
4

Wess–Zumino–Witten model and coset models

The two-dimensional Wess–Zumino–Witten (WZW) model was introduced in
the seminal paper of Witten [224]. The model makes use of the WZ term that
was introduced by Wess and Zumino in [217]. Sometimes the model is referred
to as the WZWN model, where the N stands for Novikov, who independently
invoked a similar model [170]. Here we follow only [224].

4.1 From free massless scalar theory to the WZW model

Consider the free massless scalar theory that was described in Section 1.2, but
now with X̂(z, z̄) being an angle variable defined in the interval [0, 2π]. The
action of the scalar field can now be re-written in the following form,

S =
∫

d2xL =
1
8π

∫
d2z∂ν X̂∂ν X̂

=
1
8π

∫
d2z∂ν (eiX̂ )∂ν (e−iX̂ ) =

1
4π

∫
d2z∂u∂̄u−1 , (4.1)

where u = eiX̂ (z ,z̄ ) is an abelian group element. Recall that the theory is char-
acterized by a Virasoro algebra and an abelian ALA structure. In terms of this
variable the currents J and J̄ can be written as,

J = −iu−1∂u = iu∂u−1 , J̄ = −iu−1 ∂̄u = iu∂̄u−1 ,

with

∂̄J = ∂J̄ = 0

and

T =: (u−1∂u)2 :=: (u∂u−1)2 : .

It is now tempting to replace the abelian u with a non-abelian group element,

u ∈ G, G = SO(N) or SU(N), (4.2)

and consider the action,

Ssm =
1
4π

∫
d2zTr[∂u∂̄u−1 ], (4.3)
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62 Wess–Zumino–Witten model and coset models

where the trace is taken in fundamental representation so that,

Tr[TaT b ] =
1
2
δab .

The question here is whether this action admits a similar non-abelian affine Lie
algebra and Virasoro algebra. Let us analyze the equations of motion, symmetries
and the corresponding currents of this action. The variation of the action under
u→ u + δu is,

δSsm =
1
4π

∫
d2zTr[∂(δu)∂̄u−1 − ∂u∂̄(u−1δuu−1)]

=
1
4π

∫
d2zTr

[
u−1δu[u−1 ∂̄∂(u)− ∂∂̄(u−1)u]

]
=

1
4π

∫
d2zTr

[
u−1δu∂μ(u−1∂μu)

]
=

1
4π

∫
d2zTr

[
δuu−1∂μ(u∂μu−1)

]
, (4.4)

were we use δu−1 = −u−1δuu−1 and ∂u−1u = −u−1∂u, following from
δ(u−1u) = 0 and ∂(u−1u) = 0. It is easy to realize that for a constant group
element g the action is invariant under,

u→ gu (u−1 → u−1g−1), u→ uh (u−1 → h−1u−1), (4.5)

and the currents corresponding to the left and right multiplications take the
form,

Jμ =
1
4π

u−1∂μu J̃μ = − 1
4π

∂μuu−1 . (4.6)

Both currents are conserved. Note that the conservation of one implies the con-
servation of the other. However, unlike the massless free scalar theory, now we
do not have an ALA structure associated with a separate holomorphic and anti-
holomorphic conservation. The latter would have taken the form of JL (z) corre-
sponding to left transformation of the form u→ g(z)u and JR (z̄), corresponding
to right transformation of the form u→ ug(z̄). In a similar manner one finds
that the energy-momentum tensor,

Tμν ∼ Tr[JμJν ]− 1/2 gμν Tr[JαJα ],

and there is only the overall conservation law ∂μTμν = 0, not ∂̄T = ∂T̄ = 0,
namely not an external product of two Virasoro algebras.

Can we modify the action (4.3) so that it does have the desired ALA and
Virasoro algebraic structure? For that let us consider first the variation of the
action we are looking for. If instead of (4.4) one assumes a variation of the form,

δS =
1
4π

∫
d2zTr

[
u−1δu∂(u−1 ∂̄u)

]
=

1
4π

∫
d2zTr

[
δuu−1 ∂̄(u∂u−1)

]
, (4.7)
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4.1 From free massless scalar theory to the WZW model 63

then the global transformations of (4.5) are elevated into

u→ g(z)u u→ uh(z̄), (4.8)

with the corresponding currents,

JL ≡ J =
k

4π
∂uu−1 JR ≡ J̄ = − k

4π
u−1 ∂̄u, (4.9)

which have the desired ALA property,

∂J̄ = ∂̄J = 0. (4.10)

Moreover, it can be shown that for an action whose variation takes the form of
(4.7) the energy-momentum takes the form,

T ∼ Tr[JJ ], T̄ ∼ Tr[J̄ J̄ ], (4.11)

and hence it also has the appropriate Virasoro behavior.
The next question is obviously what action has a variation of the form (4.7),

and in particular can it be built from Ssm plus an additional term that has
the standard form of S̃ = 1

4π

∫
d2zL. To address this question we rewrite the

variation (4.7) in the form,

δS =
1
4π

∫
d2zTr

[
u−1δu∂μ(gμν + εμν )(u−1∂ν u)

]
=

1
4π

∫
d2zTr

[
δuu−1∂μ(gμν − εμν )(u∂ν u−1)

]
. (4.12)

Clearly the term, proportional to gμν in both forms, is exactly the variation
δSsm , so that we need to find what action S̃ has a variation that takes the form
of the εμν term. It may seem that the action,

S̃ =
1
4π

∫
d2zεμν Tr[∂μu∂ν u−1 ]

does the job, but in fact it vanishes.
It was the proposal of Witten to take for S̃ the so-called WZ action, which for

the present case takes the form of a three-dimensional integral over a ball whose
boundary is an S2 , which is the two-dimensional space-time,

SWZ =
1

12π

∫
d3σεijkT r[(u−1∂iu)(u−1∂ju)(u−1∂ku)], (4.13)

where σi with i = 1, 2, 3 are the coordinates of the ball. Using the fact that∫
d3σεijk∂k (. . .) =

∫
d2σεij (. . .), it is straightforward to show that indeed the

variation of (4.13) yields the extra term to change (4.4) to (4.7).
The map u, from the Euclidean space-time that we now take to be S2 to the

group manifold (Fig. 4.1) can be extended into a map from the ball to the group
manifold. This is based on the fact that the homotopy group associated with
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64 Wess–Zumino–Witten model and coset models

Fig. 4.1. The map between the space-time S2 and the group manifold.

maps from S2 to the group space G vanishes, namely, π2(G) = 01 for any non-
abelian group G.

On the other hand since π3(G) = Z, there are topologically inequivalent ways
to extend the map u to a map from the ball to the group manifold. This implies
that there is an ambiguity in SWZ and it is well defined only modulo SWZ →
SWZ + 2π. Thus the coefficient of this term must be an integer k, and to have a
variation of the form (4.12) it is clear that the sigma term has to have the same
coefficient.

Let us now summarize. The classical action of the WZW model is,

SWZW =
k

4π

∫
d2zTr[∂u∂̄u−1 ]

+
k

12π

∫
d3σεijkT r[(u−1∂iu)(u−1∂ju)(u−1∂ku)]. (4.14)

The variation of this action is given by,

δS =
k

4π

∫
d2zTr

[
u−1δu∂(u−1 ∂̄u)

]
=

k

4π

∫
d2zTr

[
δuu−1 ∂̄(u∂u−1)

]
, (4.15)

so that the equation of motion takes the form,

∂(u−1 ∂̄u) = ∂̄(u∂u−1) = 0. (4.16)

The solutions of these equations of motion take the form,

u(z, z̄) = u(z)ū(z̄), (4.17)

where clearly u ∈ G, ū ∈ G.
We should state, that the form (4.14), with a term extended to one dimension

higher, follows from general properties. Equations of motion that we want, in
even space-time dimensions, imply a term in the action with one dimension
higher, otherwise the action will involve singular terms, like the introduction of
Dirac strings in the case of elementary monopoles.

The symmetries of the action are the ALA transformations,

u→ g(z)u u→ uh(z̄), (4.18)

1 πn (G) denotes the group of homotopy classes of maps f: Sn → G
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4.2 Perturbative conformal invariance 65

and the conformal transformations,

z → f(z) z̄ → f̄(z̄). (4.19)

The ALA currents are,

J = − k

4π
∂uu−1 J̄ =

k

4π
u−1 ∂̄u, (4.20)

and the classical energy-momentum tensor takes the form,

T =
1
k

Tr[JJ ] T̄ =
1
k

Tr[J̄ J̄ ]. (4.21)

4.2 Perturbative conformal invariance

In the following section it will be shown in an exact way, based on algebraic
properties, that the WZW model is a CFT. Prior to that we present now a
perturbative computation, demonstrating that to a given order indeed the theory
has a vanishing β function. Here we restrict ourselves to the one loop order. Of
course this only serves as a motivation, as the CFT is at a finite coupling, and
so exact demonstration is needed.

The idea is to use the background field method, expanding u around a solution
of the equations of motion which we denote by u0 , so u = u0eiT a πa

. Substituting
this ansatz into the action 4.14 one finds,

SWZW =
k

4π

∫
d2z{Tr[∂u0 ∂̄u−1

0 ] +
1
2
∂μπa∂μπa

+
1
2
(ημν − εμν )Tr{(u−1

0 ∂μu0)[Taπa , T b∂ν πb ]}+ O(π3)} (4.22)

The one loop renormalization diagram is shown in Fig. 4.2.
The non vanishing contributions are only when both vertices are proportional

to ημν or to εμν . The two contributions are the same apart from a sign since
ηρμη.ν

ρ = ημν = −ερμε.ν
ρ , so that the one loop beta function vanishes. Obviously,

this result relates to the choice of the coefficient of the sigma model term versus
the WZ term, with the latter being fixed by topological arguments. The vanishing
of the β function at this stage is an indication that we have chosen the coefficients
in a way that is compatible with conformal invariance.

Fig. 4.2. Calculation of the one loop beta function.
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66 Wess–Zumino–Witten model and coset models

4.3 ALA, Sugawara construction and the Virasoro algebra

An alternative approach to the quantization methods discussed in the previous
section is the ALA and CFT approach. Notice first that under infinitesimal left
transformation δu = ε(z)u the left current transforms as,

δεJ =
k

4π
[∂(εu)u−1 − ∂uu−1ε] =

k

4π
(∂ε + [ε, J ]), (4.23)

which translates into δεJ
a = k

4π [∂εa + ifa
bcε

bJc ]. Since the transformation of J is
generated by,

δεJ
a(w) =

1
2πi

∮
w

ε(z)J(z)Ja(w), (4.24)

it is easy to realize that the OPE that is compatible with such a transformation
is,

Ja(z)Jb(w) =
kδab

(z − w)2 +
ifab

c Jc

(z − w)
, (4.25)

which is the OPE associated with the ALA discussed in Section 3.2.
Next we want to determine the conformal properties of u, in particular its

confomal dimension. The classical form of the currents (4.20) is elevated to the
quantum expression via the equations,

κ∂u(z, z̄) =: JaT au(z, z̄) :, κ∂̄u(z, z̄) =: J̄au(z, z̄)Ta :, (4.26)

where κ, which is a renormalized level, will be determined shortly, and the nor-
mal ordering refers as usual to subtracting the singular parts of the product.
Assuming that u is an ALA primary field, the OPE takes the form,

Ja(z)Tau(w, w̄) =
c2

z − w
u(w, w̄) + κ∂u(w, w̄) +

∞∑
n=2

(z − w)n−1TaJa
−nu(w, w̄),

(4.27)
where (4.26) was inserted as the (z − w)0 term, and c2 is the quadratic Casimir
operator in the representation of u,

∑
a T aT a = c2 . If we assume that u is a

Virasoro primary as well, then L−1u = ∂u, so that combined with (4.27) one can
write down the following null vector,

vnull ≡ (Ja
−1T

a − κL−1)u = 0. (4.28)

This is a special case of the degeneracy in the combined ALA–Virasoro algebra
discussed in Section 3.3.

The null vectors obey,

L0Vnull = (h + 1)Vnull

Ja
0 Vnull = TaVnull

LnVnull = Ja
n Vnull = 0 for n > 0, (4.29)
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where L0u = hu. For n = 1 the conditions L1Vnull = Ja
1 Vnull = 0 imply that the

renormalized level and the conformal dimension of u take the form,

κ =
1
2
(C2 + k) h =

c2

C2 + k
, (4.30)

where C2 is the quadratic Casimir in the adjoint representation, defined as
facdfbcd = C2δ

ab .
The use of null vectors and the differential equations that determine cor-

relators of primary fields were introduced in the landmark paper of Knizhnik
and Zamolodchikov [143]. An elaboration of the application of these equations
appears in [77]. This direction was further developed by Gepner and Witten
[108].

The WZW has an in-built Sugawara construction. In fact it is very often taken
as the prototype model for this structure. According to the discussion in Section
3.3 the quantum version of the classical energy-momentum tensor (4.21) takes
the form of (3.46),

T (z) =
1

2(k + C2)
: Ja(z)Ja(z) :, (4.31)

and the Virasoro anomaly of the model is,

c =
k dim G

k + C2
. (4.32)

The Sugawara construction is described in [203]. This paper, however, does
not have the correct expression that includes the finite renormalization. This
was done later in the paper of Dashen and Frishman [73].

4.4 Correlation functions of primary fields

Primary fields of theories invariant under ALA were defined and discussed in
Section 3.4. The group element of the WZW theory is an example of a primary
field in the fundamental representation of G×G. Indeed the transformation
properties of u(z, z̄) imply that it has the following OPE with the currents,

Ja(z)u(w, w̄) = − tau(w, w̄)
z − w

J̄a(z̄)u(w, w̄) = −u(w, w̄)ta

z̄ − w̄
. (4.33)

Next we would like to compute the n-point correlation function of the group ele-
ment primary field of the WZW model. In Section 3.6 we presented the Knizhnik–
Zamolodchikov equation which determines the correlators of theories invariant
under ALA. We now demonstrate its use in determining the four-point correla-
tion function of the primary field u(z, z̄) of SU(N) WZW model. We denote this
correlator as,

G4 =
〈
u(z1 , z̄1)u−1(z2 , z̄2)u−1(z3 , z̄3)u(z4 , z̄4)

〉
. (4.34)
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68 Wess–Zumino–Witten model and coset models

Recall from (2.59) that in general due to the conformal Ward identity the four-
point function can be written as,

G4 = [z14z23 z̄14 z̄23 ]−2hG(x, x̄), (4.35)

where

x =
z12z34

z14z32
x̄ =

z̄12 z̄34

z̄14 z̄32
, (4.36)

with zij = zi − zj and h, the dimension of u, is given by h = N 2 −1
2N (N +k) .

Now G(x, x̄) can be decomposed into a sum of terms, each one representing a
conformal block, the latter having the form of a product of a holomorphic and
anti-holomorphic function,

G(x, x̄) = Sum of terms of the form G(x)Ḡ(x̄). (4.37)

Since u(z, z̄) is in the fundamental representation of SU(N), the four-point func-
tion is a product of two fundamentals and two anti-fundamentals, so each term
in the last equation can be decomposed into,

G(x) = I1G1 + I2G2 , (4.38)

where I1 and I2 are the SU(N) invariant factors,

I1 ≡ δm 1 ,m 2 δm 3 ,m 4 I2 ≡ δm 1 ,m 3 δm 2 ,m 4 . (4.39)

If we now substitute this decomposed form of the four-point function into the
Knizhnik–Zamolodchikov equation (3.69) we find,⎛⎝∂zi

+
1

k + N

∑
j �=i

tai ⊗ taj
zi − zj

⎞⎠ [z14z23 ]−4h(I1G1 + I2G2) = 0. (4.40)

As was discussed in Section 2.9 conformal invariance allows us to fix three out
of the four points. Using the standard convenient choice,

z1 = x, z2 = 0, z3 = 1, z4 =∞, (4.41)

and the equation now reads,(
∂x +

1
k + N

ta1 ⊗ ta2
x

+
1

k + N

ta1 ⊗ ta3
x− 1

)
(I1G1 + I2G2) = 0, (4.42)

After introducing the explicit expressions for the various group theoretical prod-
ucts tai ⊗ taj Ik and projecting to the I1 and I2 factors we get,

∂xG1 =
−1

k + N

(
(N 2 − 1)

N

G1

x
+

G2

x
− 1

N

G1

x− 1

)
∂xG2 =

−1
k + N

(
(N 2 − 1)

N

G2

x− 1
+

G1

x− 1
− 1

N

G2

x

)
. (4.43)
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Extracting G2 from the first equation and plugging it back into the second
equation, the latter translates into a hypergeometric differential equation,

x(1− x)
N 2 [N 2κ2∂2

x + A(x)∂x + B(x)]g1(x) = 0, (4.44)

where κ = k + N and with the following two possible values for A(x), B(x) and
the relation between g1 and G1 as

A(x) =
(

N(N + κ)
x

− N 2

1− x

)
Nκ B(x) = −N 4 −N 2 + 2

x(1− x)
,

G1 = [x(1− x)]
1

κ N g+
1

or

A(x) =
(
−N(N − κ)

x
− N 2

1− x

)
Nκ B(x) = −2(N 2 − 1)

x(1− x)
,

G1 = x−N 2 −1
κ N (1− x)

1
κ N g−1 (4.45)

The solutions of the differential equations are the following hypergeometric func-
tions,

g−1 = F

(
1
κ

,− 1
κ

, 1− N

κ
;x
)

g+
1 = F

(
N − 1

κ
,
N + 1

κ
, 1 +

N

κ
;x
)

. (4.46)

In a similar way the solutions for G2 are found, defining an appropriate g2 .
To fully determine the correlator we still have to fix the linear combination

of the solutions. This is done using crossing symmetry, as discussed in Section
2.10.2 The latter implies that,

G(x, x̄) = G(1− x, 1− x̄). (4.47)

With parametrization,

G(x, x̄) =
∑

i,j=1,2

Ii ĪjGi,j (x, x̄) Gi,j =
∑

n,m=+ ,−
ξmnG

(m )
i G

(n)
j . (4.48)

Crossing symmetry implies that,

Gi,j (x, x̄) = G3−i,3−j (1− x, 1− x̄), (4.49)

which follows from the fact that under crossing symmetry I1 ↔ I2 . Single valued-
ness implies that ξ+− = ξ−+ = 0. To obey the crossing symmetry requirement

2 Crossing symmetry to determine correlators of fermions in the fundamental representation
of SU (N ) was used by Dashen and Frishman in [73].

https://doi.org/10.1017/9781009401654.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.005


70 Wess–Zumino–Witten model and coset models

we make use of the following property of hypergeometric functions:

F (a, b, c;x) = A1F (a, b, a + b− c; 1− x)

+ A2(1− x)c−a−bF (c− a, c− b, c− a− b + 1; 1− x), (4.50)

where

A1 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

A2 =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
. (4.51)

Finally we find that

Gij = G
(−)
i (x)G(−)

j (x̄) +
c2
−− − 1
c2
+−

G
(+)
i (x)G(+)

j (x̄), (4.52)

where

c−− = N
Γ(N

κ )Γ(−N
κ )

Γ( 1
κ )Γ(− 1

κ )
c+− = −N

[Γ(N
κ )]2

Γ(N +1
κ )Γ(N −1

κ )
. (4.53)

For k = 1 we have c−− = −1, and hence the second term in (4.52) vanishes.
Using F

(
1

N +1 ,− 1
N +1 , 1

N +1 ;x
)

= (1− x)
1

N + 1 the four-point function takes the
form,

G(x, x̄) = [xx̄(1− x)(1− x̄)]
1
N

[
I1

1
x

+ I2
1

1− x

] [
Ī1

1
x

+ Ī2
1

1− x

]
. (4.54)

In Section 6.3 it will be shown that the WZW theory of U(N) at level k = 1 is
a bosonized equivalent to that of N Dirac fermions controlled by the action,

Sf =
∫

d2z [ψ†
α ∂̄ψα + ψ̃†

β ∂ψ̃β ]. (4.55)

In particular the fermion bilinear is equivalent to the group element as,

Mũβ
α (z, z̄) =: ψα (ψ̃†)β : M(ũ−1)α

β (z, z̄) =: ψ̃β ψ†α
:, (4.56)

where M is a mass scale and where ũ denotes the U(N) group element. In the
theory of free Dirac fermions the four-point function of the fermion bilinears
takes the form,

G(x, x̄) =
[
I1

1
x

+ I2
1

1− x

] [
Ī1

1
x

+ Ī2
1

1− x

]
. (4.57)

It is easy to see that by converting (4.54) to a similar correlator of U(N) we find
exactly the same answer. This is done as follows: define the U(N) group element
to be,

ũ(z, z̄) = ei
√

4π/N γϕ(z ,z̄ )u(z, z̄). (4.58)

Then the four-point function of group elements of U(N) is,

G̃(x, x̄) = M−2 γ 2

N [xx̄(1− x)(1− x̄)]−
γ 2

N G(x, x̄). (4.59)
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For γ = 1 we observe that indeed the correlator is identical to that of the
fermion bilinears. For arbitrary γ the correlator corresponds to that of fermion
bilinears of the Thirring model defined by,

S = Sf +
γ2 − 1
2γ2

∫
d2zJ(z)J̄(z̄). (4.60)

This generalized bosonization will also be addressed in Section 6.2.

4.5 WZW models with boundaries – D branes

The WZW model described in Section 4.1 was shown to be based on a map
from Σ, a compact two-dimensional manifold, in paticular an S2 , into a group
manifold G. Let us now study the case where Σ has boundaries. For concreteness
we take it to be the upper half-plane. In the bulk the theory is invariant under
the holomorphic and anti-holomorphic ALA (4.18) and there is corresponding
holomorphic and anti-holomorphic conservation of the associated currents (4.9).
On the boundary the two types of modes mix, the symmetry is reduced to,

u→ g(τ)ug(τ)−1 , (4.61)

where τ denotes the coordinate on the boundary, and accordingly there is a
relation between JL and JR ,

J(z) = Ωaut J̄(z̄) at z = z̄, (4.62)

where Ωaut is an automorphism of the ALA.
The notion of boundary conformal field theory was introduced in [58]. The

gluing conditions used for D branes in the WZW model were introduced in [135].
From the many papers that have been written on the subject we have chosen to
describe it following [11] and [85].

Let us first address the simplest case of a level k ˆSU(2) WZW, for which
Ω = −1, and then later discuss the general case. In terms of ∂t , ∂x and the
adjoint action of G on its Lie algebra,

Ad(g)u = gug−1 , (4.63)

the gluing condition reads,

(1−Ad(u))u−1∂tu = (1 + Ad(u))u−1∂xu. (4.64)

The tangent space to the group G at the point u can be split into TuG =
T⊥

u G⊕ T
||
u G, where T

||
u G consists of vectors tangential to the orbit of Ad through

u. On T⊥
u G, (1−Ad(u)) = 0 and (1 + Ad(u)) = 2, so that (u−1∂xu)⊥ = 0 and

the corresponding D branes, namely the submanifolds where the condition (4.62)
is obeyed, coincide with the conjugacy classes. In the case that (1−Ad(u)) is
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invertible, (4.64) can be written as,

u−1∂tu =
1 + Ad(u)
1−Ad(u)

u−1∂xu. (4.65)

We can now define a two form on the conjugacy class as,

ω =
k

8π

(
u−1du

1 + Ad(u)
1−Ad(u)

u−1du

)
. (4.66)

Applying an exterior derivative to this form we find,

dω =
k

12π
Tr(duu−1)3 , (4.67)

namely, it is not closed. The submanifold D ⊂ G on which the WZ term is exact,
(WZ) = dω defines a D brane in G. There is a further restriction which follows
from reasoning similar to that discussed in Section 4.1.

Consider the wave functional Ψ(u(x)) on the space of closed loops u(x) in
some conjugacy class C. The latter, for the group manifold SU(2), are typically
two-spheres so that C can be constructed in two different ways, and hence there
is an ambiguity in the phase of the wave functional. It can be shown that the
phase can take the values 2πj with j = 1, . . . , k − 1. Thus there are k − 1 two-
dimensional conjugacy classes or D2 branes for the k level ˆSU(2) WZW model.
In addition there are two D0 branes associated with the two points ±e, where e

is the identity on the group space.
To address the issue of the conjugacy classes in other groups it is convenient

to rewrite the two form (4.66) as,

ω =
k

8π
Tr[k̃−1dk̃hk̃−1dk̃h−1 ], (4.68)

for u that belongs to the conjugacy class,

CG
h = {u ∈ G|u = k̃hk̃−1}. (4.69)

The WZW action that corresponds to the map from the two manifold with a
boundary to the group space can be constructed as follows. Instead of considering
the map from Σ that has a boundary, we take it from Σ ∪D where D is an
auxilliary disc that closes the hole in Σ, having a common boundary with it. The
disc is mapped into the conjugacy class allowing for its boundary (4.69). The
WZW action is now written as,

S = SWZW +
∫

D

w, (4.70)

where SWZW is the ordinary WZW action with a three-dimensional WZ term
defined now on a ball whose boundary is Σ ∪D. It can be explicitly checked
that the new WZW action is invariant under (4.18). Similar to the topologically
distinct D2 branes of the k level ˆSU(2) WZW model, there are different embed-
dings of the disc in a conjugacy class in a general group manifold G. This is
related to the second homotopy group of the conjugacy class, which in general
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is non-trivial. The group element k of (4.69) is defined modulo a right multipli-
cation with any element that commutes with h, and the group of such elements
is isomorphic to the Cartan torus TG generated by the generators in the Cartan
subalgebra. Thus the conjugacy classes can be described as G

TG
and the second

homotopy group reads,

Π2(CG
h ) = Π1(TG ) (4.71)

For a rank r algebra of G, the D2 will be characterized by an r-dimensional
vector in the coroot lattice of G. Namely, if two embeddings given by khk−1 and
k′hk′−1 then on the boundary of the world sheet they have to be related as,

k(τ)k′(τ)−1 = t(τ), (4.72)

where t(τ) is an element of the subgroup isomorphic to TG which commutes
with h. This relation determines a mapping from the boundary to TG . Since the
latter is Rr modulo 2π× (coroot lattice), every such mapping belongs to the
topological sector parameterized by a vector in the coroot lattice describing
the winding of the boundary circle on the torus TG . This lattice vector deter-
mines via (4.71) the element of Π2(CG

h ) corresponding to the union of the two
embeddings. For the group element h ∈ TG of the form h = eiθ ·H , where H are
the Cartan subalgebra generators, the change in the action resulting from the
topological change of the embedding is ΔS = k(θ · s), where s is a coroot lattice
vector. Consistency of the model then implies the condition,

θ · α ∈ 2πZ
k

. (4.73)

This generalizes the condition that led to the set of k − 1 D2 branes for level
k ˆSU(2). It implies that θ should be 2π

k × (weight lattice vector). Since a point
in TG is defined modulo 2π × (coroot lattice), the allowed conjugacy classes cor-
respond to points in the weight lattice divided by k modulo the coroot lattice.
This is also the characterization of the primary fields of the corresponding WZW
model.

4.6 G/H coset models

The concept of coset models dates back to [110] or in fact even to as early as [27].
A Lagrangian formulation in terms of a gauged WZW model was introduced for
instance in [12]. Here we follow the review of [111].

The WZW models constitute a large class of conformal field theories which are
invariant under ALA. An even larger class of CFTs can be constructed by taking
the quotient of two WZW models. Consider an ALA ĝ at level k and a subalgebra
of it ĥ at level kh . We denote the currents associated with the former as Ja and
with the latter Jah

h where a = 1, . . . ,dim G and ah = 1, . . . ,dim H. The currents

https://doi.org/10.1017/9781009401654.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.005


74 Wess–Zumino–Witten model and coset models

associated with the subalgebra ĥ can be expressed as a linear combination of ĝ

as,

Jah

h =
∑

a

mah aJa . (4.74)

Using the commutator of Ja and the corresponding generator of the Virasoro
algebra constructed via the Sugawara construction,

[Lm , Ja
n ] = −mJa

m+n , (4.75)

it follows that,

[Lm , Jah

h n
] = −mJah

h m+n
. (4.76)

It is also obvious that a similar relation holds with Lh
m which is the Virasoro

generator built by a Sugawara construction from the currents of ĥ, namely,

[Lh
m , Jah

h n
] = −mJah

h m+n
. (4.77)

Thus it follows that,

[Lm − Lh
m , Jah

h ] = 0. (4.78)

Since Lh
m is a bilinear of Jah

h it follows that,

[Lm − Lh
m ,Lh

n ] = 0 → [Lm ,Lh
n ] = [Lh

m ,Lh
n ]. (4.79)

We can now define,

L(g/h)
m ≡ Lm − Lh

m . (4.80)

The algebra of these coset generators is a Virasoro algebra, as follows from,

[L(g/h)
m ,L(g/h)

n ] = [Lm ,Ln ]− [Lh
m ,Lh

n ]

= (m− n)L(g/h)
m+n + [c(ĝk )− c(ĥkh

)]
(m3 −m)

12
δm+n,0 . (4.81)

Thus we have just found that the Virasoro generators of the coset L
(g/h)
m obey a

Virasoro algebra with a central charge of

c =
kdimg

k + C2(g)
− khdimh

kh + C2(h)
. (4.82)

A special class of coset models are the diagonal coset models ĝ⊕ĝ
ĝ . The gen-

erators of the coset in this case are given by Ja
h = Ja

(1) + Ja
(2) , namely the sum

of the generators of each copy. It thus follows that the level of the coset must
be the sum of the two levels since [Ja

(1) , J
a
(2) ] = 0. The coset therefore takes the

form,

ĝk1 ⊕ ĝk2

ĝk1 +k2

,
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and its corresponding central charge is given by,

c = dim g

(
k1

k1 + C2(g)
+

k2

k2 + C2(g)
− k1 + k2

k1 + k2 + C2(g)

)
. (4.83)

Consider the case where g = SU(2) and the coset is,
ˆSU(2)k ⊕ ˆSU(2)1

ˆSU(2)k+1

, (4.84)

with the central charge,

c =
3k

k + 2
+ 1− 3(k + 1)

k + 3
= 1− 6

(k + 2)(k + 3)
= 1− 6

p(p + 1)
, (4.85)

where in the last step we introduced p = k + 2 ≥ 3. This is exactly the central
term of the unitary minimal models discussed in Section 2.7. In fact one can
show that this is indeed an equivalence in the sense that the characters of the
minimal models are the same as those of the coset model.

4.7 G/G coset models

The concept of the G/G model was introduced in [200] and [227]. Our description
of the G/G model and in particular its BRST analysis follows [9] and [8].

A special class of the G/H models is the case where H = G, namely where we
gauge the maximal anomaly-free diagonal group. Using the gauging procedure
that will be discussed in Section 9.3.1 the classical action takes the form,

Sk (g,Aμ) = Sk (g)− k

2π

∫
d2zTr(g−1∂gĀz̄ + g∂̄g−1Az − Āz̄ g

−1Azg + AzĀz̄ ).

(4.86)
Next we introduce the following parameterization of the gauge fields, Az =

ih−1∂zh, Āz̄ = ih∗∂zh
∗−1 where h(z) ∈ Gc . In Section 15 we will elaborate more

about this formulation. The action then reads,

Sk (g,A) = Sk (g)− Sk (hh∗). (4.87)

The Jacobian of the change of variables introduces a dimension (1, 0) system of
anticommuting ghosts χ and ρ in the adjoint representation of the group. The
quantum action thus takes the form of,

Sk (g, h, ρ, χ) = Sk (g)− Sk+2CG
(hh∗)− i

∫
d2zTr[ρ∂̄χ̄ + c.c], (4.88)

where CG is the second Casimir of the adjoint representation.3 The second term
can be viewed as S−(k+2CG )(h). Since the Hilbert space of the model decomposes
into holomorphic and anti-holomorphic sectors we restrict our discussion only to
the former.

3 This was C2 (g) in the previous section; notation has changed according to the literature.
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There are three sets of holomorphic G transformations which leave (4.88)
invariant,

δJ g = i[ε(z), g] δI h = i[ε(z), h]

δJ ( g h ) χa = ifa
bcε

bχc δJ ( g h ) ρa = −ifa
bcε

bρc , (4.89)

with ε in the algebra of G. The corresponding currents Ja , Ia and J (gh)a
=

ifa
bcχbρc satisfy the G ALA with the levels k,−(k + 2cG ) and 2cG , respectively.

We now define J (tot)a

J (tot)a
= Ja + Ia + J (gh)a

= Ja + Ia + ifa
bcχbρc , (4.90)

which obeys an affine Lie algebra of level,

k(tot) = k − (k + 2cG ) + 2cG = 0. (4.91)

The energy-momentum tensor T (z) is a sum of Sugawara terms of the Ja and
Ia currents and the usual contribution of a (1, 0) ghost system, namely,

T (z) =
1

k + cG
: JaJa : − 1

k + cG
: IaIa : +ρa∂χa . (4.92)

The corresponding Virasoro central charge vanishes,4

c(tot) =
kdG

k + cG
− (k + 2cG )dG

−(k + 2cG ) + cG
− 2dG = 0 (4.93)

The symmetry structure of the model is in fact richer. It is easy to realize
that there are also two odd conserved currents, a dimension one current which is
the BRST current J (BRST) and a dimension two operator G. These holomorphic
symmetry generators are given by

J (BRST) = χa

[
Ja + Ia +

1
2
J (gh)a

]
,

G =
1

k + cG
ρa [Ja − Ia ]. (4.94)

The reason we denote the dimension one current as a BRST current is that one
can express both T (z), J (tot)

a and J (BRST) itself in terms of its corresponding
charge Q =

∫
J (BRST)(z) as follows,

T (z) = {Q,G(z)},
J (tot)a

(z) = {Q, ρa},
J (BRST) = {Q, j#(z)}, (4.95)

where j# is the ghost number current.
The fact that T (z) is BRST exact namely T (z) = {Q,G(z)} and that the total

Virasoro anomaly vanishes, are indications that the G
G model is a topological

quantum field theory. These theories which were found to be very useful in
dealing with various issues in physics and mathematics are beyond the scope

4 dG is what we called dim g in the previous section; changed according to the literature.
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of this book. We thus do not discuss here the topological quantum field theory
aspects of the G

G models.
By construction of the BRST procedure the space of physical states of a

G
G model is given by the cohomology of Q. That is to say, a physical state |phys>
has to be closed under Q, namely Q|phys>= 0 and not exact, namely |phys> 	=
Q|state> where |state> is any other state. It can be shown that taking the trace
over those states one finds the torus partition function of the G

G model which
is based on the decomposition into WZW characters, discussed in Section 3.5.
The torus partition function can be expressed as

Z G
G

= cτ−r
2

∫
duZg (τ, u)Zhh∗

(τ, u)Zgh(τ, u), (4.96)

where du is the measure over the flat gauge connections on the torus and r is
the rank of G; Zg (τ, u) is the torus partition function of the Gk WZW model,

Zg (τ, u) = (qq̄)
−c
2 4

∑
λL ,λR

χk,λL
(τ, u)χ̄k,λR

(τ, u)NλR ,λL
, (4.97)

where q = e2iπτ , λR, λL denote the Gk highest weights, and for the diagonal
invariant NλR ,λL

= δλR ,λL
. The character can be written as,

χk,λ(τ, u) =
Mk,λ(τ, u)
M0,0(τ, u)

, (4.98)

with Mk,λ defined explicitly for the SU(2) case below. Zhh∗
(τ, u) in (4.96) is

the contribution of h ∈ Gc

G at level k + 2CG or equivalently h ∈ G at level −(k +
2cG ). This takes the form Zhh∗

(τ, u) ∼ |M0,0(τ, u)|−2 indicating that Gc

G contains
just one conformal block. It is straightforward to calculate Zgh(τ, u), the ghost
contribution to the partiton function Zgh(τ, u) ∼ |M0,0(τ, u)|4 . Thus there is a
cancellation of the |M0,0(τ, u)| factors and the resulting character is given by
the numerator of the character of the “matter” sector. In the G

G model it is
Mk,λ . This cancellation property leads to an index interpretation for Mk,λ . For
G = SU(2) it was found that one can express,

Mk,j (τ, θ) =
∞∑

l=−∞
q(k+2)(l+

j + 1
2

(k + 2 ) )2

sin
{

πθ

[
(k + 2)l + j +

1
2

]}
, (4.99)

as

Mk,j (τ, θ) =
1
2i

q
( j + 1

2 ) 2

(k + 2 ) eiπθ(j+ 1
2 )Tr[(−)Ĝ qL̂0 eiπθĴ 0

( tot) ], (4.100)

where θ = Reu, Ĝ is the ghost number, L̂0 is the excitation level and Ĵ0
(tot) is

the J0
(tot) eigenvalue of the excitation. Note that Mk,j (τ, θ) is obtained from the

torus Mk,j (τ, u) by restricting to just one angle. This amounts to considering the
propagation along a cylinder rather than around the torus. As long as we are
interested in the spectrum it is sufficient to consider Mk,j (τ, θ). This index inter-
pretation enables us to read important information about the physical spectrum
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from (4.99). For a positive integer k, 2j = 0, . . . , k. Hence there are k + 1 zero
ghost number primary states which correspond to the first term in the q expan-
sion of the different Mk,j s, i.e. the term corresponding to l = 0 with L̂0 = j (j+1)

k+2 .
On each of these states there is a whole tower of descendant states correponding
to the higher terms in the q expansion. For further discussion of the G/G model
the reader is referred to [9].
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