak (Casacuberta
et al. 2021).

Lines in figure 13 indicate the chordwise evolution of Au
(0,1) measured in the present

DNS. Based on the choice of amplitude Au
(0,1), it is evident that the fundamental crossflow

perturbation becomes amplified gradually upstream of the step. Moreover, the overall
upstream amplification with respect to the reference case appears to be proportional to
the step height.

To gain additional insight into the underlying mechanisms for the observed upstream
amplification, it is instructive to monitor reduced approximations to the instability
growth. A powerful technique for this is a PSE analysis of the DNS base flow. The
comparison between DNS and PSE exposes the effect of inherent PSE assumptions,
such as quasi-parallelism, on the manifestation of amplification due to the step. On the
other hand, the present problem serves as an ideal platform to assess the limitations of
a classic stability method such as the PSE when they are applied in the presence of a
sharp geometrical discontinuity. Cooke et al. (2019) report that the PSE method suffers
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Figure 14. Profiles of the normalised amplitude function |ũ|(0,1) from DNS (solid line) and PSE (symbols)
upstream of the step at xst/δ0 values: (a) −4.5, (b) −2.5, and (c) −0.5.

from lack of numerical convergence when it is marched over the step due to the restriction
concerning the minimum marching step size.

The LPSE are solved in the domain xst < 0. The present choice of initial (inflow) DNS
perturbation amplitude yields a largely linear behaviour of the crossflow perturbation until
reasonably close to the step (§ 2.5). Thus the LPSE method has been considered for the
analysis of the upstream regime. The numerical set-up is identical to that employed for
the cross-validation with the reference DNS case; see § 2.5. The amplitude obtained by
solving the LPSE is represented by symbols in figure 13. A first main observation is
numerical convergence of the method until the upstream vicinity of the step; this result was
unanticipated, inasmuch as the near-step region contains areas of flow recirculation and
non-negligible chordwise base-flow derivatives and upwash, which are a priori violations
of the underlying assumptions of the PSE method (Herbert 1997). A second major result
of figure 13 is that the LPSE capture a main part of the upstream amplification process, as
indicated by the match in amplitude evolution between DNS and LPSE until significantly
close to the step. Therefore, the crossflow disturbance undergoes primarily linear growth
evolution supported by the step-distorted base flow, and the strong non-parallel effects
introduced by the step do not impact significantly the main amplification process in the
upstream regime.

The perturbation shape profiles obtained by DNS and LPSE are in excellent agreement
in the region of reasonably close amplitude match; see figures 14(a,b) representing
step case III. Figure 14(c) portrays additionally the perturbation shape at an x-station
immediately upstream of the step. Major differences in figure 14(c) arise in the near-wall
region; the secondary peak present in the results from DNS is not captured by the LPSE.
The present results show that the PSE method is robust in a region with non-negligible
non-parallel effects.

It should be noted that in the present DNS, the fundamental crossflow instability
amplifies upstream of the step in a regime where the strength of the base-flow crossflow
component decreases significantly in x (figure 10). Under parallel-flow approximations,
Mack (1984) indicates that the linear local instability characteristics are governed by
the directional profile, i.e. the profile of the three-dimensional boundary layer in the
direction of the wavenumber vector (Bippes 1999); in a classic swept-wing boundary layer
without steps, the wavenumber vector is roughly parallel to the direction of the crossflow
component (2.12). However, the present results pose the question of whether the inference
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of stability characteristics of the perturbation system from the properties of the crossflow
profile holds valid near the step.

4.3. Modal and non-modal growth at the step
The discussion on the mechanisms of interaction between the fundamental crossflow
perturbation and step-induced flow features is next extended to the region around the step,
and the physical nature of the mechanisms that govern the disturbance evolution.

When studying the stationary three-dimensional perturbation behaviour in a
two-dimensional separated boundary layer, Marxen et al. (2009) find that a mixture of
modal and non-modal growth governs the disturbance evolution. Similarities with Marxen
et al. (2009) appear in the presently inspected flow, specifically, the step-induced region of
favourable-to-adverse pressure gradient and the separation bubble. Nevertheless, a major
difference in the present case is the existence of the modal crossflow instability upstream
of the step, which was not considered by Marxen et al. (2009). Based on the observations
of Marxen et al. (2009), the rapid deflection of the base flow compared to the smooth
reference case can be expected to be fertile for the development of non-modal growth in
the present case. Thus to inspect possible non-modal mechanisms near the step, the growth
rate of the fundamental velocity-perturbation vector, v′

(0,1), decomposed following the
base-flow orientation (2.16), is evaluated here. In the case of pure modal growth, different
velocity components ought to exhibit a (reasonably) common growth rate, implying the
existence of a single growing eigenmode (Marxen et al. 2009).

The following analysis is carried out by considering the amplitude functions
corresponding to the modulus of the fundamental perturbation vector itself, |ψ̃ |(0,1) (see
(2.28)), and to the component of the perturbation vector tangential to the base-flow
direction, |τ̃ |(0,1) (see (2.27)). The former is portrayed in figure 15 for the reference case
and for the step cases. In step configuration III (figure 15d), the near-wall secondary
peak in the perturbation amplitude function downstream of the step surpasses the
primary peak in strength. Similar observations apply to |τ̃ |(0,1). Casacuberta et al.
(2021) propose that under these circumstances, the global maxima of the perturbation
amplitude function measures inherently the growth of the near-wall secondary structures.
A more representative characterisation of the amplification of the incoming perturbation
is obtained instead by tracking the evolution of the original primary peak. A similar metric
can be devised considering |ψ̃ |top

(0,1) and |τ̃ |top
(0,1) instead of |ψ̃ |max

(0,1) and |τ̃ |max
(0,1) (see § 2.2).

The associated wall-normal locations are denoted by ỹψ(0,1) (indicated in figure 15 by solid
circles) and by ỹτ(0,1), respectively. Additionally, dotted and solid lines in figure 15 represent
uB = 0 and the locations of inflection points in the crossflow component, respectively.

Figure 16 shows the chordwise evolution of the growth rate associated with |ψ̃ |top
(0,1)

and |τ̃ |top
(0,1) computed following definition (2.10). In the reference case, as well as

sufficiently upstream and downstream of the step, the fundamental perturbation vector and
its component parallel to the base flow have similar growth rates. Following the discussion
provided by Marxen et al. (2009), this indicates that perturbation growth is due largely to a
modal instability, which is associated naturally with the incoming crossflow instability. On
the other hand, the significant differences between the growth rate evolution in the vicinity
of the step in figures 16(b–d) provide a first indication of possible non-modal perturbation
growth. Since the single modal crossflow instability manifests again shortly downstream of
the step, it is reasonable to consider a combination of modal and non-modal mechanisms
governing the perturbation evolution at the step.
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Figure 15. Fundamental total amplitude function contour, wall-normal position of maximum amplitude
|ψ̃ |top

(0,1) (circles), loci of base-flow crossflow inflection points (solid cyan), and base-flow reversal uB = 0
(dotted green), in (a) the smooth case, (b) step case I, (c) step case II, and (d) step case III.
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Figure 16. Growth rates associated with |ψ |top
(0,1) (dashed) and |τ |top

(0,1) (solid) in (a) the smooth case, (b) step
case I, (c) step case II, and (d) step case III.
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Figure 17. Chordwise evolution of the amplitude associated with |ψ |top
(0,1) in the smooth case (thick solid

black), step case I (dotted orange), step case II (dashed-dotted blue), and step case III (thin solid red).

The realisation that different (base-flow-oriented) perturbation components display a
significantly different growth rate evolution at the step poses the challenge of establishing
a global estimation for the amplification in this regime. For instance, Casacuberta et al.
(2021) find that immediately downstream of the step, u′

(0,1) shows destabilisation, whereas
v′
(0,1) shows stabilisation. Based on this disparity, one may conclude that energy-based

criteria, encompassing simultaneously the evolutions of all perturbation components, are
more suitable. The perturbation kinetic energy density of the Fourier space jβ0 is

Ejβ0 = 1
2

∫ ∞

0

(
u′ †
(0,j)u

′
(0,j) + v

′ †
(0,j)v

′
(0,j) + w′ †

(0,j)w
′
(0,j)

)
dy = 1

2

∫ ∞

0
|ψ̃ |2(0,j) dy. (4.1)

The norm of the fundamental perturbation vector, |ψ̃ |(0,1), serves hereafter as a metric to
characterise growth or decay at the step.

In a fashion similar to the previous analysis, we evaluate the growth of the primary peak
of the amplitude function, |ψ̃ |top

(0,1), thus avoiding possible artefacts from the amplification
of the secondary near-wall structures at the step. The chordwise evolution of amplitude
associated with |ψ̃ |top

(0,1) in the vicinity of the step is illustrated in figure 17. At first glance,
the amplitude curves of step cases I and II maintain a rather constant growth in the region
where non-modal growth sets in, possibly indicating that its effect is mild in comparison
to the modal growth associated with the original pre-existing instability. However, step
case III appears to differ considerably. The curve of step case III initially displays growth
downstream of the step, but this is followed rapidly by a sudden and strong amplitude
decay in the downstream direction. Therefore, based on the current choice of amplitude
characterisation, the fundamental crossflow perturbation emerges significantly stabilised
immediately downstream of a large step.

The current observations are in contrast to conclusions drawn by Tufts et al. (2017),
who indicate that for large steps, the interaction between the downstream region of
flow recirculation and the incoming crossflow vortices amplifies the perturbation. Eppink
(2020) reports stationary crossflow amplification at the step as well; the author attributes
it to the destabilising effect of the inflectional profiles arising in the regions of flow
separation and crossflow reversal. Increasing the step height results in enhanced stationary
crossflow-instability growth driven by the enhancement of reverse-flow regions (Eppink
2020). Nevertheless, both aforementioned studies do not discriminate between possible
locally formed near-wall structures and the pre-existing crossflow instability. As such, in
the region where the amplitude of the near-wall structure dominates, a local rapid growth

943 A46-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.456


J. Casacuberta, S. Hickel, S. Westerbeek and M. Kotsonis

is recorded. In contrast, in the present study, monitoring only the primary instability
amplitude reveals a milder impact – and even stabilisation – caused by the highest step.

In summary, the present DNS indicate that the near-step regime encompasses a mixture
of perturbation mechanisms acting simultaneously. Secondary near-wall structures are
induced at the step; their growth is not captured by the LPSE, despite the remarkable ability
of the latter to model the amplitude and shape of the incoming crossflow instability up to
close vicinity of the step. Additionally, differences in the growth rate in different directions
point to non-modal effects feeding growth to certain perturbation components. Finally,
large differences in perturbation growth rate are identified, depending on the wall-normal
position at which the latter is evaluated. Previous work on forward-facing-step flows in
the absence of a crossflow instability (Lanzerstorfer & Kuhlmann 2012) has identified
spanwise-distributed near-wall velocity streaks, structurally similar to the secondary
structures reported here. This suggests that the near-wall vortex-like structures and streaks
can exist independently from (but possibly triggered and conditioned in wavelength and
phase by) the pre-existing crossflow perturbation. Furthermore, regardless of their nature
and origin, the near-wall secondary structures decay rapidly in x and merge eventually
with the primary crossflow vortices. Accordingly, it becomes important to characterise the
impact of the step on the incoming fundamental crossflow perturbation by evaluating the
stability properties of the perturbation system in the region far from the wall, where the
incoming primary structures lift up and pass over the step.

4.4. Perturbation misalignment and energy-transfer mechanisms at the step
Based on the observations in the previous subsection, non-modal growth mechanisms, in
conjunction with the primary modal instability growth, likely play a role near the step.
Marxen et al. (2009) relate a modal instability in which all perturbation components
exhibit a common growth rate in x to the perturbation vector maintaining its orientation
with respect to the base flow. Following this reasoning, the observed differences displayed
by different perturbation components in figure 16 suggests a link to a local misalignment
between the base-flow vector and the perturbation vector at the step. This misalignment
can be expected in a region of strong and sudden spanwise base-flow modulation (figures 7
and 8). To explore this in detail, the perturbation-vector field υ ′

(0,j) and its component
aligned with the base-flow direction, υ ′

t,(0,j), are considered (see (2.16)). The analysis
carried out next is generalised for any Fourier component; the discussion will focus on
the fundamental mode, which is the scope of the current section. Since υ ′

(0,j) and υ ′
t,(0,j)

are complex-valued, the a priori complex-valued angle ζ(0,j) between υ ′
(0,j) and υ ′

t,(0,j) is
introduced (Scharnhorst 2001) by

cos
(
ζ(0,j)

) =
υ ′
(0,j) · υ ′

t,(0,j)

‖υ ′
(0,j)‖ ‖υ ′

t,(0,j)‖
, (4.2)

whereas the real-valued Euclidean angle ζE,(0,j) between υ ′
(0,j) and υ ′

t,(0,j) is defined by
(Scharnhorst 2001)

cos
(
ζE,(0,j)

) =
Re

(
υ ′
(0,j) · υ ′

t,(0,j)

)
‖υ ′

(0,j)‖ ‖υ ′
t,(0,j)‖

. (4.3)

It must be noted that

υ ′
(0,j) · υ ′

t,(0,j) =
(
υ ′

t,(0,j) + υ ′
n,(0,j)

)
· υ ′

t,(0,j) = υ ′
t,(0,j) · υ ′

t,(0,j) = ‖υ ′
t,(0,j)‖2 (4.4)
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since υ ′
t,(0,j) and υ ′

n,(0,j) are complex orthogonal; see Appendix A. As a consequence, (4.2)
and (4.3) are equivalent, thus ζ(0,j) = ζE,(0,j). Furthermore, considering (4.4), expression
(4.2) can be rewritten as

cos
(
ζ(0,j)

) =
‖υ ′

t,(0,j)‖
‖υ ′

(0,j)‖
= |τ̃ |(0,j)

|ψ̃ |(0,j)
, (4.5)

implying that ζ(0,j) = ζ(0,j)(x, y).
The rate of change of the angle ζ(0,j) in x can be related directly to the relative growth

rate evolution of the perturbation components. We first evaluate the chordwise derivative
of ζ(0,j):

∂

∂x

(
cos

(
ζ(0,j)

)) =
∂

∂x

(|τ̃ |(0,j)) |ψ̃ |(0,j) − ∂

∂x

(
|ψ̃ |(0,j)

)
|τ̃ |(0,j)

|ψ̃ |2(0,j)
. (4.6)

From (4.6),
∂

∂x

(|τ̃ |(0,j))
|τ̃ |(0,j) /=

∂

∂x

(
|ψ̃ |(0,j)

)
|ψ̃ |(0,j)

⇒ ∂

∂x

(
ζ(0,j)

)
/= 0. (4.7)

Condition (4.7) can be evaluated for a particular Fourier component at any (x, y) location
of the corresponding amplitude functions. From the results of figure 16, the occurrence
of non-modal growth at the step has been justified based on the different growth rate
evolutions associated with |ψ̃ |top

(0,1) and |τ̃ |top
(0,1). We observe that the wall-normal position

associated with |ψ̃ |top
(0,1) (figure 15) and |τ̃ |top

(0,1), ỹψ(0,1) and ỹτ(0,1) are reasonably close
to each other in the vicinity of the step in configuration III, and are almost identical
in configurations I and II. Under the assumption ỹψ(0,1) ≈ ỹτ(0,1), when evaluated at this
common wall-normal position, (4.7) is reduced to

ατi,(0,j) /=αψi,(0,j) ⇒ ∂

∂x

(
ζ(0,j)

)
/= 0. (4.8)

Thus differences in the growth rate evolution in figure 16 appear to be linked to the
fundamental perturbation vector changing its orientation with respect to the base-flow
vector.

Figure 18(a) portrays the chordwise evolution of ζ(0,1)(x, ỹτ(0,1)). In the smooth reference
case, the angle remains constant at approximately 4.6◦. That is, the fundamental
perturbation vector maintains its orientation with respect to the base-flow vector while
growing in x, as can be expected in the case of a single modal (crossflow) instability.
Furthermore, it conforms with the results of figure 16(a), where the perturbation vector
and its tangential component are shown to follow a common growth rate.

When considering the step cases, ζ(0,1)(x, ỹτ(0,1)) changes significantly in x in the vicinity
of the step; see figure 18(a). Approximately in the range xst/δ0 ∈ [−1.5, 4], in line with
(4.8), large differences in both the growth rate evolution in figures 16(b–d) and the
rate of change of ζ(0,1)(x, ỹτ(0,1)) in x in figure 18(a) are evident. Significant chordwise
variations of ζ(0,1) are captured in the near-wall region downstream of the step as well;
see figure 18(b), representing a constant wall-normal location. Figure 19 gives further
evidence that the crossflow perturbation does not follow the base-flow advection direction
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Figure 18. Chordwise evolution of the perturbation-to-base-flow angle ζ(0,1) at (a) the wall-normal location
of |τ̃ |top

(0,1), and (b) y/δ0 = h/δ0 + 0.2, in the smooth case (thin solid black), step case I (dotted orange), step
case II (dashed-dotted blue), and step case III (thick solid red).

at the step. Considering step case III, figure 19 portrays x–z planes of u′
(0,1) + u′ †

(0,1) and

w′
(0,1) + w′ †

(0,1) with projected base-flow streamlines (solid lines) and wavefronts of the
perturbation field in the plane (dash-dotted lines).

In classic spatial LST analysis, the wavenumber vector is used typically to characterise
the perturbation propagation direction (Mack 1984; Arnal 1993). The wavenumber vector
is normal to the wavefronts, hence the results of figure 19 show graphical evidence
that the trajectory of the wavefronts and the projected base-flow streamlines gradually
diverge upstream of the step. In line with the results of figure 18(a), the wavenumber
vector displays a sudden change of orientation with respect to the base-flow direction
immediately downstream of the step. Eppink (2020) reports similarly that isocontours of
chordwise-velocity perturbation bend vigorously close to the step, before realigning with
the direction of the inviscid streamlines.

The possible implications of the misalignment between perturbations and base flow
on the disturbance growth and decay at the step are scrutinised next by means of the
Reynolds–Orr equation. This equation governs the perturbation kinetic energy evolution
(Schmid & Henningson 2001). Of relevance for the present analysis is the production term
of the Reynolds–Orr equation,

P = −
∫

V
υ ′ · (υ ′ · ∇)

υB dV, (4.9)

which expresses the kinetic energy transfer rate between the base flow and the perturbation
field in a volume V . Notwithstanding the stationary nature of the flow field studied
here, upon characterising the spatial evolution of the integrand of (4.9), insight can be
gained into the location and strength of the associated energy-transfer mechanism; see, for
instance, Albensoeder et al. (2001), Lanzerstorfer & Kuhlmann (2012) and Loiseau et al.
(2014).
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Figure 19. (a) Chordwise and (b) spanwise fundamental perturbation-velocity fields at y/δ0 = 1.48 in step
case III. In-plane base-flow streamlines (solid lines) and perturbation wavefronts (dash-dotted lines) are

shown.

The present analysis is restricted to the fundamental crossflow component (i.e.
q′
(0,1)). We introduce the perturbation Fourier expansion (2.9) into (4.9), and using the

orthogonality of complex exponentials, the leading-order term

Pβ0 = −2π

β0

∫∫
Λβ0 dx dy, (4.10)

Λβ0(x, y) =
(

ũ(0,1)ũ
†
(0,1) + ũ†

(0,1)ũ(0,1)
) ∂uB

∂x
+
(

ũ(0,1)ṽ
†
(0,1) + ũ†

(0,1)ṽ(0,1)

) ∂uB

∂y

+
(
ṽ(0,1)ũ

†
(0,1) + ṽ

†
(0,1)ũ(0,1)

) ∂vB

∂x
+
(
ṽ(0,1)ṽ

†
(0,1) + ṽ

†
(0,1)ṽ(0,1)

) ∂vB

∂y

+
(

w̃(0,1)ũ
†
(0,1) + w̃†

(0,1)ũ(0,1)
) ∂wB

∂x
+
(

w̃(0,1)ṽ
†
(0,1) + w̃†

(0,1)ṽ(0,1)

) ∂wB

∂y
,

(4.11)

is retained. Equation (4.10) characterises the exchange of kinetic energy between the base
flow and the fundamental perturbation. Additionally, the sign of Pβ0 informs whether
kinetic energy is transferred from the base flow to the perturbation field (Pβ0 > 0), i.e.
the process is destabilising, or vice versa (Pβ0 < 0) (Albensoeder et al. 2001).

The production term Pβ0 is evaluated by considering a volume V defined by 0 ≤
xst/δ0 ≤ 10, h/δ0 ≤ yst/δ0 ≤ 6, zmin ≤ z ≤ zmax since the current aim is to quantify
perturbation mechanisms downstream of the step. Table 4 summarises the quantitative
results normalised with the reference case, where P� denotes integration of the signed
production, and P�abs denotes integration of its local absolute value. The integral of
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Production Smooth Step case I Step case II Step case III

Pβ0/P
� 1.00 1.85 2.13 1.01

Pβ0 abs/P
�
abs 1.00 1.63 1.89 2.35

Table 4. Regular (top) and absolute value (bottom) integral evaluation of the Reynolds–Orr production term
Pβ0 downstream of the step normalised with the smooth reference case (P�).

the absolute value confirms that the presence of the step enhances the exchange of
kinetic energy between the base flow and the fundamental perturbation field. The
perturbation-to-base-flow misalignment (and posterior realignment) induced at the step
carries inherently growth (and decay) of the normal perturbation component υ ′

n,(0,1)
relative to the tangential component υ ′

t,(0,1) (see (2.16)). Rapid change in x of the
perturbation component acting normal to the base-flow streamlines appears to enhance
the energy transfer between base flow and perturbations.

Additionally, figure 20 illustrates the integrand of Pβ0 , −2π/β0Λβ0 . Immediately
upstream of xst = 0, in all step configurations, an enhancement of kinetic energy transfer
towards the perturbation field (i.e. −2π/β0Λβ0 > 0) is captured . This is in agreement with
the results of figure 13, highlighting that the incoming crossflow perturbation is amplified
gradually as it approaches the step. Downstream of the step, −2π/β0Λβ0 maintains a
dominant positive contribution in step cases I and II (figures 20b,c), which is consistent
with the rather constant amplification trend depicted in figure 17. For step case III, a
prominent region of negative −2π/β0Λβ0 arises (figure 20d) in the region where the
perturbation amplitude decays (figure 17). It should be stressed that the remaining terms
of the Reynolds–Orr equation ought to be considered for a full energy budget description;
however, the production term itself is sufficient to characterise major stability features of
the step-modified fundamental perturbation field.

5. Perturbation evolution downstream of the step

The analysis is extended next to the region further downstream of the step, up to
approximately xst/δ0 = 30. Previous work identified dominant harmonic activity in this
regime (Eppink 2020; Rius-Vidales & Kotsonis 2021).

The evolution of the harmonic field υ ′
(0,2) is characterised in figure 21, where the

associated total amplitude function is shown. Careful inspection of the topology of the field
reveals similarities with that of the fundamental Fourier component, υ ′

(0,1). Additional
secondary stationary near-wall perturbation structures develop as well immediately
downstream of the step. They manifest in the form of spanwise-distributed regions
of opposite vorticity with spanwise wavenumber 2β0. In the smallest step case, the
pre-existing harmonic perturbation elements remain as dominant structures downstream
of the step since additional near-wall ones are rather weak. This is not the case in step
case III, for which the new secondary near-wall structures display rapid growth in x and
eventually overtake the incoming ones as a main perturbation feature. Naturally, the u′

(0,2)
streaks expand accordingly, which explains the particular behaviour of the amplitude
function for step case III depicted in figure 21(d). Similarly, Eppink (2020) identifies
streamwise-oriented vortices localised in the near-step regime, which are connected to
the harmonic content of the perturbation field. The origin of these secondary structures is
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Figure 20. Integrand of the Reynolds–Orr production term Pβ0 in (a) the smooth case, (b) step case I, (c) step
case II, and (d) step case III.

ascribed by Eppink (2020) to the modulation of the step-induced upper separation bubble
under the action of the incoming crossflow vortices.

A visual correlation is identified between the location of the maxima of the near-wall
secondary peak in the amplitude function |ψ̃ |(0,2) in step cases II and III, and the location
of the secondary step-induced inflection points in the crossflow component close to the
wall (figures 21c,d). Eppink (2020) postulates that stationary crossflow amplification
at the step corner is triggered by the destabilising effect of the step-induced inflection
points. As shown in §§ 4.3 and 4.4, this is not the case for the pre-existing fundamental
crossflow perturbation since it is stabilised locally by a sufficiently large step. Nonetheless,
the results of figure 21 suggest a local destabilising effect of the near-wall step-induced
inflection points when considering the harmonic field υ ′

(0,2).
To shed light on this possibility, a linear local and parallel stability analysis, based on

the Orr–Sommerfeld eigenvalue problem, is conducted on the base-flow profiles in the
range 4 ≤ xst/δ0 ≤ 50.2 considering β = 2β0. In all step cases, an eigensolution whose
associated eigenvalue becomes unstable within a particular x-range (figures 22b–d) is
identified, which remains stable in the equivalent eigenspectrum of the smooth reference
case (figure 22a). Hereafter, this eigenvalue is referred to as critical and is denoted by
αOS = αOS

r + iαOS
i . Therefore, the step-distorted base-flow profiles appear to support

the exponential amplification of small-amplitude perturbations with half the spanwise
wavelength of the fundamental crossflow mode.

Furthermore, the amplification factor in x of the critical unstable Orr–Sommerfeld
eigenmode is proportional to the step height. In line with observations of Eppink (2020),
for the particular case of the field υ ′

(0,2), an increase in the step height appears to
increase the destabilising influence of the step-distorted inflectional base-flow profiles.
Additionally, in results not shown here, linear local unstable eigensolutions are also
identified when the analysis is repeated for higher-order harmonics. Although not fully
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Figure 21. Harmonic (0, 2) total amplitude function contour, wall-normal position of |ψ̃ |top
(0,2) (circles), loci

of base-flow crossflow inflection points (solid cyan), and base-flow reversal uB = 0 (dotted green) in (a) the
smooth case, (b) step case I, (c) step case II, and (d) step case III. Also shown are wall-normal positions of
|ψ̃ |max

(0,2) downstream of the step in case III (triangles).

1.04

0

1

2

–1

1.06 1.08 1.10

1.07

0

1

2

–1

1.08 1.101.09 1.11

Re(αr
OS)δ0

1.04

0

1

2

–1

1.06 1.08 1.10

1.04

0

1

2

–1

1.06 1.08 1.10

Re(αr
OS)δ0

Im
(α

iO
S )
δ 0

 (
×

1
0

2
)

Im
(α

iO
S )
δ 0

 (
×

1
0

2
) (a) (b)

(c) (d)

Figure 22. Trajectory of the critical unstable eigenvalue of the Orr–Sommerfeld eigenspectrum for increasing
x in equispaced partitions in the range xst/δ0 ∈ [4, 50.2] with β = 2β0: (a) smooth case, (b) step case I, (c) step
case II, and (d) step case III. Dark-to-bright colour corresponds to increasing x.

conclusive, this model suggests that near-wall perturbations with β > β0 triggered at
the step corner are amplified further downstream through an Orr–Sommerfeld type of
mechanism, possibly associated with the step-induced near-wall inflection points.

The behaviour of the harmonic Fourier modes for the DNS at the highest step is
characterised quantitatively in figure 23, portraying the evolution in x of the amplitude
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Figure 23. Chordwise evolution of the amplitude associated with |ũ|max
(0,j), j = 1–5 (thick-to-thin), j = 0

(dotted), from DNS (solid lines), LPSE (blue symbols), NPSE (white symbols): (a) in the near-step regime, (b)
downstream of the step, for step case III. The vertical red line indicates the step location.

associated with |ũ|max
(0,j), j = 0–6. As suggested by the results of the Orr–Sommerfeld

analysis, growth of the high-order harmonics is captured downstream of the step.
Additionally, figure 23 depicts the amplitude curves obtained by solving the LPSE and
NPSE on the DNS base flow downstream of (but not at) the step.

The numerical set-up of the present NPSE simulations is identical to that employed
in previous sections (§§ 2.5 and 4.2), albeit with a major difference: the initial condition
of the marching scheme is provided by the local DNS solution at a selected x-position
downstream of the step. Furthermore, for NPSE, this DNS (Fourier-analysed) initial
condition is assigned simultaneously to all modes considered in the simulation at the
common initial marching position.

It is found that an NPSE solution is able to march from xst/δ0 = 8.57 and match
reasonably the results from DNS (see figure 23). Excellent agreement is obtained
sufficiently far from the step. Therefore, NPSE initialised from DNS data are able to
resolve the perturbation evolution downstream of the step, even when an initial condition
extracted reasonably close to the step is considered. Shifting the starting position of the
NPSE simulation upstream of xst/δ0 = 8.57 results rapidly in a significant loss of accuracy.
Similarly, the solution of the LPSE marched from xst/δ0 = 8.57 matches reasonably the
local trend displayed by the fundamental crossflow component in the DNS and NPSE
until approximately xst/δ0 = 100. Thereby, the present results show evidence that after
passing the largest step, the fundamental crossflow perturbation evolves following linear
perturbation mechanisms.

This finding is contrary to the observed behaviour in the no-step case, where LPSE and
NPSE start to display differences much closer to the virtual location of the step (§ 2.5).
The fundamental perturbation experiences a significant stabilisation at the largest step,
as detailed previously in § 4.3 and illustrated in figure 17. In § 4.4, this behaviour has
been connected to the effective transfer of kinetic energy between the base flow and the
fundamental perturbation, which is characterised quantitatively by the linear production
term in the Reynolds–Orr equation (table 4 and figure 20d). It is hypothesised that the
enhancement of this linear perturbation effect under the influence of the step overshadows
the impact of the nonlinear interactions on the evolution of the fundamental perturbation.
This would be substantiated further by the rapid emergence of differences between LPSE
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and NPSE initialised downstream of step cases I and II using the same methodology as
employed for step case III; in step cases I and II, the behaviour of the linear production
term is closer to that exhibited by the no-step case (figure 20).

It should be noted that linear behaviour of the fundamental perturbation downstream
of the largest step arises in a regime with significant amplification of the harmonic
components (figure 23). As shown in figure 22, harmonic growth near the step can be
linked potentially to the unstable nature of the base-flow profiles to spanwise wavelengths
smaller than the fundamental one. In contrast, Eppink (2020) attributes stationary
crossflow growth downstream of large steps – beginning approximately at the end of the
separated-flow region – to a nonlinear effect; the author justifies this based on the presence
of secondary structures with harmonic wavelengths in this region (Eppink 2020). It can
be anticipated that in order to assess whether the crossflow perturbation follows linear or
nonlinear growth mechanisms downstream of the step, a multi-parametric space ought to
be defined. The height of the step and the amplitude of the pre-existing perturbation at the
location of the step may stand out as dominant parameters in this regard.

6. Conclusions

Direct numerical simulations (DNS) of a purely stationary interaction between a critical
crossflow instability and a range of forward facing steps have revealed salient features
of laminar–turbulent transition due to geometrical imperfections. The topology of the
laminar base flow includes recirculating flow immediately upstream and downstream of all
steps studied. In line with previous investigations, reversal of the crossflow component and
near-wall secondary inflection points in the crossflow profile are identified near the steps.
A main feature of the step-distorted base flow is the sudden deflection of the streamlines
at the step not only in the wall-normal direction, but also in the spanwise direction. This is
ascribed mainly to the effect of the local pressure gradient, which is adverse upstream and
downstream of the step, but favourable locally at the step corner.

The analysis of the step-modified perturbation mechanisms is first centred around effects
on the fundamental perturbation component, i.e. the primary spanwise Fourier mode of the
stationary perturbation field. Contrary to the model conjectured previously by Tufts et al.
(2017), the main body of the fundamental crossflow instability is found to pass gradually
over the step sufficiently far from the wall, with no apparent explicit interaction with
the regions of flow recirculation. As it approaches the step in the chordwise direction
x, the fundamental crossflow perturbation is amplified gradually, with respect to the
smooth reference case. A close match of the DNS and the linear parabolised stability
equations (LPSE) amplitudes in this region reveals linear perturbation growth driven
purely by the modification of the base flow by the step. Furthermore, the amplification
factor immediately upstream of the step is proportional to the step height.

In the immediate vicinity of the step and close to the wall, additional
perturbation-velocity streaks develop in a short region upstream and downstream of
the step. These new perturbation structures are conjectured to be independent from
(but possibly triggered and conditioned by) the incoming crossflow perturbation, and
manifest in the fundamental amplitude function as a secondary peak close to the wall.
These secondary streaky structures are reminiscent of classic step-flow features reported
widely in the literature. The apparent independence of these structures from the incoming
crossflow instability highlights further the need for a proper definition of instability
amplitude when rapid geometry changes are present. In this work, the quantitative analysis
of the impact of the step on the incoming crossflow instability is based on the amplitude
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measured by tracking the (upper) local peak of the corresponding amplitude function
instead of tracking the global maximum value at each chordwise station.

Downstream of the smallest steps studied, the fundamental crossflow perturbation
maintains a rather constant amplification. However, it is stabilised significantly
downstream of the largest step, before amplifying again further downstream. This observed
local stabilising effect induced by the largest step is in opposition to recent experimental
and numerical reports indicating sudden and vigorous amplification of the crossflow
instability due to a large step (Tufts et al. 2017; Eppink 2020). This apparent discrepancy
is a direct artefact of the inclusion of the locally formed and rapidly amplified near-wall
structures in the instability amplitude estimation, thus overshadowing the incoming
instability response.

By use of the Reynolds–Orr equation, it is shown that the step enhances locally the
exchange of kinetic energy between the base flow and the fundamental perturbation field.
The disturbance kinetic energy production term yields plausible explanations for both
the stabilising and destabilising effects captured in the DNS for different step heights.
Furthermore, the step-induced enhancement of kinetic energy transfer takes place in a
region where the change of orientation of the fundamental perturbation vector relative to
the direction of the base-flow vector is evident. This misalignment of perturbation and
base flow is not observed in the smooth reference case. It can be shown analytically
that for the current flow conditions, the different growth rate evolution in x, measured
in the DNS between the (fundamental) total perturbation component and the perturbation
component tangential to the base-flow direction, is a sufficient condition for the relative
change in orientation between the associated vectors. Other studies on three-dimensional
stationary perturbations link a change of orientation of the perturbation vector relative to
the base-flow direction to non-modal growth mechanisms (Marxen et al. 2009), which in
the present case may blend with the original modal (crossflow) instability mechanism at
the step.

Previous work ascribes stationary crossflow growth to the destabilising influence of
the step-induced near-wall inflection points in the crossflow component (Eppink 2020).
Disregarding possible effects on the new near-wall structures formed at the step, no
apparent evidence supporting a significant destabilising effect of these step-induced
inflection points on the fundamental crossflow instability is found in this work. However,
strong evidence is reported for the higher harmonic field, i.e. the secondary spanwise
Fourier mode, containing perturbations with half the fundamental spanwise wavelength.
Conformably, and in agreement with recent experimental investigations (Eppink 2020;
Rius-Vidales & Kotsonis 2021), significant growth of the higher-order harmonic crossflow
components is measured downstream of the step in the DNS. An ongoing debate in the
literature examines whether this harmonic amplification arises via nonlinear forcing of the
fundamental crossflow component or, vice versa, the enhanced harmonic activity induces
nonlinear growth of the fundamental crossflow component. In the present work, it becomes
evident that the amplitude evolution of the primary Fourier mode from DNS matches
reasonably the solution of the LPSE initialised close downstream of (but not at) the largest
step. Thus further downstream of the largest step, the fundamental crossflow perturbation
evolves following linear perturbation mechanisms, in spite of the significant growth of the
harmonic components in this regime. On the other hand, the instability growth downstream
of the smallest steps is dominated nonlinearly in this region, indicating that the nature of
the perturbation mechanisms is a function of, at least, the step height.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.456.
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Appendix A. Definition of the normal perturbation component

The second vector of decomposition (2.16), υ ′
n,(0,j), represents a perturbation acting

normal to the base-flow-aligned perturbation component υ ′
t,(0,j). Whereas the direction

tangential to the base flow is uniquely defined (2.18), the direction associated with υ ′
n,(0,j)

is, at present, taken inherently as that defined by the difference between υ ′
(0,j) and υ ′

t,(0,j)
(2.16). Hence

υ ′
n,(0,j) =

⎡
⎢⎢⎢⎢⎣

|ũ|(0,j) exp
(

i
(

jβ0z + ϕu
(0,j)

))
|ṽ|(0,j) exp

(
i
(

jβ0z + ϕv(0,j)

))
|w̃|(0,j) exp

(
i
(

jβ0z + ϕw
(0,j)

))

⎤
⎥⎥⎥⎥⎦

− 1
‖υB‖2

√
(γ+
(0,j))

2 + (γ−
(0,j))

2 exp
(

i
(

jβ0z + ϕτ(0,j)

))⎡⎣uB
vB
wB

⎤
⎦ . (A1)

The amplitude function ‖υ ′
n,(0,j)‖ associated with the perturbation component υ ′

n,(0,j)
can be obtained directly by relating the amplitude functions (or moduli) of υ ′

(0,j) and
υ ′

t,(0,j):

‖υ ′
(0,j)‖2 = ‖υ ′

t,(0,j)‖2 + ‖υ ′
n,(0,j)‖2, (A2)

since υ ′
t,(0,j) and υ ′

n,(0,j) are complex orthogonal,

υ ′
t,(0,j) · υ ′

n,(0,j) = υ ′
t,(0,j) · υ ′

(0,j) − ‖υ ′
t,(0,j)‖2 = 0, (A3)

which follows from the fact that υ ′
t,(0,j) = (υ ′

(0,j) · υB/‖υB‖2)υB (§ 2.6). Here, the dot
denotes the standard Hermitian inner product:

υ ′
t,(0,j) · υ ′

n,(0,j) =
3∑

k=1

υ
′ †
n,(0,j)(k)υ

′
t,(0,j)(k), (A4)

with k denoting the components of the corresponding vector field.
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