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Abstract
Social media is not a neutral channel. How visible information posted online is depends on many factors
such as the network structure, the emotional volatility of the content, and the design of the social media
platform. In this paper, we use formal methods to study the visibility of agents and information in a social
network, as well as how vulnerable the network is to exploitation. We introduce a modal logic to reason
about a social network of agents that can follow each other, post, and share information. We show that by
imposing some simple rules on the system, a potentially malicious agent can take advantage of the network
construction to post an unpopular opinion that may reach many agents. The network is presented both in
static and dynamic forms. We prove completeness, expressivity, and model checking problem complexity
results for the corresponding logical systems.
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1. Introduction
Social media is not a neutral channel for information distribution. How visible information posted
online is, and how many users in a social network it can reach, depends on many factors. These
include the network structure (Jackson et al., 2017), the emotional volatility of the content (Brady
et al., 2017), past exposure to similar information (Nguyen, 2020), and the design and recommen-
dation algorithms of the particular social media platform (Napoli, 2015). The design of the social
media platform might also determine how vulnerable the platform is to exploitation: Is it possible
to act tactically to increase the visibility of a post?

This paper contributes to the study of social networks and the measurable impact social media
platforms have on their users. Social networks have been studied using numerous methods in
numerous disciplines. Formal logic methods for representing and reasoning about social networks
have been used to analyze opinion diffusion and social influence (Baccini and Christoff, 2023;
Christoff and Hansen, 2015; Christoff et al., 2016; Dennis et al., 2022; Lorini and Sartor, 2016),
social bots (Pedersen et al., 2021a, 2023), group polarization (Pedersen et al., 2020, 2021b), gate-
keepers (Belardinelli, 2019), echo chambers (Pedersen et al., 2019), and informational cascades
(Baltag et al., 2019), among other phenomena. Our work is positioned within this literature.

We are here concerned with the problem of applying formalmethods to study the visibility of
agents and information in a social network. In addition to having structural properties, a number
of agents and how they are connected, a social network also has other properties connected to
the visibility of an agent, such as: which interests and opinions the agents have, what they are
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Figure 1. ModelMwith the followership relation depicted by dashed arrows.

communicating, and how the network changes through time. Furthermore, given a particular
social network with rules inspired by real-life behavior, we aim to analyze the safety of a network:
whether it is vulnerable to exploitation by a potential malicious agent. It is our position that
logic-based methods are needed to complement empirical methods to reach a full understanding
of these properties of social networks.

The notion of visibility is rooted in the idea of being seen. One of our main motivations is
to present an analysis of visibility that captures a complex view of what it means to be visible
in a social network, one that extends merely counting the followers of an agent. To do this, we
introduce a modal logic for representing agents and their opinions and interactions in a social
network.

Our social network consists of a set of agents and two sets of relations between them: one
represents followers and the other represents posts that pass through the network. We turn to
Fig. 1 for an intuitive explanation of the network.

The network M consists of three agents a, b, and c. Dashed arrows represent a followership
relation: c follows b and b follows a. The situation concerns a post on a particular topic, called
p. Agent a is in favor of, pro, p, denoted p+, whereas c is contra p, denoted p−. Agent b has no
opinion about p. Furthermore, agent a has posted on p, represented by a reflexive loop denoted
pa, and agents b and c have seen the post, denoted by pa-arrows from a.

The intuition behind our models is to observe a situation of posting and sharing a post after
it has happened. Posting, sharing, following, and unfollowing adhere to some simple rules of the
system:

(1) When an agent posts, all her followers see the post.
(2) If an agent sees a post on a topic she likes, she will reshare the post and follow the original

poster.
(3) If an agent sees a post on a topic she dislikes, she does not reshare it and unfollows the agent

from whom she has seen the post.
(4) If an agent sees a post on a topic she is indifferent to, she does not do anything.

Knowing the rules of the system, we can return to M in Fig. 1 and observe that c likely has
unfollowed a after a posted on p.

These rules are an oversimplification of a real-life network, but we believe they capture some
key notions of a social network that we can use to analyze situations that may occur in an actual
network setting. Although it might be unrealistic that an agent would, for instance, always unfol-
low when seeing a post she disagrees with, these simplified rules of the system capture some basic
notions that can be found in existing networks: namely, hostility toward agents whomwe disagree
with and friendliness toward agents whom we agree with. It is also a point to be made that even
with such simple rules, we can model interesting situations in which similar mechanisms actually
happen.

We first present a logic that specifies a static network, as seen in Fig. 1. The purpose of this logic
is not to define what visibility is but to allow us to discuss different qualitative and quantitative
measures of visibility and formalise some of them in the logic. Next, we extend the framework

https://doi.org/10.1017/S0960129523000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000397


Mathematical Structures in Computer Science 617

into a dynamic setting where we stepwise observe what happens when information is posted in
the network. We show that according to the rules of the system, the interests of the agents’ fol-
lowers matter a lot to what information is shared and seen. We also show that a malicious agent
could take advantage of the network construction to post an unpopular opinion that will reach
many agents. Then, we extend the logic further to include operators to analyze tactical actions
from an agent’s perspective. This lets us formally reason about whether an agent can act in a cer-
tain way to increase the visibility of their posts. We believe these observations can be useful in
understanding how agents in a network contribute to spreading controversial information such as
misinformation.

We are also interested in the mathematical properties of the three logics we present in this
paper: static visibility logic (SVL), visibility logic (VL), and arbitrary visibility logic (AVL). We
give formulas corresponding to the rules of the system and show that SVL is complete with
respect to the models with these rules. The model checking problem for SVL is in P. With the
first dynamic extension, we show that the language of VL is strictly more expressive than SVL.
We also prove that the model checking problem for VL is PSPACE-complete. When extending
VL to AVL, we show that adding quantification over actions to the dynamic language results in
a new strictly more expressive language. The model checking problem for AVL is, however, also
PSPACE-complete.

The contribution of the paper is the following:

• We introduce three novel logics to analyze posting and sharing information in a social
network and prove mathematical results about these formal systems.

• We propose quantitative and qualitative measures of visibility and reachability and formal-
ize some of the properties as logical formulas.

• We use our formal system to reason about mechanisms that might occur in real-life online
social networks, specifically we formalize how a potentially malicious agent could take
advantage of the network construction to post a controversial opinion that will reach many
agents.

• Motivated by analyzing safety and exploitation in our system, we introduce quantification
over actions to formally study tactical actions from an agent’s perspective.

The paper is structured as follows. In Section 2, we give an overview of work in social network
analysis on reachability and visibility. In Section 3, we present SVL. We specify mathematical
properties of the logic, give some logical formulas corresponding to measures of visibility, and
prove soundness and completeness of SVL. In Section 4, we extend SVL with a dynamic operator
and name it VL. We give a motivating example where we show that one can exploit the network
structure to expose more agents to a controversial opinion. We also prove an expressivity result
and give the complexity for the model checking problem. Then, in Section 5, we extend VL with
an action operator and name it AVL.We show another expressivity result as well as the complexity
of the model checking problem for AVL. In Section 6, we give an account of other dynamic hybrid
logics for social networks and position our logics within this literature. In Section 7, we summarize
our paper and outline directions for future work.

2. Visibility and Reachability
Visibility in social networks is yet to be explicitly explored from a formal logical perspective. The
concept has, however, been researched in the social network analysis literature. We present a
selected collection of this work to learn how this related field has attempted to measure visibility.
There seems to be no consensus in the literature on what it means to be visible in a social network,
which motivates the usefulness of further study on this topic. This is confirmed in the literature
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review by Treem et al. (2020), which focuses on communication visibility in computer-mediated
communication.

Closely related to visibility in social networks is the notion of reachability. What exactly reach-
ability is, or how closely related it is to visibility, is not agreed upon, which is illustrated by the
different measures seen in this section. Visibility and reachability are presented as properties of
both networks, agents and posts, when relevant we specify which in the following.

In a book known to be part of the canonical literature in social network analysis, Easley and
Kleinberg (2010) describe the reachability properties of a network in terms of identifying which
agents are reachable from which others through connected paths of edges.

Samanta et al. (2016) distinguish reachability and visibility in an online social network, where
the first measure is dependent on the second. The network is represented as an undirected
graph where nodes represent agents and the relation between them represents one of three
non-overlapping relations: trusted friends, acquaintances, or distrusted agents. Agents can post
information with four different visibility settings: trusted friends, trusted friends and acquain-
tances, all friends, and public. The visibility of an agent is therefore measured with respect to what
relation the viewers of the post have to the agent that posts. The reachability factor of a post is
defined in terms of a function: d(v1, v2)= |e(v1,v2)|√|v1|×√|v2| . In this function, v1 is the set of agents in
the network that have seen the post and v2 is the set of agents that have not seen the post. e(v1, v2)
is the set of relations between agents across v1 and v2 specified with respect to the relations in
the network graph. The reachability factor is dependent on the visibility settings of the agent who
posts; the set v1 increases and v2 decreases when the visibility settings include a higher number of
agents.

Tang et al. (2010) present a temporal characterization of reachability. In this work, the reach-
ability is measured between two given nodes in a time interval in the network. The network is
presented as a series of undirected graphs that represent how a network changes through time.
The nodes in the network can be regarded as agents and the relation between them as informa-
tion channels. Node j is reachable in the time interval [tmin, tmax] from node i if a message can be
delivered through the information channel in that time interval.

Rathore and Tripathy (2021) define two types of visibility of an agent in an online social net-
work: topological and behavioral visibility. Although it is mentioned that this could be a generic
social network, the examples refer to the microblogging network Twitter, at the time of writ-
ing now called X, which is represented as a directed graph of agents who can post and follow
each other. In the model presented by Rathore and Tripathy (2021), a tweet embodies at least
one topic from a set of interests S. Each agent in the network also has some specified interests
from S. Topological visibility of an agent is calculated based on the number of followers of the
agent and the clustering coefficient of the network. The clustering coefficient is usually defined
in the literature in terms of directed graphs and is meant to give a view of the network struc-
ture. The higher the number, the more highly connected the network is. It is not specified which
definition of clustering coefficient is used by Rathore and Tripathy (2021). The behavioral visi-
bility of an agent is defined as the average of the visibility of all the tweets that are shared by the
user in a time interval �t. The visibility of a tweet represents the number of users influenced by
the tweet and is proportional to the number of followers whose interests match the topics of the
tweet.

Liu and Terzi (2010) propose a framework to compute the privacy score of users in online social
networks. In this framework, the more visible the information is in the network, the higher the
privacy risk. As part of computing privacy scores, an estimation of the visibility of information
is also made. The visibility V(i, j) denotes the visibility of an item of information i for a user j
and is calculated as the probability that j has made the information associated with i publicly
available.
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3. Reasoning About Visibility in a Static Setting
We are ready to present some of the main concepts underlying our intuitions about visibility in
a formal setting. We begin by introducing the language and semantics of SVL, which serve as a
basis for the logics presented in later sections.

3.1 Language and semantics of SVL
Let Nom= {i, j, k, ...} be a countable set of nominals, and Top= {p, q, r, ...} be a countable set of
topics, such that Nom∩ Top=∅.

Definition 1. We define the well-formed formulas of the language of the static fragment of
visibility logic SVL to be generated by the following grammar:

ϕ ::= p+ | p− | i | ¬ϕ | (ϕ ∧ ϕ) |♦i:pϕ |♦−1i:p ϕ |�ϕ |�−1ϕ |@iϕ

where p ∈ Top and i ∈ Nom. We define propositional connectives like ∨,→ and the formulas 	,⊥
as usual and the duals as standard� := ¬♦¬,�−1 := ¬♦−1¬,� := ¬�¬, and�−1 := ¬�−1¬.

Given a formula ϕ ∈ SVL, we can recursively define the modal depth of the formula md(ϕ)
in the following way: md(p+)=md(p−)=md(i)= 0, md(¬ϕ)=md(@iϕ)=md(ϕ), md(ϕ ∧
ψ)=max{md(ϕ),md(ψ)}, and md(♦i:pϕ)=md(♦−1i:p ϕ)=md(�ϕ)=md(�−1ϕ)=md(ϕ)+ 1.
The size of ϕ, denoted |ϕ|, is defined as follows: |p+| = |p−| = |i| = 1, |¬ϕ| = |♦i:pϕ| = |♦−1i:p ϕ| =
|�ϕ| = |�−1ϕ| = |@iϕ| = |ϕ| + 1, and |ϕ ∧ψ | = |ϕ| + |ψ | + 1.

In our language, similar to other approaches to logic-based analysis of social networks (see, e.g.,
Christoff et al. 2016), we distinguish three possible dispositions of an agent to a topic p ∈ Top. The
agent may be pro p, which we express with p+, contra p, expressed by p−, or indifferent to p, if the
agent is neither pro nor contra p. The agent cannot be both pro and contra p.

Constructs �ϕ and �−1ϕ express that “the current agent follows an agent satisfying ϕ” and
“the current agent is followed by an agent that satisfies ϕ,” respectively. Formulas ♦i:pϕ and ♦−1i:p ϕ
mean that “there is an agent satisfying ϕ who sees the (re)post by the current agent on topic p
(originally posted by an agent named i)” and “there is an agent satisfying ϕ whose (re)post on
topic p (originally posted by an agent named i) is seen by the current one.”

Formulas of SVL are defined on relational visibility models.

Definition 2. A visibility model (or amodel) M is a tuple (A, F,+,−,V , R), where

• A is a nonempty set of agents,
• F :A→ 2A is an irreflexive followership relation,
• + :A→ 2Top assigns to each agent a set of topics she is pro,
• − :A→ 2Top assigns to each agent a set of topics she is contra such that for all agents a ∈A, it
holds that+(a)∩−(a)=∅,

• V : Nom→ 2A is a valuation such that for all i ∈ Nom: |V(i)| = 1,
• R : Top×A→ 2A×A is a visibility relation for each topic and each agent satisfying the
following conditions, where p ∈ Top and a, b, c ∈A:
(1) If (a, b) ∈ R(p, c), then (a, a) ∈ R(p, c).
(2) If (a, a) ∈ R(p, c), then (a, b) ∈ R(p, c) for all b such that b ∈ F(a).
(3) If (a, b) ∈ R(p, c), p ∈+(b), and b �= c, then (b, b) ∈ R(p, c) and b ∈ F(c).
(4) If (a, b) ∈ R(p, c), p ∈−(b), and a �= b, then (b, b) �∈ R(p, c) and b �∈ F(a).
(5) If (a, b) ∈ R(p, c), p �∈ +(b), p �∈ −(b), and a �= b, then (b, b) �∈ R(p, c).
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A pointed visibility model Ma is a model M with a distinguished point a ∈A where evaluation
takes place. If necessary, we refer to the elements of the tuple as AM,FM,+M,−M,VM, and RM. A
visibility model such that for all a ∈A there is some i ∈ Nom such that V(i)= {a} is called named.
All models we will be dealing with in the paper are named. Let Nom(a) := {i ∈ Nom | a ∈V(i)} be
a set of all nomimals assigned to an agent, and Top(a) := {p ∈ Top | R(p, a)} be a set of all topics
that an agent posted. A visibility model M is finite if all of A,

⋃{+(a) | a ∈A}, ⋃{−(a) | a ∈A},⋃{Nom(a) | a ∈A}, and ⋃{Top(a) | a ∈A} are finite.
LetM= (A, F,+,−,V , R) be a finite visibility model. The size ofM equals to

card(A)+ card(F)+
∑
a∈A

⎛
⎜⎜⎜⎜⎜⎜⎝

card(+ (a))
card(− (a))
card(Nom(a))∑
p∈Top(a)

card(R(p, a))

⎞
⎟⎟⎟⎟⎟⎟⎠
.

In Definition 2 above, the first condition on R states that if agent b sees a post, which was
originally posted by agent c on topic p, from agent a, then a herself can see the post. The second
condition ensures that if an agent posts a post, all her followers can see the post. Condition number
three specifies that if an agent sees a post on a topic she likes, she will reshare the post and follow
the original poster. The fourth condition says that if an agent sees a post on a topic she dislikes,
she does not reshare it and unfollows the agent from whom she has seen the post. Finally, the last
condition stipulates that if an agent sees a post on a topic she is indifferent to, she does not reshare
the post.

Note that our definition of R does not preclude situations where agents may have seen a post
on a topic they dislike from an agent they do not follow. How such situations may come about will
be the focus of the next section.

Definition 3. Let M= (A, F,+,−,V , R) be a model, a, b, c ∈A, p ∈ Top, i ∈ Nom, and ϕ,ψ ∈
SVL. The semantics of SVL is recursively defined as follows:

Ma |= p+ iff p ∈+(a)
Ma |= p− iff p ∈−(a)
Ma |= i iff a ∈V(i)
Ma |= ¬ϕ iff Ma �|= ϕ
Ma |= ϕ ∧ψ iff Ma |= ϕ and Ma |=ψ
Ma |=♦i:pϕ iff ∃b, c ∈A : (a, b) ∈ R(p, c) and V(i)= {c} and Mb |= ϕ
Ma |=♦−1i:p ϕ iff ∃b, c ∈A : (b, a) ∈ R(p, c) and V(i)= {c} and Mb |= ϕ
Ma |=�ϕ iff ∃b ∈A : a ∈ F(b) and Mb |= ϕ
Ma |=�−1ϕ iff ∃b ∈A : b ∈ F(a) and Mb |= ϕ
Ma |=@iϕ iff Mb |= ϕ and {b} =V(i)

Observe that if Ma �|= p+ then we have that either p ∈−(a) or not. This corresponds to the
intuition that agent a is not pro p if she actively dislikes the topic (she is contra p), or if she is
indifferent to it. Similarly, forMa �|= p−.
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The valuation function V is such that for all i ∈ Nom : |V(i)| = 1. In other words, a name can
only be true for one agent. However, note that one agent can have several names, that is, it can be
the case that two nominals i and j are forced at the same agent a. Furthermore, we allow for two
agents to post on the same topic, that is, regardless of whether two nominals i and j refer to the
same agent, both ♦i:p	 and ♦j:p	 can be forced simultaneously.

Recall the example from Fig. 1. In the figure, we have that Ma |= p+, Mc |= p−, and Mb |=
¬p+ ∧¬p−, meaning that agent a is pro topic p, agent b is indifferent toward the topic, and c
is contra p. Moreover, we have, for example, thatMc |=♦−1i:p	∧�¬p+, meaning that agent c has
seen a post by the agent with name i on topic p, and that all agents that c follows are not pro p.

We can formalize some of the notions of visibility and reachability as formulas in SVL. Let
M= (A, F,+,−,V , R) be a model. Some quantitative amounts related to visibility that we can
count in finite models are as follows:

• How many followers the agent called i has: |{a ∈A |Ma |=�i}|
• How many agents have seen the agent called i’s post on p:
|{a ∈A |Ma |=♦−1i:p	}|

• How many agents that are pro p have seen the agent called i’s post on p:
|{a ∈A |Ma |= p+ ∧♦−1i:p	}|

We also present some formulas corresponding to qualitative properties of agents in the
network. The following formulas are forced at an agent iff the property holds of that agent:

• The current agent i is the original poster of a post on p: i∧♦i:p	
• The current agent has seen i’s post on p: ♦−1i:p	
• All the followers of the current agent i have shared i’s post on p:
i∧�−1♦i:p	

• The current agent i shared a post to a follower j, but j also saw the post from another source:
i∧�−1(j∧♦−1i:p i∧♦

−1
i:p (¬i∧¬j))

• The current agent i has gained a follower who is pro p, after i posted on p:
i∧♦i:p	∧�−1(p+ ∧♦−1i:p i)

• The current agent i has reached the agent j with i’s post on p in no more than three steps:
i∧♦i:p♦i:p♦i:pj

Definition 4. A formula ϕ is called valid if for all models Ma, we have that Ma |= ϕ. Formulas ϕ
and ψ are equivalent, if for all models Ma, it holds that Ma |= ϕ if and only if Ma |=ψ .

Definition 5. Let L1 and L2 be two languages. We say that L2 is more expressive than L1 if for
each ϕ ∈L1 there is an equivalent ψ ∈L2, and there is a χ ∈L2 for which there is no equivalent
τ ∈L1.

The following notion of bisimulation is based on hybrid bisimulation (Areces and ten Cate,
2007) and on bisimulation for logics with “backward-looking” modalities (see, e.g., Kurtonina
and de Rijke 1997).

Definition 6. Let M= (AM , FM ,+M ,−M ,VM , RM) and N = (AN , FN , +N , −N , VN , RN) be vis-
ibility models, and Q⊆ Nom. We say that M and N are Q-bisimilar (denoted M�Q N) if there
is a nonempty relation B⊆AM ×AN, called Q-bisimulation such that the following conditions are
satisfied:
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Atoms+ If B(a, b), then for all p ∈ Top: p ∈+M(a) iff p ∈+N(b),
Atoms− If B(a, b), then for all p ∈ Top: p ∈−M(a) iff p ∈−N(b),
Nominals 1 If B(a, b), then for all i ∈Q: a ∈VM(i) iff b ∈VN(i),
Nominals 2 For all i ∈Q, if VM(i)= {a} and VN(i)= {b}, then B(a, b),
Forth ♦ If B(a, b) and (a, a′) ∈ RM(p, c), then there is a b′ ∈AN such that (b, b′) ∈ RN(p, c)

and B(a′, b′),
Back ♦ If B(a, b) and (b, b′) ∈ RN(p, c), then there is an a′ ∈AM such that (a, a′) ∈ RM(p, c)

and B(a′, b′),
Forth ♦−1 If B(a, b) and (a′, a) ∈ RM(p, c), then there is a b′ ∈AN such that (b, b′) ∈ RN(p, c)

and B(a′, b′),
Back ♦−1 If B(a, b) and (b′, b) ∈ RN(p, c), then there is an a′ ∈AM such that (a′, a) ∈ RM(p, c)

and B(a′, b′),
Forth � If B(a, b) and a ∈ FM(a′), then there is a b′ ∈AN such that b ∈ FN(b′) and B(a′, b′),
Back � If B(a, b) and b′ ∈ FN(b), then there is an a′ ∈AM such that a′ ∈ FM(a) and B(a′, b′),
Forth �−1 If B(a, b) and a′ ∈ FM(a), then there is a b′ ∈AN such that b′ ∈ FN(b) and B(a′, b′),
Back �−1 If B(a, b) and b′ ∈ FN(b), then there is an a′ ∈AM such that a′ ∈ FM(a) and B(a′, b′).

We say that Ma and Nb are Q-bisimilar and denote this by Ma �Q Nb, if there is a bisimulation
linking agents a and b. If Q= Nom, we say that Ma and Nb are bisimilar and write Ma �Nb.

The following theorem is a standard result in hybrid modal logic (Areces and ten Cate, 2007).

Theorem 7. Let Ma and Nb be two models. If Ma �Q Nb, then for all ϕ ∈ SVL such that ϕ includes
only nominals from Q, Ma |= ϕ if and only if Nb |= ϕ.

Definition 8. Let M= (AM , FM ,+M ,−M ,VM , RM) and N = (AN , FN , +N , −N , VN , RN) be vis-
ibility models. We say that M and N are n-bisimilar (denoted M�n

Q N) if there is a sequence of
relations Bn ⊆ . . . B0, called n-bisimulation that satisfies the following. First, a nonempty relation
B0 ⊆AM ×AN is a 0-bisimulation if for all (a, b) such that B(a, b), clauses Atoms+, Atoms−,
Nominals 1, and Nominals 2 hold. Then, for n> 0, relation Bn is an n-bisimulation, if there is
an (n− 1)-bisimulation Bn−1 ⊆ Bn such that

Forth ♦ If Bn(a, b) and (a, a′) ∈ RM(p, c), then there is a b′ ∈AN such that (b, b′) ∈ RN(p, c)
and Bn−1(a′, b′),

Back ♦, Forth ♦−1, Forth �, Back �, Back ♦−1, Forth �−1, Back �−1 Similar to the cases in
Definition 6 with subscripts n and n− 1 for B as for the case Forth ♦.

We say that Ma and Nb are n-bisimilar and denote this by Ma �n Nb if there is an n-bisimulation
linking agents a and b. If, additionally, n-bisimulation between Ma and Nb is restricted to nominals
from Q⊆ Nom, we say that Ma and Nb are Q-n-bisimilar and write Ma �n

Q Nb.

One of the classic results in standard modal logic is a restricted version of Theorem 7 stat-
ing that n-bisimulation implies satisfaction of the same modal formulas up to modal depth n
(Goranko and Otto, 2007). This, however, is not the case for hybrid modal logic, since operator @i
allows reaching an agent named i no matter “how far” the agent is from the current agent. On the
other hand, the result holds for hybrid modal logic if we only concentrate on formulas that do not
include nominals that are used in models at hand. Granted this is an even more restrictive case,
the fact will be useful later in the paper.
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Theorem 9. Let Ma and Nb be two models, and let Q⊆Nom \ {i ∈ Nom |VM(i) �= ∅ or VN(i) �=
∅}. If Ma �n

Q Nb, then for all ϕ ∈ SVL such that md(ϕ)� n, and ϕ includes only nominals from Q,
Ma |= ϕ if and only if Nb |= ϕ.

The proof of the theorem is standard noting that all nominals appearing in ϕ have the empty
denotation.

3.2 A Sound and complete axiomatization of SVL
In this section, we present a sound and complete axiomatization of SVL. The main direction of
our proofs follows the strategy of establishing completeness of hybrid logic that can be found in
works by Blackburn and ten Cate (2006) and Blackburn et al. (2001). We omit proofs of lemmas
if they can be adopted from the cited literature with minimal changes.

Definition 10. The proof system of SVL, SVL, comprises axioms and rules of inference from Tables
1 and 2.

Table 1. Hybrid and bidirectional axioms

PROP Propositional tautologies T�−1♦ ϕ→�−1i:p ♦i:pϕ
K� �i:p(ϕ→ψ)→ (�i:pϕ→�i:pψ) T��−1 ϕ→��−1ϕ
K�−1 �−1i:p (ϕ→ψ)→ (�−1i:p ϕ→�−1i:p ψ) T�−1� ϕ→�−1�ϕ
K� �(ϕ→ψ)→ (�ϕ→�ψ) HT@�♦−1 @i�i:p♦−1i:p i
K�−1 �−1(ϕ→ψ)→ (�−1ϕ→�−1ψ) HT@�−1♦ @i�−1i:p ♦i:pi
K@ @i(ϕ→ψ)→ (@iϕ→@iψ) HT@��−1 @i��−1i
SELF-DUAL @iϕ↔¬@i¬ϕ HT@�−1� @i�−1�i
REF @ii MP From ϕ→ψ , ϕ, infer ψ
AGREE @i@jϕ↔@jϕ NEC� From ϕ, infer�i:pϕ
INTRO i∧ ϕ→@iϕ NEC�−1 From ϕ, infer�−1i:p ϕ
BACK♦ ♦i:p@iϕ→@iϕ NEC� From ϕ, infer�ϕ
BACK♦−1 ♦−1i:p @iϕ→@iϕ NEC�−1 From ϕ, infer�−1ϕ
BACK� �@iϕ→@iϕ NEC@ From ϕ, infer @iϕ

BACK�−1 �−1@iϕ→@iϕ SUB From ϕ, infer ϕσ

T�♦−1 ϕ→�i:p♦−1i:p ϕ NAME From @iϕ, i �∈ ϕ, infer ϕ
In rule SUB, σ is a substitution that uniformly replaces nominals by nominals, and topics with

formulas.

Table 2. Followership and visibility axioms

IRREF @i¬�i FOLL @i((p+ ∧♦−1j:p	∧¬j)→ (♦j:pi∧�j))
CONS p+ ∧ p−→⊥ UNFOLL @i((p− ∧♦−1j:p (¬i∧ k))→ (¬♦j:p	∧¬�k))
AG-SEE @i(♦j:p	→♦j:pi) INDIFF @i((¬p− ∧¬p+ ∧♦−1j:p ¬i)→¬♦j:p	)
FOL-SEE @i(♦j:pi→�−1♦−1j:p i)
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The axiomatization of SVL combines the axiomatizations of hybrid logic (Blackburn et al.,
2001, Section 7.3), hybrid tense logic (Blackburn and ten Cate, 2006), and additional novel axioms
and rules of inference for followership and visibility.

Remark 11. Note that we do not claim that SVL is the minimal set of axioms and rules of infer-
ences that is sound and complete for the class of visibility models. For the purposes at hand, it is
enough that SVL is finitary and complete.

Let us consider Table 1 first. AxiomsK are standardmodal distributivity axioms. Axiom schema
SELF-DUAL states that hybrid operator @i is its own dual. REF states that an agent named i actually
satisfies nominal i. According to AGREE, accessing an agent in two@-steps is the same as accessing
the same agent in a single @-step. Axiom INTRO allows us to put an arbitrary true formula under
the scope of @. Interactions between @ and all diamonds in our language are captured by the set of
BACK axiom schemata. Axioms T are standard axioms of tense logic ensuring that our models are
bidirectional. The interaction between @ and the fact that our followership and visibility relations
are bidirectional is captured by axiomsHT. Finally, we have standard rules of inference likemodus
ponens MP, necessitations NEC, and substitution SUB. Rule NAME states that if we can prove that
ϕ holds at an arbitrary agent i, then we can prove ϕ.

Now let us turn to the axiom schemata in Table 2. IRREF captures the irreflexivity of the fol-
lowership relation, and CONS states that an agent’s views on a topic are consistent. Axiom FOLL
states that if the current agent sees a post from some other agent on a topic she likes, she starts fol-
lowing the original poster and reposts the post. Alternatively, UNFOLL specifies that if the current
agent sees a post on the topic she does not like, she unfollows the agent she the post from. Finally,
according to INDIFF, if the current agent is indifferent to the topic of the post she sees, then she
does nothing.

That SVL is sound can be shown by a direct application of the definition of semantics.

Theorem 12. SVL is sound.

As an example of an SVL derivation, consider a set of theorems, where♥∈ {♦i:p,♦−1i:p ,�,�−1}:
BRIDGE♥ ♥i∧@iϕ→♥ϕ

We show how to derive BRIDGE�:

1. �(¬ϕ→¬i)→ (�¬ϕ→�¬i) K�

2. �¬ϕ ∧�i→�(¬ϕ ∧ i) Prop. reasoning and dual of� : 1

3. i∧¬ϕ→@i¬ϕ INTRO

4. �(¬@i¬ϕ→ (¬i∨ ϕ)) Prop. reasoning and NEC� : 3

5. �¬@i¬ϕ→�(¬i∨ ϕ) K� and MP : 4

6. �(i∧¬ϕ)→�@i¬ϕ Prop. reasoning and dual of� : 5

7. �¬ϕ ∧�i→�@i¬ϕ Prop. reasoning: 2 and 6

8. �@i¬ϕ→@i¬ϕ BACK�
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9. �¬ϕ ∧�i→@i¬ϕ Prop. reasoning and dual of� : 7 and 8

10 @iϕ ∧�i→�ϕ SELF-DUAL, prop. reasoning and dual of� : 9
Nowwe turn to the proof of the completeness of SVL. In our proof sketch, we follow Blackburn

et al. (2001, Section 7.3) and Blackburn and ten Cate (2006) and omit proofs of lemmas that can
be taken “as is” from the cited literature with straightforward changes.

As usual in the completeness proofs that employ the canonical model construction, we
commence with the notion of a maximal consistent set (MCS).

Definition 13. Let� be a set of formulas.We call� consistent if� �� ⊥, and� ismaximal if for any
ϕ, either ϕ ∈ � or¬ϕ ∈ �. If � is both maximal and consistent, then we call � amaximal consistent
set (MCS). We say that MCS � is named if and only if it contains a nominal. For i ∈ Nom and MCS
�, set {ϕ |@iϕ ∈ �} is called a named set yielded by �.

It is straightforward to show that MCSs contain all the instances of the axioms of SVL and are
closed under MP. From the hybrid perspective, each MCS itself contains a collection of named
MCSs with the properties defined in the following lemma.

Lemma 14. Blackburn et al. 2001, Lemma 7.24. Let � be a MCS, and for all i ∈ Nom, let�i = {ϕ |
@iϕ ∈ �}. Then the following holds:

(1) For all i ∈ Nom,�i is an MCS and i ∈�i.
(2) For all i, j ∈ Nom, if i ∈�j, then�j =�i.
(3) For all i, j ∈ Nom, @iϕ ∈�j if and only if @iϕ ∈ �.
(4) For all i ∈ Nom, if i ∈ �, then � =�i.

Before we continue, we need a set of additional rules of inference that are called PASTE♥, where
♥∈ {♦i:p,♦−1i:p ,�,�−1}.

PASTE♥ From @i♥j∧@jϕ→ψ with j �= i �∈ ϕ,ψ , infer @i♥ϕ→ψ

These rules are derivable from SVL in the presence of axioms HT (Blackburn and ten Cate, 2006).
Rules PASTE♥ may not look entirely straightforward. However, for the purposes at hand, we need
these rules just for the next definition, and more on the intuition behind PASTE rules can be found
in Blackburn et al. (2001, Section 7.3).

Definition 15. An MCS � is called pasted if and only if @i♥ϕ ∈ � implies that for some j ∈ Nom,
@i♥j∧@jϕ ∈ �, where ♥∈ {♦i:p,♦−1i:p ,�,�−1}.

The next lemma is a hybrid version of Lindenbaum Lemma, and its proof relies on rules
PASTE♥.

Lemma 16. (Blackburn et al. 2001, Lemma 7.25). Let Nom∗ be a new countable set of nominals
such that Nom∩ Nom∗ = ∅. Moreover, let SVL∗ be the language obtained from SVL by adding
Nom∗. Then every consistent set of formulas of SVL can be extended to a named and pasted MCS
of formulas of SVL∗.

Now we have all the ingredients for the construction of the canonical model.
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Definition 17. Let � be a named and pastedMCS. The named and pasted model yielded by �,M� ,
is a tuple (A� , F� ,+� ,−� ,V� ,R�), where

• A� = {{ϕ |@iϕ ∈ �} | i ∈ Nom} is the set of all named sets yielded by � with typical elements
denoted a, b, and c,

• a ∈ F�(b) if and only if ∀ϕ :�ϕ ∈ a implies ϕ ∈ b,
• +�(a)= {p ∈ Top | p+ ∈ a},
• −�(a)= {p ∈ Top | p− ∈ a},
• V�(i)= {a ∈A� | i ∈ a},
• (a, b) ∈R�(p, c) if and only if ∀ϕ :�i:pϕ ∈ a implies ϕ ∈ b, whereV�(i)= {c}.

There are several properties that we need to check in order to ensure that M� is indeed a
visibility model. First, observe that by items (1) and (2) of Lemma 14, each nominal names a
unique agent in A� . Next, no agent is pro and contra the same topic. This follows from the fact
that each agent a ∈A� satisfies all the instances of axiom CONS.

The followership and visibility relations of visibility models are bidirectional, which is mani-
fested by the presence of converse modalities in SVL. In the next two lemmas, we argue that the
corresponding relations of the canonical modelM� are also bidirectional.

Lemma 18. The following definitions of a ∈ F�(b) are equivalent for all ϕ:
(1) �ϕ ∈ a implies ϕ ∈ b
(2) �−1ϕ ∈ b implies ϕ ∈ a
(3) ϕ ∈ b implies �ϕ ∈ a
(4) ϕ ∈ a implies �−1ϕ ∈ b

Proof. From (1) to (2). Assume that (1) holds. We show (2) by contraposition, that is, we demon-
strate that ϕ �∈ a implies �−1ϕ �∈ b. Let ϕ �∈ a. Since a is an MCS, ϕ �∈ a if and only if ¬ϕ ∈ a. By
T��−1 and MP, we also have that ��−1¬ϕ ∈ a. By (1), the latter implies that �−1¬ϕ ∈ b, which
is equivalent to ¬�−1ϕ ∈ b. Since b is an MCS, it holds that�−1ϕ �∈ b. From (2) to (1). Similar to
above using T�−1�.

From (3) to (4). Assume that (3) holds. We show that �−1ϕ �∈ b implies ϕ �∈ a. To this end, let
�−1ϕ �∈ b, which is equivalent to �−1¬ϕ ∈ b. By (3), the latter implies that ��−1¬ϕ ∈ a. From
��−1¬ϕ ∈ a and contraposition of T��−1 we get ¬ϕ ∈ a by MP. Since a is an MCS, ¬ϕ ∈ a is
equivalent to the fact that ϕ �∈ a. From (4) to (3). Similar to above using T�−1�.

(1) is equivalent to (3). By taking a contraposition of (1).

Lemma 19. The following definitions of (a, b) ∈R�(p, c) withV�(i)= {c} are equivalent for all ϕ:

(1) �i:pϕ ∈ a implies ϕ ∈ b
(2) �−1i:p ϕ ∈ b implies ϕ ∈ a
(3) ϕ ∈ b implies ♦i:pϕ ∈ a
(4) ϕ ∈ a implies ♦−1i:p ϕ ∈ b

Proof. The proof is similar to the proof of Lemma 18 using T�♦−1 and T�−1♦.

Finally, we show that the followership and visibility relations ofM� satisfy the properties from
Definition 2, that is, that M� is indeed a visibility model. But before we delve into the proof per
se, we also mention that the following schema is a theorem of SVL:
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ELIM i∧@iϕ→ ϕ

ELIM can be derived from the contraposition of INTRO using SELF-DUAL.

Lemma 20. Model M� has an irreflexive followership relation, and its visibility relation satisfies
(1)–(5) from Definition 2.

Proof. Irreflexivity. Assume toward a contradiction that there is a ∈A� such that a ∈ F�(a). Since
a is a named MCS, there is an i ∈ Nom such that V�(i)= {a}. Moreover, a contains all the
instances of IRREF, and in particular @i¬�i ∈ a, which is equivalent to @i�¬i ∈ a. From i ∈ a
and @i�¬i ∈ a, we can conclude �¬i ∈ a by ELIM and MP. By the definition of F� , a ∈ F�(a) if
and only if ∀ϕ :�ϕ ∈ a implies ϕ ∈ a. Thus,�¬i ∈ a implies¬i ∈ a, which contradicts i ∈ a and a
being consistent.

(1). We need to show that if (a, b) ∈R�(p, c), then (a, a) ∈R�(p, c), where a, b, c ∈A� . Thus,
assume that (a, b) ∈R�(p, c), and letV�(i)= {a} andV�(j)= {c}. Since a is an MCS, it contains
all instances of AG-SEE, and in particular @i(♦j:p	→♦j:pi) ∈ a. By ELIM and MP, we further
have that ♦j:p	→♦j:pi ∈ a. From the fact that 	∈ b and (a, b) ∈R�(p, c), we have ♦j:p	∈ a.
The latter implies that ♦j:pi ∈ a by MP. From i ∈ a and ♦j:pi ∈ a, we conclude, by Lemma 19, that
(a, a) ∈R�(p, c).

(2). We show that if (a, a) ∈R�(p, c), then (a, b) ∈R�(p, c) for all b ∈ F�(a). Let V�(i)= {a},
V�(j)= {c}, and b ∈A� be an arbitrary agent such that b ∈ F�(a). Moreover, let us assume (a, a) ∈
R�(p, c). Since a is an MCS, it contains the following instance of FOL-SEE: @i(♦j:pi→�−1♦−1j:p i).
We can use ELIM to get ♦j:pi→�−1♦−1j:p i ∈ a. By the third item of Lemma 19, (a, a) ∈R�(p, c)
is equivalent to the fact that if i ∈ a, then ♦j:pi ∈ a. We obtain the latter from i ∈ a and MP.
Furthermore, from ♦j:pi→�−1♦−1j:p i ∈ a and ♦j:pi ∈ a, we derive �−1♦−1j:p i ∈ a. From b ∈ F�(a)
and �−1♦−1j:p i ∈ a, we have, by item (2) of Lemma 18, ♦−1j:p i ∈ b. Finally, the fact that i ∈ a and
♦−1j:p i ∈ b is equivalent to (a, b) ∈R�(p, c) by item (4) of Lemma 19.

(3). We need to show that if (a, b) ∈R�(p, c), p ∈+�(b), and b �= c, then (b, b) ∈R�(p, c)
and b ∈ F�(c). Assume that it holds that (a, b) ∈R�(p, c), p ∈+�(b), and b �= c, and let V�(i)=
{b} and V�(j)= {c}. As b ∈A� and thus is an MCS, it contains the following instance of
FOLL: @i((p+ ∧♦−1j:p	∧¬j)→ (♦j:pi∧�j)). From i ∈ b by ELIM and MP, we obtain (p+ ∧
♦−1j:p	∧¬j)→ (♦j:pi∧�j) ∈ b. The truth of the antecedent follows from the assumptions that
(a, b) ∈R�(p, c), p ∈+�(b), b �= c, andV�(j)= {c}. Hence, ♦j:pi∧�j ∈ b, or, equivalently, ♦j:pi ∈
b and �j ∈ b. From ♦j:pi ∈ b and i ∈ b by item (4) of Lemma 19, we have that (b, b) ∈R�(p, c).
Similarly, from �j ∈ b and j ∈ c by item (3) of Lemma 18, we obtain b ∈ F�(c).

(4). Assume that for some a, b, c ∈A� , we have that (a, b) ∈R�(p, c), p ∈−�(b), a �= b, and
V�(i)= {b}, V�(j)= {c}, and V�(k)= {a}. We need to show that all of these imply (b, b) �∈
R�(p, c) and b �∈ F�(a). Assume toward a contradiction that (b, b) ∈R�(p, c) or b ∈ F�(a).
First, let (b, b) ∈R�(p, c). Since b is an MCS, it contains the following instance of UNFOLL:
@i((p− ∧♦−1j:p (¬i∧ k))→ (¬♦j:p	∧¬�k)). From i ∈ b and ELIM, we have (p− ∧♦−1j:p (¬i∧
k))→ (¬♦j:p	∧¬�k) ∈ b. Our assumptions imply the truth of the antecedent. Hence,¬♦j:p	∧
¬�k ∈ b. At the same time, (b, b) ∈R�(p, c) is equivalent to 	∈ b implies ♦j:p	∈ b, by item (3)
of Lemma 19. Since b is an MCS, we have that 	∈ b, and hence ♦j:p	∈ b, which contradicts
¬♦j:p	∈ b. Now, let b ∈ F�(a). From k ∈ a by item (3) of Lemma 18, we conclude that �k ∈ b,
which contradicts ¬�k ∈ b.

(5). Assume that for some a, b, c ∈A� , we have that (a, b) ∈R�(p, c), p ∈+�(b), p ∈−�(b),
a �= b, and V�(i)= {b}, V�(j)= {c}, and V�(k)= {a}. We demonstrate that (b, b) �∈R�(p, c).
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Assume toward a contradiction that (b, b) ∈R�(p, c). Since b is an MCS, 	∈ b, and by item
(3) of Lemma 19, we thus have ♦j:p	∈ b. At the same time, b contains all the instances of
INDIFF, and in particular, @i((¬p− ∧¬p+ ∧♦−1j:p ¬i)→¬♦j:p	) ∈ b. By i ∈ b and ELIM, we
have (¬p− ∧¬p+ ∧♦−1j:p ¬i)→¬♦j:p	∈ b. The antecedent follows from our assumption. Hence,
¬♦j:p	∈ b, which contradicts the aforeshown ♦j:p	∈ b.

Lemma 20 thus establishes that our canonical modelM� is indeed a visibility model.

Lemma 21. Let � be a named and pasted MCS, and let M� = (A� , F� ,+� ,−� ,V� ,R�) be the
named and pasted model yielded by �. Then the following holds.

(1) Let ♦j:pϕ ∈ a and a ∈A� . Then there is a b ∈A� , such that (a, b) ∈R(p, c),V�(j)= {c}, and
ϕ ∈ b.

(2) Let ♦−1j:p ϕ ∈ b and b ∈A� . Then there is an a ∈A� , such that (a, b) ∈R(p, c), V�(j)= {c},
and ϕ ∈ a.

(3) Let �ϕ ∈ a and a ∈A� . Then there is a b ∈A� , such that a ∈ F(b) and ϕ ∈ b.
(4) Let �−1ϕ ∈ b and b ∈A� . Then there is an a ∈A� , such that a ∈ F(b) and ϕ ∈ a.

Proof. We prove only item (3) and all other items can be shown analogously. Assume that �ϕ ∈
a and V�(i)= {a}. By INTRO we thus have that @i�ϕ ∈ a. Since � is pasted, @i�ϕ ∈ a implies
that there is a j ∈ Nom such that @i�j∧@jϕ ∈ �. Let b be the MCS with j ∈ b. By ELIM, we thus
have that �j ∈ a and ϕ ∈ b. From j ∈ b and �j ∈ a, we conclude, by item (3) of Lemma 18, that
a ∈ F(b).

With the next lemma, usually called in the literature The Truth Lemma, we establish the equiv-
alence between membership of a formula in some a ∈A� and truth of the formula at agent a of
the canonical model.

Lemma 22. Let M� = (A� , F� ,+� ,−� ,V� ,R�) be the named and pasted model yielded by a
named and posted MCS �, and let a ∈A� . Then for all ϕ, ϕ ∈ a if and only ifM�

a |= ϕ.

Proof. The proof is by induction of ϕ. Cases of topics and nominals follow directly fromDefinition
17, and Boolean cases are straightforward. Among the modal cases, we show just �ϕ and other
modal cases can be proved similarly by using the appropriate items of Lemmas 18, 19, and 21.

Case ϕ =�ψ . From left to right. Let �ψ ∈ a. By item (3) of Lemma 21, this implies that there
is a b ∈A� such that a ∈ F(b) and ψ ∈ b. By the Induction Hypothesis, the latter is equivalent to
the fact that there is a b ∈A� such that a ∈ F(b) and M�

b |=ψ , which, in turn, is equivalent to
M�

a |=�ψ by the definition of semantics.
From right to left. Assume thatM�

a |=�ψ . By the definition of semantics, this is equivalent to
the fact that there is a b ∈A� such that a ∈ F(b) and M�

b |=ψ . By the Induction Hypothesis, the
latter is equivalent to a ∈ F(b) and ψ ∈ b, which implies �ψ ∈ a by item (3) of Lemma 18.

Case ϕ =@iψ . Assume that M�
a |=@iψ . By the definition of semantics, this is equivalent to

M�
b |=ψ for a b ∈A� such thatV�(i)= {b}. By the Induction Hypothesis,M�

b |=ψ if and only if
ψ ∈ b, which implies @iψ ∈ b by INTRO andMP. By item (3) of Lemma 14, we have that @iψ ∈ a.
The other direction is similar by using ELIM instead of INTRO.

We finally have all the ingredients in order to demonstrate that the axiom system SVL is
complete for the class of visibility models.

Theorem 23. Every consistent set of formulas is satisfiable on a visibility model.
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Figure 2. A follower-networkMwhere vaccination is a controversial topic.

Proof. Let 	 be a consistent set of formulas. By Lemma 16, 	 can be extended to a named and
pasted MCS � in SVL

∗. Let M� = (A� , F� ,+� ,−� ,V� ,R�) be the named and pasted model
yielded by �. Since � is named, by item (4) of Lemma 14 and the definition of M� , � ∈A� . By
Lemma 22 and the fact that	 ⊆ �, the latter is equivalent toM�

� |= ϕ for all ϕ ∈	.

4. Visibility Logic
To reason about the effects of agents posting on various topics, we introduce a dynamic extension
of SVL that we call visibility logic (VL). Compared to SVL, VL is enriched with dynamic operators
[π]ϕ, where π is an action of the current agent making a post. While defining VL, we follow
dynamic epistemic logics (DELs) (van Ditmarsch et al., 2008), and in particular action model logic
(Baltag and Moss, 2004; van Ditmarsch et al., 2008). We begin with a motivating example.

4.1 Example: Taking the advantage to be seen bymany
In some networks, the best tactic for exposing more agents to a controversial opinion is to first
post on a popular topic. Consider the follower-network M in Fig. 2. For simplicity, we do not
include nominals in the figure. This network consists of six agents named in alphabetical order
from a to f . Agent a has two followers: b and c. Agent b has three followers: d, e, and f . We assume
that agents d, e, and f might have some followers that we do not have information about, noted in
the figure with dots. Furthermore, agent a is positive in favor of vaccination (abbreviated v in the
figure) which is a controversial topic among the agents: all agents have an opinion about vaccines
and three of the agents a, c, and f are pro vaccination, whereas b, d, and e are contra vaccination.
The topic of dogs (abbreviated d), on the other hand, is widely liked. All agents like dogs, except a
who is indifferent: d �∈ +(a) and d �∈ −(a).

Imagine that agent a wants to post on vaccines and wants as many as possible of the other
agents in the network to see the post. We show that the best tactic for agent a is to first post on
dogs, even though a is indifferent about dogs, and then later post on vaccines. Consider first the
scenario in Fig. 3 where agent a posts v from the outset. An update happens in two steps. First, we
add visibility arrows corresponding to posting and resharing. In the second step, we update the
followership relation based on whether the agents who have seen a post are pro or contra the post.
The resulting update isMa:v in Fig. 3, where agents b and c have seen a’s vaccine post, and only c
remains as a’s follower.

Then, consider instead the situation where agent a posts on dogs in the update Ma:d in Fig. 4
before posting on vaccines in the update Ma:d,a:v in Fig. 5. Note that to make the situation easier
to read, we omit the followership arrows in the visibility update and the visibility arrows in the
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Figure 3. UpdateMa:v after agent a posts in favor of vaccines.

Figure 4. UpdateMa:d after agent a posts on dogs.

Figure 5. UpdateMa:d,a:v after agent a posts on vaccination after first posting on dogs.

followership update in both figures. AfterMa:d, all agents have seen agent a’s post on dogs. Since
they like dogs, all agents also follow a after the update.

InMa:d,a:v, we see the results after agent a first posted on dogs and then vaccines. All the agents
have now seen a’s vaccine post. Most of them did not like it and unfollowed a, but only after
they were exposed to the post. Interestingly, we also notice that agent f , who was not originally a
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follower of a in the initial network outset, now follows a and has shared the vaccine post to their
followers.

There are two tactical reasons for agent a to post on dogs before their more controversial post
on vaccines. Firstly, a larger portion of the agents now saw a’s post on vaccines since they followed
agent a after the dog post. Second, a has been able to reach out and expand their network: agent f
who is also pro vaccines has shared the vaccination post to their, for us unknown, followers.

The reason behind a phenomenon such as this is directly connected to an underlying notion of
trust between agents in the network. In our setting, agents follow other agents when the former is
exposed to content that they like by the latter. In the example, we imagine agents likely followed a
because they wanted to see more dog-friendly content. Agent amisuses the trust of their followers
by pretending to be interested in dogs before posting on vaccination.

What becomes clear in this example is that in our simplified setting of posting and sharing in a
social network, the interests of an agent’s followers matter a lot to what information is shared and
seen. Second, the system is vulnerable to exploitation by a potentially malicious agent: there are
opportunities to tactically post on popular topics to later expose more agents to a controversial
opinion. To reason about dynamic situations such as these, we introduce VL.

4.2 Language, semantics, and logical properties of VL
The language of VL is an extension of the language of SVL.

Definition 24. Syntax. The language of visibility logic VL is defined recursively by the following
BNF:

ϕ ::= p+ | p− | i | ¬ϕ | (ϕ ∧ ϕ) |♦i:pϕ |♦−1i:p ϕ |�ϕ |�−1ϕ |@iϕ | [π]ϕ
π ::= p | (π ∪ π)

where [π]ϕ is read “after the current agent executes action π , ϕ holds.”

Union of actions (π ∪ τ ) was inherited by DELs from propositional dynamic logic (PDL)
(Fischer and Ladner, 1979), and in the context of visibility formulas, [p∪ q]ϕ mean “whichever
topic the current agent posts on, p or q, ϕ will be true (in both cases).”

Given a formula ϕ ∈VL, we define modal depth and the size of the formula similarly to the
corresponding definitions for SVL with the following additional cases: md([π]ϕ)=md(ϕ), and
|[π]ϕ| = |π | + |ϕ| + 1, where |π ∪ τ | = |π | + |τ | + 1.

Definition 25. (Semantics). Let M= (A, F,+,−,V , R) be a visibility model, a ∈A, and p, q ∈ Top.
The semantics of VL is the same as in Definition 3 with the following additions:

Ma |= [p]ϕ iff Ma:p
a |= ϕ

Ma |= [π ∪ τ ]ϕ iff Ma |= [π]ϕ and Ma |= [τ ]ϕ
Ma |= 〈π ∪ τ 〉ϕ iff Ma |= 〈π〉ϕ or Ma |= 〈τ 〉ϕ

where Ma:p
a is defined in the following two steps. First, let M∗ = (A, F, +, −, V , R∗), where

R∗(p, a) is the least fixed point of function f : 2A×A→ 2A×A defined as:
f (X)=X ∪ {(a, a)} ∪ {(b, c) | (b, b) ∈ X and c ∈ F(b)}

∪ {(c, c) | p ∈+(c) and ∃b : (b, c) ∈ X}.
Informally, intermediate modelM∗ differs fromM only in R in such a way that R∗ now contains
the fact that a has posted on p, that her post has reached all her followers, and that all followers
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who are pro p reshare the post further to their followers. Second, we constructMa:p out ofM∗ by
updating F:

(1) Fa:p(a)= F(a)∪ {b}, if a �= b, p ∈+(b), and ∃c : (c, b) ∈ R∗(p, a),
(2) Fa:p(b)= F(b) \ {c}, if p ∈−(b) and (c, b) ∈ R∗(p, a).

Intuitively, agent b will follow the original poster a if she has seen the post, maybe not even from
a, and if she is pro the topic. Agent c will stop following anyone from whom she has seen a post on
a topic she dislikes.

Returning to the example in the beginning of this section, we can use the new operators to
reason about the situation with formulas that hold in the models given in the example. For sim-
plicity, we name the agents with nominals corresponding to their labels in the model. That is,
Ma � a, Mb � b and so on, where a, b ∈ Nom. To avoid confusion with the agent named d, we
denote the topics “vaccines” and “dogs” with vacc and dogs instead of v and d as used in the exam-
ple. The following formulas, with their respective intuitive readings, hold in the initial modelM in
Fig. 2:

• Ma � [vacc]�−1c
“After posting on vaccines, a will have only one follower, c.”

• Ma � [vacc](♦a:vaccb∧♦a:vaccc∧�a:vacc(a∨ b∨ c))
“After posting on vaccines, only b and c, except for a, will have seen a’s post.”

• Ma � [dogs](�−1b∧�−1c∧�−1d∧�−1e∧�−1f )
“After posting on dogs, all agents from b to f will follow a.”

• Ma � [dogs][vacc](♦a:vaccb∧♦a:vaccc∧♦a:vaccd∧♦a:vacce∧♦a:vaccf )
“After a first posts on dogs, and then on vaccines, all agents from a to f will have seen a’s
post on vaccines.”

To give a further taste of VL, let us provide some properties that are valid or not valid
on visibility models. All the validities can be shown by an application of the definition of the
semantics.

Proposition 26. Let p, q ∈ Top and ϕ ∈VL.

(1) ¬[p]ϕ↔ [p]¬ϕ is valid.
(2) [π ∪ τ ]ϕ↔ [π]ϕ ∧ [τ ]ϕ is valid.
(3) ♦−1i:p ϕ↔ [q]♦−1i:p ϕ is valid.
(4) [p]ϕ→ [p][p]ϕ is not valid.
(5) [p][p]ϕ→ [p]ϕ is not valid.

The first formula states that the operator of posting on a topic is its own dual. The second
property shows how to eliminate nondeterministic choice. The third item claims that once an
agent has seen a post of an agent with the name i on topic p, no further post can revoke this. The
fact that formulas four and five are not valid indicates that consecutive posting on the same topic
yields different results. A counterexample showing this would include the current agent with the
name i posting on p and gaining new followers. Additional posts on the same topic by the same
agent will add new p-arrows to those new followers, thus resulting in a different updated model
that is not guaranteed to satisfy ϕ.
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Figure 6. ModelsM and N.

4.3 Expressivity andmodel checking
Now, we state that VL is more expressive than its static fragment SVL. This result is quite inter-
esting, since many of DELs, for example, public announcement logic (Plaza, 2007), arrow update
logic (Kooi and Renne, 2011), and action model logic (van Ditmarsch et al., 2008, Chapter 6),
are equally expressive as the static logic they are built upon. Those expressivity results are usually
obtained with the use of so-called reduction axioms that allow one to equivalently rewrite for-
mulas of dynamic extensions to formulas of the static fragment. Thus, the fact that VL is more
expressive than SVL also entails that no reduction axioms for VL are possible.

Theorem 27. SVL<VL.

Proof. Consider a VL formula [p]�−1�−1⊥, and assume toward a contradiction that there is an
equivalent formula ψ of SVL withmd(ψ)= n. Since ψ has a finite size, there is a set of nominals
Q= {j1, . . . , jn+1} that are not present in ψ .

Consider modelsM andN in Fig. 6. The models are chains of length n+ 2 that start with agent
a and with each next agent following the previous one. The only difference between the models is
that the last agent in the chain in modelM is pro topic p, and the last agent in the chain in model
N is neither pro nor contra topic p.

Now we will argue that [p]�−1�−1⊥ distinguishes Ma and Na. In particular, Ma |=
[p]�−1�−1⊥ and Na �|= [p]�−1�−1⊥. Indeed, agent a posting on topic p results in the updated
visibility model Ma:p

a presented in Fig. 7. In the updated model, it holds that Ma:p
bn+1 |=�i, that is,

that agent bn+1 follows agent a. Moreover, agent bn+1 does not have any followers so Ma:p
bn+1 |=

�−1⊥ is vacuously true. Hence,Ma |= [p]�−1�−1⊥. To see thatNa �|= [p]�−1�−1⊥, it is enough
to notice that agent bn+1 is not pro topic p, and thus they do not follow agent a in the updated
model. Updated model Na:p

a is depicted in Fig. 7 on the right.
In order to show that Ma |=ψ if and only if Na |=ψ , observe that Ma and Na are n-

bisimilar (but not (n+ 1)-bisimilar), which implies that the pointed models are (Nom \Q)-n-
bisimilar. From the fact that md(ψ)= n and Theorem 9, it follows that Ma |=ψ if and only
if Na |=ψ . Hence, we have a contradiction with an earlier assumption that ψ is equivalent to
[p]�−1�−1⊥.

Before we turn to the model checking problem for VL, we mention that the complexity of
the model checking problem of SVL is in P. This result follows trivially from the fact that model
checking hybrid tense logic with universal modality is in P (Franceschet and de Rijke, 2006).
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Figure 7. Models Ma:p and Na:p. Reflexive pa-arrows and followership arrows from bk to a for k ∈ {1, ..., n} are omitted for
readability.

Theorem 28. Model checking SVL is in P.

Not only is VLmore expressive than SVL, but its model checking problem is also more compu-
tationally demanding. We show this by providing a model checking algorithm for VL that runs in
polynomial space. For hardness, we use the classic reduction from quantified Boolean formulas.

Theorem 29. The model checking problem for VL is PSPACE-complete.

Proof. To show that the model checking problem for VL is in PSPACE, we present Algorithm 1.

Algorithm 1 An algorithm for model checking VL
1: procedureMC(M, a, ϕ)
2: case ϕ = p+
3: return p ∈+(a)
4: case ϕ = p−
5: return p ∈−(a)
6: case ϕ = i
7: return a ∈V(i)
8: case ϕ =¬ψ
9: return not MC(M, a,ψ)
10: case ϕ =ψ ∧ χ
11: returnMC(M, a,ψ) and MC(M, a, χ)
12: case ϕ =♦i:pψ
13: if ∃b, c ∈A such that (a, b) ∈ R(p, c) with V(i)= {c} and MC(M, b,ψ) then
14: return true
15: return false
16: case ϕ =♦−1i:p ψ
17: if ∃b, c ∈A such that (b, a) ∈ R(p, c) with V(i)= {c} and MC(M, b,ψ) then
18: return true
19: return false
20: case ϕ =�ψ
21: if ∃b ∈A such that a ∈ F(b) with MC(M, b,ψ) then
22: return true
23: return false
24: case ϕ =�−1ψ
25: if ∃b ∈A such that b ∈ F(a) with MC(M, b,ψ) then
26: return true
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27: return false
28: case ϕ =@iψ
29: returnMC(M,V(i),ψ)
30: case ϕ = [p]ψ
31: returnMC(Ma:p, a,ψ)
32: case ϕ = [π ∪ τ ]ψ
33: returnMC(M, a, [π]ψ) and MC(M, a, [τ ]ψ)

The algorithm follows the semantics, and its correctness can be shown via induction on ϕ.
Now we argue that the algorithm requires at most polynomial space. The interesting case here is
ϕ = [p]ψ . Without giving an explicit algorithm for constructingMa:p, we note that the size ofMa:p
is bounded by O(|M|2) (the worst-case scenario of R(p, a) and F being universal). Since there are
at most |ϕ| symbols in ϕ, the total space required by the algorithm is bounded by O(|ϕ| · |M|2).

To show hardness of the model checking problem, we use the classic reduction from the sat-
isfiability of quantified Boolean formulas: given a QBF � :=Q1p1 . . .Qnpnψ(p1, . . . , pn), where
Qi ∈ {∀, ∃}, determine whether� is true. To reduce the satisfiability of QBF� to the model check-
ing of VL, we construct a model Ma and a formula � ′ of VL such that � is true if and only if
Ma |=� ′.

More specifically, given a QBF Q1p1 . . .Qnpnψ(p1, . . . , pn), we construct a visibility model
M= (A, F,+,−,V , R), where A= {a0, . . . , an}, F(ai)= {a0} for all i �= 0, +(ai)= pi for all i �= 0,
−(ai)=∅ for all i, V(ij)= {aj}, and R(p, a)=∅ for all p ∈ Top and a ∈A. Additionally, we assume
that there is a topic q that no agent is either pro or contra. Intuitively, M is a model consisting of
n+ 1 agents, where everyone follows agent a0, who follows no one. Each agent, apart from a0, is
pro exactly one topic, and no one is contra anything. Finally, the translation of the QBF is done
recursively as follows:

ψ ′0 :=ψ(♦i0:p1 (i1 ∧♦i0:p1	), . . . ,♦i0:pn(in ∧♦i0:pn	))

ψ ′k :=
{
[pk ∪ q]ψ ′k−1 if Qk =∀
¬[pk ∪ q]¬ψ ′k−1 if Qk =∃

ψ ′ :=ψ ′n.
We need to show that

Q1x1 . . .Qnxnψ(p1, . . . , pn) is satisfiable iffMa |=ψ ′.
Agent a0 posting on topic pi means that the truth value of pi has been set to 1. If agent a0 posts on
topic q, this means that the truth value of the corresponding pi has been set to 0. Since there are
no two agents that are pro the same topic, the choice of truth values is unambiguous.

We use nondeterministic choice to model quantifiers. The universal quantifier ∀pk is emulated
with [pk ∪ q]ψ ′k−1 meaning that nomatter what agent a0 chooses to post on, pk or q, formulaψ ′k−1
will be true. Similarly, the existential quantifier ∃pk is emulated with ¬[pk ∪ q]¬ψ ′k−1 meaning
that agent a0 can post on a topic, either pk or q, to make ψ ′k−1 true. Finally, propositional variable
pj is translated into the formula ♦i0:pj(ij ∧♦i0:pj	) that is true if and only if there has been a post
on pj, and the corresponding agent aj, who is pro pj, has reposted it. For all other agents ak, the
formula will not hold. Posting on q instead of pj results in the fact that ♦i0:pj(ij ∧♦i0:pj	) is not
satisfied anywhere in the model, thus corresponding to setting pj to 0.

As an example, consider a QBF ∀p1∃p2(p1→ p2). The formula is first translated into a formula
of VL: [p1 ∪ q]¬[p2 ∪ q]¬(♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	)). The corresponding model
M is depicted in Fig. 8.

Now,Ma |= [p1 ∪ q]¬[p2 ∪ q]¬(♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	)) if and only if

Ma:p1
a |= ¬[p2 ∪ q]¬(♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	))
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Figure 8. ModelsM,Ma:p1 ,Ma:q, andMa:p1,a:p2 .

and
Ma:q

a |= ¬[p2 ∪ q]¬(♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	)).
Both updated modelsMia:p1

a andMia:q
a are depicted in Fig. 8. Notice that since agent b is pro topic

p1, they repost it thus creating a reflexive loop labeled with p1. Agent c, who is not pro topic p1,
does not have such a loop. In the case of q, none of the agents have a reflexive loop.

In modelMa:p1
a , propositional variable p1 has been set to 1. Thus, we can choose to update the

model further with a’s post on p2 to satisfy the initial formula. Indeed, consider modelMa:p1,a:p2 .
In the model, we have thatMa:p1,a:p2

a |=♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	) since there is an
a : p1-arrow to state satisfying ib fromwhich there another a : p1-arrow. Similarly for a : p2-arrows.
This corresponds to satisfying p1→ p2 by setting both variables to 1.

In model Ma:q
a , propositional variable p1 has been set to 0. Thus, we can choose any fur-

ther update of the model. Let agent a post on q once again. Since we do not discriminate
between different posts on the same topic, model Ma:q,a:q

a looks exactly like Ma:q
a . Moreover,

it is clear that Ma:q,a:q
a |=♦ia:p1 (ib ∧♦ia:p1	)→♦ia:p2 (ic ∧♦ia:p2	) since Ma:q,a:q

a �|=♦ia:p1 (ib ∧
♦ia:p1	). This corresponds to satisfying p1→ p2 by setting both variables to 0.

Remark 30. Our PSPACE-hardness proof relied on the union operator π ∪ τ . At the same time,
by item (2) of Proposition 26, all formulas with action modalities with unions can be equiva-
lently translated into formulas, where action modalities have only single topics in them. It is not
immediately obvious whether our PSPACE-hardness argument can be rewritten without unions.
We conjecture that it is indeed possible, taking into account that DEL with unions (Aucher and
Schwarzentruber, 2013) and DEL without unions are both PSPACE-hard (de Haan and van de
Pol, 2021). We note, however, that the PSPACE-hardness argument for DEL without unions is
much more complex than the one for DEL with unions.

5. Arbitrary Visibility Logic
The example in Subsection 4.1 demonstrated that what topic an agent posts on matters.
Depending on an agent’s goals, posting on some topics rather than others can be more productive.
For instance, if the goal of the posting agent in the example is to gain as many followers as possible,
then posting on dogs is a better strategy than posting on vaccines.

As agents’ goals can be reached by posting on one topic, and not reached by posting on another,
we can ask a natural general question: given a visibility model M, a goal ϕ and a current agent
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a, is there a topic such that after posting on it, agent a makes ϕ true in model M? Observe the
existential quantification in the question. A dual question with the universal quantification may
be asked about some safety property ϕ of a visibility model M: is true that whatever the current
agent posts on, ϕ will still hold in the updated visibility model?

To capture such reasoning, we extend the language of visibility logic with constructs [ ∗ ]ϕ that
means “whatever action the current agent executes, ϕ will be true.” Shifting our perspective from
the effects of a particular agent action to the (non-)existence of an action achieving a certain goal
is inspired by quantification in DEL (van Ditmarsch, 2023) and in particular by arbitrary public
announcement logic (Balbiani et al., 2008). It is following the latter that we call VL extended with
quantifiers AVL.

Definition 31. The language of arbitrary visibility logicAVL is defined recursively by the following
grammar:

ϕ ::= p+ | p− | i | ¬ϕ | (ϕ ∧ ϕ) |♦i:pϕ |♦−1i:p ϕ |�ϕ |�−1ϕ |@iϕ | [π]ϕ | [ ∗ ]ϕ
π ::= p | (π ∪ π)

where [ ∗ ]ϕ is read “whatever action the current agent executes, ϕ holds.” Its dual, which is defined
as 〈∗〉ϕ := ¬[ ∗ ]¬ϕ, is read as “there is an action which the current agent can execute such that ϕ
will hold.”

Given a formula ϕ ∈AVL, we define modal depth and the size of the formula similarly to the
corresponding definitions for VL with the following additional cases: md([ ∗ ]ϕ)=md(ϕ), and
|[ ∗ ]ϕ| = |ϕ| + 1.

Definition 32. Let M= (A, F,+,−,V , R) be a visibility model, a ∈A, and p, q ∈ Top. The
semantics of AVL extends the semantics of VL (Definition 25) with the following dual clauses:

Ma |= [ ∗ ]ϕ iff ∀π :Ma |= [π]ϕ
Ma |= 〈∗〉ϕ iff ∃π :Ma |= 〈π〉ϕ

Note that we quantify not over single topics but over actions that can be more complex.
Returning to the example in Subsection 4.1, we can say that there is a topic on which agent a can

post such that agents from b to f will follow her:Ma � 〈∗〉(�−1b∧�−1c∧�−1d∧�−1e∧�−1f ),
where b, ..., f in the formula are nominal corresponding to agents b, ..., f in the model. And indeed
such a topic is dogs. At the same time, agent a, no matter what she posts on, will never lose her
follower c, or, formally, Ma |= [ ∗ ]�−1c, where c in the formula is a nominal corresponding to
agent c in the model.

Below are some of the valid and not valid formulas of AVL.

Proposition 33. Let ϕ ∈AVL.

(1) [ ∗ ]ϕ→ [π]ϕ is valid
(2) [ ∗ ](ϕ ∧ψ)→ [ ∗ ]ϕ ∧ [ ∗ ]ψ is valid
(3) [ ∗ ][ ∗ ]ϕ→ [ ∗ ]ϕ is not valid
(4) [ ∗ ]ϕ→ [ ∗ ][ ∗ ]ϕ is not valid

The first formula states that if after executing any action ϕ is true, then ϕ will be true after
executing some particular action. The second property is an expected distributivity of a modal
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box over conjunction. That quantifiers cannot be, in general, collapsed is expressed in formulas
three and four.

Next, we show that in general formulas with quantifiers cannot be reduced to equivalent for-
mulas without quantification. This in particular means that AVL is strictly more expressive than
VL.

Theorem 34. VL<AVL

Proof. Consider 〈∗〉�−1�−1⊥∈AVL, and assume toward a contradiction that there is an equiv-
alentψ ∈VLwithmd(ψ)= n, and such that nominalsQ= {j1, . . . , jn+1} do not appear inψ , and
also none of p, p+, and p− appears anywhere in ψ . Now consider modelsMa and Na from Fig. 6,
for which we argue thatMa |= 〈∗〉�−1�−1⊥ andNa �|= 〈∗〉�−1�−1⊥. For the former, we have that
∃π :Ma |= 〈π〉�−1�−1⊥ by the semantics, and, letting π := p, the rest follows as in the proof of
Theorem 27. For the latter, we consider Na |= [ ∗ ]�−1�−1	, which is equivalent to the fact that
∀π :Na |= [π]�−1�−1	. Now, it is clear from the construction of Na that for all π that do not
contain p, the only agent that will follow a would be agent b1 that satisfies �−1	. If π contains p,
then all agents b1, . . ., bn will follow agent a, and it is easy to check that for all of them �−1	 is
satisfied.

To see that Ma |=ψ if and only if Na |=ψ , recall that not only are the models (Nom \Q)-n-
bisimilar, but ψ does not contain p as well. Thus, the only way for ψ to distinguish the models is
to witness states bn+1 by a stack of �−1, which is impossible due to md(ψ)= n and the models
being (Nom \Q)-n-bisimilar.

In Section 4, we have shown that additional expressivity of VL, compared to SVL, comes at a
price: the complexity of the model checking problem for VL jumps to PSPACE, compared to P
for the case of SVL. Taking into account that AVL is strictly more expressive than VL, a natural
question is whether we have to pay with yet another jump in complexity. Interestingly, the answer
to the question is “no,” and in the rest of the section we argue that the complexity of the model
checking problem for AVL is in PSPACE.

First of all, model checking AVL is not entirely straightforward. We cannot directly implement
the semantics of the logic in an algorithm since quantifiers [ ∗ ] and 〈∗〉 quantify over a countably
infinite number of topics and their unions. However, we will show that it is enough just to consider
the topic used in a finite model and appearing in a given formula.

Recall that Nom(a) := {i ∈ Nom | a ∈V(i)} is the set of all nominals assigned to agent a, and
Top(a) := {p ∈ Top | R(p, a)} is the set of all topics that agent a has posted.

Definition 35. Let M be a finite visibility model, and ϕ be a formula. Then the set of topics appear-
ing in M, denoted Var(M), is

⋃
a∈A Top(a). Similarly, with Var(ϕ) we denote the set of topics

appearing in formula ϕ. Finally, we will write Var(M, ϕ) for Var(M)∪Var(ϕ).

Definition 36. Let π be an action. We call π unique if no topic appears in π twice.

Lemma 37. For each action π , there is an equivalent unique action τ .

Proof. Let Ma be a visibility model and let p ∈ Top. Assume that Ma |= [π ∪ p∪ p]ϕ. By item (2)
of Proposition 26, this is equivalent to Ma |= [π]ϕ ∧ [p]ϕ ∧ [p]ϕ, which in turn is equivalent to
Ma |= [π]ϕ ∧ [p]ϕ. Using again item (2) of Proposition 26, we getMa |= [π ∪ p]ϕ.

Definition 38. Let Var(M, ϕ) be given. Then �(M, ϕ) is the set of all unique actions that can be
built from p ∈Var(M, ϕ). Also,�∗(M, ϕ) is the set of all unique actions built from p ∈Var(M, ϕ)∪
{p∗}.
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Note that the size of �(M, ϕ) is exponential in the size of Var(M, ϕ). We will have to address
this issue later in the analysis of complexity.

Using the set of unique actions, we can redefine the semantics of our quantifiers so that the
quantification ranges over a finite set of actions.

Lemma 39. Let Ma be a finite model, and let p∗ be a topic such that p∗ �∈Var(M, ϕ).

Ma |= [ ∗ ]ϕ iff ∀π ∈�∗(M, ϕ) :Ma |= [π]ϕ
Ma |= 〈∗〉ϕ iff ∃π ∈�∗(M, ϕ) :Ma |= 〈π〉ϕ

Proof. We show only the second item, and the first item can be proved analogously. Assume
that Ma |= 〈∗〉ϕ. By the definition of semantics this is equivalent to ∃π :Ma |= 〈π〉ϕ. Let π be
an arbitrary action, and, by Lemma 37 we can safely assume that π is unique. There are two
cases to consider. First, for all p ∈ π we have that p ∈Var(M, ϕ), that is, π consists only of top-
ics that are explicitly present in the model or formula ϕ. In this case, the result trivially follows.
Now, let us assume that there are some p1, . . . , pn ∈ π such that p1, . . . , pn �∈Var(M, ϕ). Since
those topics do not appear in the model, they cannot influence the visibility or posting rela-
tions of agents. Hence, posting on each of these topics is equivalent to posting on p∗, which
also appears neither in the model nor in the formula ϕ. Formally, let π = τ ∪ p1 ∪ . . .∪ pn,
and thus Ma |= 〈τ ∪ p1 ∪ . . .∪ pn〉ϕ. Using item (2) of Proposition, 26 repetitively, we have that
Ma |= 〈τ 〉ϕ ∨ 〈p1〉ϕ ∧ . . .∨ 〈pn〉ϕ. Since none of p1, . . . , pn appear in Var(M, ϕ),Ma:pi

a |= ϕ is dif-
ferent from Ma in that there is a reflexive pi-arrow at agent a, and pi-arrows to all of the a’s
followers. Posting on p∗ has exactly the same effect. Since, pi is not in ϕ, then Ma:pi

a |= ϕ if and
only if Ma:p∗

a |= ϕ. Thus, we can substitute each pi with p∗ to get Ma |= 〈τ 〉ϕ ∨ 〈p∗〉ϕ, which is
equivalent toMa |= 〈τ ∪ p∗〉ϕ, where τ ∪ p∗ ∈�∗(M, ϕ).

Before we provide the algorithm for model checking AVL, we need to take care of �∗(M, ϕ).
We mentioned above that the size of �∗(M, ϕ) is exponential in the size of Var(M, ϕ), and thus
we cannot keep the whole set in memory if we want to claim that the algorithm is in PSPACE. To
deal with this, we introduce an auxiliary function next(M, a, π) that, given a modelM, an agent a,
and an action π ∈�∗(M, ϕ), returns the next action π ′ in�∗(M, ϕ).

Without loss of generality, we can assume that�∗(M, ϕ) is ordered based on the order of topics
in Top. Hence, the ordering we have in mind looks as follows for {p1, . . . , pn} =Var(M, ϕ)∪ {p∗}:
p1, p1 ∪ p2, . . ., p1 ∪ pn, p1 ∪ p2 ∪ p3, . . ., p1 ∪ p2 ∪ pn, ..., p2, p2 ∪ p3, ..., pn.

Now assume that we are given an arbitrary π in the ordering. To compute next(M, a, π), we
first check whether the last element in union π of length l can be incremented, that is, whether
it is pk with k< n or not. If yes, then increment this topic. If not, then check whether the topic
at position l− 1 can be incremented. If it can be incremented, then we increment it and change
the topic at position l to the one which follows the topic at position l− 1 in the ordering of Top.
If it cannot be incremented, then we recursively proceed until we either produce a new union of
length l, or produce a new union of length l+ 1, or, else, start with a singleton topic that is next in
the ordering of Top. If there is no such a topic, that is, we have reached pn, then return end. The
described procedure can be computed in the time (and hence space) polynomial in the sizes ofM
and ϕ.

Theorem 40. Model checking AVL is PSPACE-complete.

Proof. The hardness follows trivially from the PSPACE-completeness of themodel checking prob-
lem for VL. To argue that AVL model checking is in PSPACE, we present Algorithm 2, where all
the cases apart from [ ∗ ]ψ are exactly as in Algorithm 1.
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Algorithm 2 An algorithm for model checking AVL
1: procedureMC(M, a, ϕ)
2: case ϕ = [ ∗ ]ψ
3: π← p1
4: while π �= end do
5: if notMC(M, a, [π]ϕ) then
6: return false
7: π← next(M, a, π)
8: return true

The correctness of the algorithm follows from the semantics of AVL and Lemma 39. Regarding
the complexity, recall that given M and ϕ there is a set of all unique actions �∗(M, ϕ) that are
built from p ∈Var(M, ϕ)∪ {p∗}. The size of�∗(M, ϕ) is exponential in the sizes ofM and ϕ, and
thus we do not keep it in memory. Instead, we use function next(M, a, π), starting from π = p1
(line 3), to obtain the next action in�∗(M, ϕ). Computing next(M, a, π) can be done in polyno-
mial time (and hence space). Similarly to the case of Algorithm 1, the space required to store the
current updated model is bounded by O(|M|2). While checking all possible updates takes expo-
nential time, we can reuse space for storing updated models. Hence, the total space required by
the algorithm is bounded by O(|ϕ| · |M|2).

6. Dynamic Hybrid Logics for Social Networks
Logics for reasoning about social networks is still a relatively new field. Yet, the community has
brought forward many interesting analyses of social phenomena in the past decade. The logical
frameworks used widely vary. Our framework is a modal logic with dynamic operators and nom-
inals in the hybrid tradition. In this section, we give an assessment of other social network logics
that use versions of dynamic hybrid logics as an underlying framework and compare them to the
logics presented in this paper. By social network logic, we mean logics where a relational graph
between agents is explicitly modeled.

Many social network logics utilize the modal logic Kripke frame to model a network of agents
with a binary relation representing friendship, followership, and/or communication channels. In
SVL, VL, and AVL, the underlying Kripke frame has two relations on the set of agents, the fol-
lowership relation F and the visibility relation R. As we will see in this section, taking a relation
on a Kripke frame to represent followership is not novel in this paper. However, modeling a rela-
tion of sharing and resharing a post as a binary relation on the set of agents is a new way to
model communication using a social network logic. This approach gives us an organized and pre-
cise view of complex network situations which we hope can be further implemented in the field.
The dynamic operator [π]φ changes both the followership and visibility relation in the updated
model, but the valuation function is not updated. That is, in our system agents cannot change their
current preferences. The operator [ ∗ ]φ included in the language of AVL is particularly inter-
esting from a conceptual view. It lets us reason about whether an agent has a possibility to act
such that φ holds after the action. Such reasoning about the tactical choices of agents in social
networks is a powerful tool that we believe can be useful to analyze the safety of networks, also
in future work in the field. We go on to discuss other known dynamic hybrid logics for social
networks.

Zhen and Seligman (2011) present a logic to model peer pressure within a community of social
relationships. The logical modelM= 〈W,A,∼,≤,V〉 includes a set of possible states of the world
W and a set of agents A. The relation ∼ is a symmetric and irreflexive friendship relation on A,
where a∼w b is read as “agent a is friends with agent b in state w.” ≤ is a preference relation on
W, and u≤a v is read as “for agent a, state v is at least as good as state u.” The language includes
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two types of nominals: one for possible states and one for agents. Formulas are evaluated at pairs
(w, a) of possible states and agents in the model. The dynamic components of the logic are the
unary operators [φ ≤ψ] and [φ <ψ] which update the preferences of an agent in a possible state.
Define [φ] := {w ∈W |M,w, a � φ}. A statementM,w, a � [φ ≤ψ]θ holds, roughly, whenever θ
holds in the updated model in which agent a’s preferences now includes links from all [φ]-states
to all [ψ]-states. Similarly in the case of M,w, a � [φ <ψ]θ , but here also preference links from
all [ψ]-states to all [φ]-states are deleted.

Christoff (2013), Christoff and Hansen (2013, 2015), Hansen (2015), and Christoff et al. (2016)
introduce a series of influential social network logic papers using different dynamic hybrid logic
frameworks to study diffusion, social influence, and opinion dynamics. We give a short account
of the frameworks by Christoff and Hansen (2015) and Christoff et al. (2016). The models in
the work by Christoff and Hansen (2015), named network models, are tuples M = (A,�, g, v)
where A is a set of agents and � is a binary relation on A representing the social network. g
and v are valuation functions with respect to nominals and the features of agents, respectively.
Dynamic transformations are modeled in the dynamic modality [D]. The formula [D]φ holds at
an agent in a network model if and only if φ is forced at the agent in the updated model M D

in which only the valuation v is changed. v′ in the model M D updates the original valuation
given a set of preconditions and post-conditions in D . Simply stated, the post-conditions deter-
mine what should hold true in the updated model when the preconditions hold in the original
model.

The framework by Christoff et al. (2016) builds upon and extends the one by Christoff and
Hansen (2015). The Logic of Knowledge, Diffusion and Learning (KDL) adds an epistemic dimen-
sion to the models and includes a knowledge operator K to the language. The language also
includes a dynamic operator [L ] in addition to [D]. The operator [L ] updates what the agents
know about their friends. For a finite set of formulas L , an agent a and an epistemic state
w, M ,w, a � [L ]φ is true if and only if φ holds in the updated model M L . The intuition is
that after the update, the current agent knows the features of their friends if the features are
formulas in L . A running example is given where agents have both an external and an inter-
nal hidden opinion. Either type of opinion is pro, contra, or neutral. The paper defines some
rules such as “if all the friends of an agent express a pro (contra) opinion, the agent will fall
in line and express a pro (contra) opinion in the next round” and studies how the network
evolves.

The logic known as “Facebook logic” was initially introduced by Seligman et al. (2011) and
further expanded on by Seligman et al. (2013) and Liu et al. (2014). These papers have been
highly influential in the field of social network logics and have been cited as inspiration for
papers by authors such as the previously mentioned Zhen and Seligman (2011), Christoff and
Hansen (2015), and Christoff et al. (2016). Seligman et al. (2013) present a dynamic version
of the logic, called dynamic epistemic friendship logic (DEFL). The models of DEFL are tuples
M= 〈W,A, k, f ,V〉 where W is a set of epistemic states and A is a set of agents. k is a family of
equivalence relations onW, and f is a family of symmetric and irreflexive relations on A. The lan-
guage includes operators for the two types of relations: nominals and the hybrid binder operator
↓. With the language, one can state sentences such as “Bella knows that she is not a spy but doesn’t
know if a friend of hers is a spy,” denoted @b(K¬s∧¬K〈F〉s). The dynamic operators in DEFL
are based on the theory of General Dynamic Dynamic Logic (Girard et al., 2012) and use details
from PDL. The models can be updated after announcements from agents, which can also be pri-
vate or public questions from one agent to another. Due to the complex nature of the operators,
we will not go into more technical detail. Fernández González (2022) give some further alterna-
tives for dynamic extensions of the framework by Seligman et al. (2011). One extension lets agents
send and receive asynchronous announcements. Asynchronous announcements are not assumed
to be immediately received as they are sent, rather, the message is sent to a queue and can be
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received at a later stage. Two operators are added to the language: [n!φ] is read as “agent n sends
a message φ to the queue” and [n : r] is read as “agent n receives all queued messages sent by her
friends.”

Xiong and Guo (2019) introduce Dynamic Hybrid Logic for Followership which language is
the basic hybrid language added a dynamic operator [a ↑ θ]. The models are standard hybrid
models, with a set of agents and a binary relation representing followership. [a ↑ θ]φ is read as
“after a chooses to only follow agents satisfying θ , φ holds.” Other dynamic social network logics
using hybrid elements are included in works by authors (Occhipinti Liberman and Rendsvig, 2019,
2022; Pedersen et al., 2019, 2021b; Sano and Tojo, 2013). Details of these frameworks are left out
for now.

7. Conclusion and Future Work
This work was devoted to the analysis of the concepts of visibility and exploitation in social net-
works using modal logic. After discussing related work from the perspective of social network
analysis, we introduced a logic we named SVL and its dynamic extensions, VL, and AVL. We did
not give a definite answer as to how one should measure visibility but proposed several quantita-
tive and qualitative measures relevant to our social networkmodels. Tomotivate VL, we presented
an example where we showed how, given some simple rules of the system, a potential malicious
agent can take advantage of the network to expose more agents to a controversial opinion. In AVL,
we introduced operators to reason about whether an agent can act such that a certain outcome
holds.

On the mathematical side, we showed soundness and completeness of SVL with respect to
social networks that follow our given rules. We also proved that the language of VL is strictly
more expressive than the language of SVL, and that the language of AVL is strictly more expressive
than the language of VL. The first increase in expressivity, from SVL to VL, also resulted in a
significant increase in the complexity of model checking, from P to PSPACE. Interestingly, the
second expressivity increase, from VL to AVL, has not resulted in a jump in the complexity of
model checking, that is, the complexity of the model checking problem for AVL is still PSPACE-
complete.

As we mention in the paper, an implication of the result SVL<VL is that a proof of the com-
pleteness of VL using reduction axioms is not possible. Thus one of the open problems is to find
a sound and complete axiomatization of VL. As we also prove that VL<AVL, completeness
of AVL can neither be proved using reduction axioms into SVL nor VL. A sound and complete
axiomatization of AVL is therefore also an open problem.

Another direction for future work is to formalize triggering in social network communication.
The idea is that seeing a post on a controversial topic might trigger an agent to post a reaction.
To do this, we could expand our framework such that agents can not only post on a topic but also
pro or contra a topic. This entails letting π ::= p | p+ | p− | π ∪ π in the dynamic formula [π]φ.
Then, we could specify particular controversial topics and add a rule stating that if an agent sees
a post that is pro the controversial topic and they are themselves contra, and then the agent will
post contra the topic, or vice versa.

Related to the former point, the social network presented in this paper comes with a set of rules
that is an oversimplification of a real-life network. In future work, we would like to add more
detailed, and more realistic, rules, which would give us a more complicated system to study other
interesting social phenomena with. Furthermore, in our work, we focus on the effects of agents
posting on different topics rather than posting different posts on the same topic. One avenue for
further research is to extend the framework to also allow agents to post more than one post on the
same topic.
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